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In the nearest vicinity of the critical temperature, types I and II of conventional single-band superconductors
interchange at the Ginzburg-Landau parameter κ = 1/

√
2. At lower temperatures this point unfolds into a narrow

but finite interval of κ’s, shaping an intertype (transitional) domain in the (κ,T ) plane. In the present work, based
on the extended Ginzburg-Landau formalism, we show that the same picture of the two standard types with the
transitional domain in between applies also to multiband superconductors. However, the intertype domain notably
widens in the presence of multiple bands and can become extremely large when the system has a significant
disparity between the band parameters. It is concluded that many multiband superconductors, such as recently
discovered borides and iron-based materials, can belong to the intertype regime.
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I. INTRODUCTION

Observation of nonconventional vortex configurations in
MgB2 [1] has ignited the interest in possible superconductivity
types in multiband superconductors, where many carrier bands
contribute to the condensate state. In single-band materials
the distinction between the types is routinely explained by
employing the Ginzburg-Landau (GL) theory [2–4] which
distinguishes ideally diamagnetic type-I materials and type-II
superconductors that allow for the mixed state. Following this
theory the interchange between the types occurs when the
GL parameter κ = λL/ξ crosses its critical value κ0 = 1/

√
2

(λL is the London magnetic penetration depth, ξ is the GL
coherence length) [3]. A key difference that distinguishes
those types is the vortex-vortex interaction: it is repulsive in
type-II and attractive in type-I superconductors. At κ = κ0,
referred to as the Bogomolnyi point, vortices do not interact.
This is a consequence of the fact that the GL theory at this
point reduces to a pair of the first-order self-dual Bogomolnyi
equations [5,6]. The self-duality, first discussed in the context
of cosmological strings [5,7], leads to an infinite degeneracy of
different flux configurations [6,8,9], from which the absence
of the vortex-vortex interactions follows.

However, detailed experimental investigations [10] as well
as theoretical calculations beyond the GL theory [11–15]
show that the GL dichotomy of the superconductivity types
is achieved only in the limit T → Tc (Tc is the critical
temperature). At T < Tc the Bogomolnyi point unfolds into
a finite temperature-dependent interval of κ’s (in this paper
referred to as the intertype/transitional interval or domain),
where superconductivity cannot be attributed to one of the
standard types. For example, superconductors in this interval
reveal the first-order phase transition between the Meissner
and mixed states at Hc1 and, plausibly, between the mixed
and normal states at Hc2 [11,15]. Theoretical modeling, based
on microscopic BCS as well as on the Neumann-Tewordt
(NT) [16] theories, has led to a general perception that the key
characteristic of the transitional domain, that is responsible
for its nonstandard properties, is the nonmonotonic vortex-
vortex interaction: the long-range attraction combined with the

short-range repulsion [11,12,15]. It was argued that such
attraction is a manifestation of nonlocal effects that are not
inherent to the GL theory [17]. Being a few, and outside the
GL description, single-band materials in the narrow intertype
domain are, as a rule, ignored in textbooks and the correspond-
ing magnetic response remains scarcely investigated to date.

Although the unconventional vortex patterns in MgB2 [1]
were also attributed to a long-range vortex attraction, the
proposed explanation was totally different. It was conjectured
in this case that it appears due to the interplay between different
carrier bands or, more precisely, due to a competition between
different length scales of π and σ bands in MgB2 [18]. This
explanation has led to a controversial idea of a new supercon-
ductivity type found only in multiband systems [1,18].

Critics of this concept pointed to similarities between the
flux configurations observed in MgB2 and in the intertype
regime of single-band superconductors [17]. They also noted
inconsistencies of the multicomponent GL equations [19,20]
employed for analysis of vortex matter in MgB2, where the
different band gaps were treated as components of the Landau
order parameter [18,21]. In particular, it is well known that the
Landau theory for phase transitions relates the number of the
order-parameter components not to the number of bands but to
the dimension of the corresponding irreducible representation
of the symmetry group [22,23].

To this date it remains unclear if explanation of the
nonstandard vortex distributions in MgB2 requires a specific
multiband mechanism or the underlying physics is similar
to that of single-band superconductors in the transitional
interval [17]. More generally, classifying superconductivity
types and their interchange in multiband systems remains an
unresolved issue. In the present work we address this problem
with the extended GL (EGL) formalism [20,24] derived as
the exact perturbation expansion of the BCS theory over the
small proximity to the critical temperature τ = 1 − T/Tc to
one order beyond the standard GL approach. It is important
that this correction not only improves the accuracy of the
calculations but also captures phenomena that cannot be
described within the standard GL theory. In particular, this
concerns the intertype domain absent in the GL picture.
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We demonstrate that unless the system has some additional
band symmetry [25], multiband superconductors obey the
standard classification with the two superconductivity types
and the transitional domain in between. The intertype behavior
has the same origin for both multi- and single-band supercon-
ductors, namely, it appears as a result of lifting the Bogomolnyi
point degeneracy. However, the crucial difference of systems
with multiple bands is that the transitional domain notably
widens and can become extremely large when disparity
between microscopic characteristics of contributing bands is
significant. Thus, many of the multiband superconductors can
belong to the intertype regime.

Presentation of our results is separated into two main
parts. In the first part (Sec. II) we discuss the transitional
domain in single-band superconductors. The EGL formalism
is formulated in the universal form independent of the number
of bands and thus analysis of the single- and multiband cases
are qualitatively similar. Presenting first a simpler single-band
case helps us to better understand the phenomenon of the
intertype superconductivity and is also needed for highlighting
similarities and differences between the single- and multiband
superconductors. The current understanding of the intertype
regime even in the single-band case remains sketchy and
contradictory and calls for revisiting the problem.

The second part of the paper (Sec. III) extends our
consideration to the multiband case. Here explicit calculations
are done for a two-band superconductor, where most of results
can be obtained analytically. We argue that qualitatively similar
conclusions hold also for any number of carrier bands.

For the convenience of the reader technical details of our
calculations are given in the appendixes.

II. SINGLE-BAND SYSTEMS

Let us briefly summarize the past achievements and related
problems in description of the intertype regime in single-band
superconductors. Studying the transitional domain between
types I and II requires an approach going beyond the GL theory.
Solving equations of the fully microscopic formalism is very
demanding numerically due to inhomogeneity of the mixed
state. This is the reason why microscopic analysis has been
performed only for few selected problems, in particular, to
calculate outer boundaries of the transitional domain [13,14]:
the upper boundary is determined by the onset of the long-
range vortex-vortex attraction and the lower one is set by the
appearance/disappearance of the mixed state.

A compromise between the microscopic theory and the GL
approach is the Neumann-Tewordt (NT) theory [16], which
has been used to obtain most of currently known results
on the intertype superconducting behavior. This formalism
was originally derived from the so-called local approximation
for the BCS theory and yields the free-energy functional,
where the GL contribution is augmented by the terms with
higher-order derivatives and higher nonlinearity. The NT
approach was used to calculate outer boundaries of the
transitional domain [11,12,15] but also demonstrated the
presence of other boundaries introducing subdivisions in the
transitional domain and intertype superconducting behavior.
Unfortunately, consequences of such subdivisions did not
receive much attention in the literature.

However, the NT theory has several fundamental diffi-
culties. First, highly nonlinear equations of this formalism
are in fact not much simpler than the original microscopic
theory [16,26–28]. Second, it may lead to nonphysical results
such as a rapidly oscillating order parameter in the single-
vortex solution [27,28]. In order to simplify the analysis,
the NT equations were linearized by seeking its solution in
the form of a small correction to the solution of the GL
equations [11,12]. Corrections to the GL free energy were also
obtained by substituting the GL solution directly into the NT
functional [15]. However, results of both approaches for the
boundaries of the intertype domain were considerably different
(see Table I below). This must be taken into consideration
together with the fact that the nonphysical results of the full
NT equations can also cast doubts on their linearized version.

Here we revisit the problem of the intertype superconductiv-
ity in single-band materials using the EGL formalism [20,24]
derived perturbatively (in τ = 1 − T/Tc). An essential ad-
vantage of our approach is the possibility to obtain universal
analytical expressions for the characteristics of the transitional
domain in both single- and multiband systems. As mentioned
above, accounting for the terms beyond the standard GL
approach in the τ expansion allows one to access physics
not captured in the GL picture. The accuracy of the EGL
formalism is established by comparing with the results of the
full microscopic theory, which was done in Refs. [20] and [24]
for some pertinent quantities, as well as with the available
experimental data; see Fig. 2 below.

A. Criteria for interchange of types I and II

We start the analysis of the transitional domain with
the general remark that the superconductivity types are
related to the way the magnetic field penetrates the bulk
superconductor and produces a nonuniform configuration of
the flux/condensate. Specifying such a configuration is not
important in the extreme cases where κ � 1 or κ � 1, nor in
the limit T → Tc. However, the situation changes for κ ∼ 1
and T < Tc, where choosing different variants of a nonuniform
magnetic-flux distribution gives rise to different scenarios of
the interchange between types I and II.

A criterion for such interchange utilizes the corresponding
Gibbs free energy: when it becomes smaller than that of
the Meissner state at the thermodynamic critical field Hc,
the flux/condensate configuration in question can appear [4].
The respective difference between the Gibbs free energies is
written as

G =
∫

g dr, g = f + H 2
c

8π
− HcB

4π
, (1)

where f is the free-energy density of the corresponding
nonuniform state and the magnetic field B is parallel to
the external magnetic field of value Hc. The onset of this
nonuniform state is found from the equation

G(κ,T ) = 0 (2)

that yields the corresponding GL critical parameter κ∗(T ),
hereafter referred to as simply a critical parameter. On the
(κ,T ) plane κ∗(T ) separates domains with and without the
flux/condensate configuration of interest, called types II and I.
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Several types of such nonuniform flux configurations are
traditionally employed in order to construct the criterion of the
type interchange. Most common is the domain wall (interface)
between superconductive (S) and normal (N) phases [3,4]. The
interchange takes place when the surface energy associated
with the domain wall becomes zero. Another criterion is
obtained by considering the superconductivity nucleation at
the upper critical field Hc2: here types I and II interchange
when Hc2 = Hc [3,4]. The stability of a single Abrikosov
vortex is also useful, resulting in the interchange condition
Hc1 = Hc [3,4]. In addition, it is also possible to associate the
type interchange with a certain property of a chosen flux con-
figuration. For example, in the context of the unconventional
vortex states, discussed in the Introduction, one can consider
the interaction of two Abrikosov vortices that is repulsive
in type II and attractive in type I [3,4]. The corresponding
criterion is a change of the sign of the vortex-vortex interaction
or, more precisely, of its long-range asymptote.

Within the standard GL theory the differences between the
above criteria are irrelevant: one obtains the same temperature-
independent critical parameter κ∗ = κ0. Superconductivity
types I and II are found at κ < κ0 and κ > κ0, respectively,
while switching between types I and II takes place sharply
at κ = κ0. At this point differences between types I and II
disappear due to an infinite topological degeneracy of the
GL theory. This degeneracy was noted in the context of
the so-called Sarma solution [3], however, its comprehensive
analysis was done later by Bogomolnyi in relation to the
physics of cosmic strings [5,6].

As already mentioned in the Introduction, the classification
based on the GL theory is strictly valid only in the limit
T → Tc. At T < Tc corrections to the GL theory remove
the degeneracy, leading to that different criteria for the type
interchange give different critical parameters [11,13,15]. In
particular, conditions Hc = Hc2 and Hc = Hc1 correspond to
κ∗

2 and κ∗
1 , respectively. The zero surface energy yields κ∗

s

whereas changing the sign of the long-range vortex interac-
tion gives κ∗

li . All temperature-dependent critical parameters
converge to κ0 at T → Tc, manifesting the degeneracy of the
Bogomolnyi point (κ0,Tc). At T < Tc there is a finite interval
of κ’s where the superconducting magnetic response cannot be
classified as belonging to one of the standard types. Thus, in
the (κ,T ) plane superconductivity types I and II are separated
by the transitional (or intertype) domain.

B. Gibbs free-energy difference

We calculate the Gibbs free-energy difference G in
Eqs. (1) and (2) using the EGL formalism [24]. In this
approach the free energy is given by a series in τ = 1 − T/Tc,
obtained by expanding all pertinent physical quantities. The
spatial coordinates are scaled as τ 1/2r, which introduces the
corresponding scaling into the spatial derivatives. The gap
function � and the magnetic field B (or the vector potential
A) are represented in the form

� = τ 1/2(	 + τψ + · · · ),

B = τ (B + τb + · · · ),

A = τ 1/2(A + τa + · · · ). (3)

The free-energy density is found as [24]

f = τ 2(f(0) + τ f(1) + · · · ), (4)

where the lowest-order contribution represents the standard
GL free-energy functional

f(0) = B2

8π
+ a|	|2 + b

2
|	|4 + K |D	|2, (5)

with D = ∇ − i2eA/(� c) the gauge-invariant derivative.
The leading-order corrections to the GL free energy are split
into two parts

f(1) = f
(1)
1 + f

(1)
2 , (6)

where the first part is given by

f
(1)
1 = a

2
|	|2 + 2K |D	|2 + b |	|4 + b

36

e2
�

2

m2c2
B2|	|2

−Q
{
|D2	|2 + 1

3
(rot B · i) + 4e2

�2c2
B2|	|2

}

− L
2

{
8 |	|2|D	|2 + [	2(D∗	∗)2 + c.c.]

}
− c

3
|	|6,

(7)

and includes only the lowest-order contributions 	 and B (A)
to the gap and field, respectively, while the second part writes

f
(1)
2 = (B · b)

4π
+ (a + b|	|2)(	∗ψ + c.c.)

+ K {(D	 · D∗ψ∗ + c.c.) − (a · i)}, (8)

and contains also the leading corrections to the gap and field,
ψ and b (a). In Eqs. (7) and (8)

i = i
2e

� c
(	 D∗ 	∗ − 	∗ D	), (9)

where Kci is the lowest-order contribution to the supercurrent
density.

Coefficients in Eqs. (4)–(8) are obtained using a chosen
microscopic model of the charge-carrier states. In particular,
for a spherical Fermi surface in the clean limit one gets

a = −N (0), b = N (0)
7ζ (3)

8π2T 2
c

,

c = N (0)
93ζ (5)

128π4T 4
c

, K = b

6
�

2v2
F , (10)

Q = c

30
�

4v4
F , L = c

9
�

2v2
F ,

where N (0) = mkF /(2π2
�

2) is the density of the carrier states
(DOS) at the Fermi surface with the Fermi momentum kF and
Fermi velocity vF = �kF /m.

A stationary point of the functional given by Eq. (4)
yields the main equations of the formalism. The GL equations
are obtained as the stationary condition for the lowest-order
contribution to the free energy, i.e.,

δF(0)

δ	
= δF(0)

δA
= 0, (11)
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where F(n) = ∫
f(n)dr, with n = 0,1. Equations for ψ and b

(a) read

δF(1)

δ	
= δF(1)

δA
= 0. (12)

Notice, that δF(1)/δψ = 0 and δF(1)/δa = 0 also generate the
GL equations.

One can see that the leading correction to the free energy
(i.e., the term ∼τ 3) can be rearranged at the stationary point
so that the terms with ψ and b (a) are excluded. This follows
from that f(1)

2 in Eq. (8) is linearly proportional to the functional
derivatives δF(1)/δψ and δF(1)/δa (up to some vanishing
surface integrals) that are zero by virtue of Eq. (12). Therefore,
at the stationary point the leading correction to free energy is
reduced to Eq. (7). Using solutions to the GL equations (11),
we find the free-energy density from Eqs. (4)–(8) and then
calculate the Gibbs free energy difference given by Eq. (1).

Calculating the Gibbs free energy difference up to the
leading correction to the GL result requires obtaining the
thermodynamic critical field Hc with the same accuracy, which
gives [24]

Hc = τ
(
H (0)

c + τH (1)
c + · · · ) , (13)

where

H (0)
c =

√
4πa2

b
,

H (1)
c

H
(0)
c

= −1

2
− ac

3b2
. (14)

It is convenient to do further calculations using the dimension-
less quantities

r̃ = r

λL

√
2
, Ã = κ

A

H
(0)
c λL

, B̃ = κ
√

2
B

H
(0)
c

,

	̃ = 	

	0
, ĩ = 4πKλL

H
(0)
c

i, f̃ = 4π f

H
(0)2
c

, (15)

g̃ = 4πg

H
(0)2
c

, G̃ = 4πG

H
(0)2
c (λL

√
2)3

,

where

	0 =
√

|a|
b

, λ2
L = �

2c2b

32πe2K|a| , κ = λL

ξ
= λL

√
|a|
K . (16)

Notice that as we use the τ -scaled spatial coordinates, the
GL coherence length ξ and the London penetration depth
λL are scaled accordingly. In the following we write the
dimensionless quantities introduced in Eq. (15) without tilde
unless it causes any confusion.

The density of the Gibbs free energy difference is given by
the expansion

g = τ 2(g(0) + τg(1) + · · · ), (17)

where in the lowest order we have the GL contribution

g(0) = 1

2

(
B

κ
√

2
− 1

)2

+ 1

2κ2
|D	|2 − |	|2 + 1

2
|	|4 (18)

(now we have D = ∇ + iA) while the leading correction
writes

g(1) =
(

B

κ
√

2
− 1

)[
1

2
+ c̃

]
− |	|2

2
+ |D	|2

κ2
+ |	|4

+ Q̃
4κ4

{
|D2	|2 + 1

3
(rot B)2 + B2|	|2

}

+ L̃
4κ2

{8|	|2|D	|2 + [	2(D∗	∗)2 + c.c.]}

+ c̃ |	|6, (19)

with the dimensionless coefficients

c̃ = ca

3b2
, Q̃ = Qa

K2
, L̃ = L a

bK . (20)

Since we are interested in the near-Bogomolnyi regime, it
is also useful to introduce the expansion over δκ = κ − κ0,
following the suggestion of Ref. [15]. Expanding Eq. (2) with
respect to δκ we obtain

G = τ 2

(
G(0) + dG(0)

dκ
δκ + G(1) τ + · · ·

)
, (21)

and the coefficients in this expansion are calculated at κ = κ0,
i.e., we incorporate a solution to the GL formalism at κ0 where
it is reduced to the first-order Bogomolnyi equations. The terms
∝ τ δκ are neglected in Eq. (21) because both quantities δκ

and τ are of the same order of magnitude, δκ ∼ τ .
The derivative dG(0)/dκ contains the direct contribution

coming from the explicit appearance of κ in the expression
for g(0) (the partial derivative below) and the indirect one
related to the derivatives d	/dκ and dA/dκ . However, one
can immediately see that the indirect contribution is equal
to zero. Namely, the corresponding terms in the integrand
are proportional to δG(0)/δ	 and δG(0)/δA. These terms
disappear because the functional derivatives of G(0) are equal
to the corresponding functional derivatives of F(0) that are zero
at the stationary point; see Eq. (11). The final expression for
dG(0)/dκ reads

dG(0)

dκ
=

∫
∂g(0)

∂κ
dr, (22)

with

∂g(0)

∂κ
= − B

κ2
√

2

(
B

κ
√

2
− 1

)
− 1

κ3
|D	|2. (23)

At κ = κ0 solutions to the GL equations are obtained using the
Bogomolnyi self-duality equations (A13) and (A14), that are
also used to simplify the integrals in G. After straightforward
but lengthy calculations one obtains for G the following
general expression:

G = τ 2

{
−

√
2 I δκ + τ

[
(1 − c̃ + 2Q̃) I

+
(

2 L̃ − c̃ − 5

3
Q̃

)
J

]
+ · · ·

}
, (24)

with

I =
∫

|	|2(1 − |	|2)dr, J =
∫

|	|4(1 − |	|2)dr. (25)
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Details of the solving procedure for the relevant nonuniform
flux configurations are discussed in Appendixes B and C.
It is important that the lowest-order term G(0) is zero for
any solution of the GL equations at κ = κ0, manifesting the
degeneracy of the Bogomolnyi point. Thus, Eq. (24) comprises
only two contributions, ∝ δκ and ∝ τ .

C. Critical GL parameters

Substituting Eq. (24) into Eq. (2) one obtains the general
expression for critical parameters up to the leading correction
in τ , i.e.,

κ∗ = κ0

{
1 + τ

[
1 − c̃ + 2Q̃ + J

I

(
2 L̃ − c̃ − 5

3
Q̃

)]}
.

(26)

This expression generalizes our earlier result for the N-S
wall solution [24] to an arbitrary flux configuration. The
dimensionless constants in Eq. (26) are calculated from
Eq. (10), which gives

c̃ = −0.227, L̃ = −0.454, Q̃ = −0.817. (27)

These constants do not depend on the material parameters Tc,
N (0), and vF , which points to the robustness of the approach:
one can generally expect that the results are not very sensitive
to details of a particular microscopic model, at least for weak
disorder.

Using Eq. (26), we calculate the critical parameters for
the above criteria of the type interchange. The first criterion
is based on the appearance of a flat N-S domain wall. The
corresponding solution, outlined in Appendix B, yieldsJ /I =
0.559. The critical parameter is thus obtained as

κ∗
s = κ0(1 − 0.027τ ). (28)

The condition Hc = Hc1 is related to the thermodynamic
stability of an isolated Abrikosov vortex, the solution to which
yields J /I = 0.735; see Appendix C. The corresponding
critical parameter is

κ∗
1 = κ0(1 + 0.093τ ). (29)

The condition of changing the sign of the long-range vortex-
vortex interaction is calculated using G for the state with two
single-quantum vortices separated by distance R. Details and
the asymptote of G at large R are given in Appendix C. Using
those results we find J /I → 2 (R → ∞) and then the critical
parameter reads

κ∗
li = κ0(1 + 0.95τ ). (30)

Finally, onset of the superconductivity nucleation is defined
by the condition Hc2 = Hc. In order to solve this equation,
one can find the upper critical field Hc2 using the condition of
the first appearance of a nonzero gap. Alternatively, one can
use Eq. (26) and utilize the fact that in the limit B → Hc2 the
order parameter 	 vanishes. Then, as follows from Eq. (25),
the integrands for I and J are reduced respectively to |	|2
and |	|4. Thus, in this limit one obtains J/I → 0 and the
corresponding critical parameter writes

κ∗
2 = κ0(1 − 0.407τ ). (31)

TABLE I. The τ derivative of the critical parameter κ∗ calculated
for the different interchange criteria mentioned in the text: comparison
between the results of the EGL formalism and NT calculations from
Refs. [11] and [15].

dκ∗
li

dτ

dκ∗
1

dτ

dκ∗
s

dτ

dκ∗
2

dτ

EGL 0.6726 0.066 − 0.019 − 0.288
NT-1 [11] 0.675 0.065 − 0.019 − 0.288
NT-2 [15] − 0.163 − 0.242 − 0.254 − 0.290

One can check that an independent calculation based on a
solution to the linearized GL equation for the order parameter
yields the same result.

Equations (28)–(31) illustrate that different criteria of the
type interchange produce different critical parameters at T <

Tc. This difference has been noticed earlier in the analysis
based on the NT theory [11,15]. However, as mentioned above,
there was no agreement on the values of the critical parameters
obtained by different versions of the linearization procedure.
In Table I we provide a summary of the results obtained in
the present and earlier works. One can see that our values
for the critical parameters coincides with those of Ref. [11],
denoted as “NT-1” in Table I. However, results of the other
approach [15] (“NT-2”) are notably different for all critical
parameters with the exception of κ∗

2 .
The accuracy of our approach is further confirmed by the

comparison with the microscopic calculations shown in Fig. 1
which plots results for κ∗

li obtained by the EGL and Eilenberger
equations [13]. The results of the full nonlinear NT theory
are also provided [29]. The microscopic data are obtained
with numerical uncertainties, illustrated in Fig. 1 by the trust
interval between two solid curves. At higher temperatures,
0.7 � T/Tc � 1, all three approaches yield close values,
converging to κ0 in the GL limit T → Tc. However, when the
temperature is lowered, T/Tc � 0.7, the NT theory starts to
deviate notably from the microscopic solution. On the contrary,

0.0 0.2 0.4 0.6 0.8 1.0

0.7

0.9

1.1

1.3

1.5

1.7
Ginzburg-Landau
ext. Ginzburg-Landau
Eilenberger
Neumann-Tewordt

K
li

T /Tc

*

FIG. 1. The critical parameter κ∗
li (controlling the long-range

vortex-vortex attraction) as calculated from Eq. (30), from the Eilen-
berger equations [13], and from the NT approach [29]. Numerical
uncertainties in microscopic calculations are given by the trust
interval (shaded area between the upper and lower curves). The
standard GL result κ = κ0 is represented by the dashed line for
reference.
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FIG. 2. Boundaries of the transitional (intertype) domain for
single-band superconductors. The upper and lower lines represent
κ∗

li and κ∗
2 , given by Eqs. (30) and (31), respectively. Symbols show

the collection of different experimental data reported in Ref. [10] and
extracted from the qualitative changes of the magnetization curve
M(H ); see the illustrative sketches given in the three small left panels.

the EGL line remains in a good quantitative agreement with
the microscopic theory at temperatures down to T/Tc ∼ 0.3.
The EGL approach demonstrates a wider validity domain than
the nonlinear NT theory. This is because the accuracy of the
solution to the nonlinear NT theory exceeds the accuracy of its
derivation procedure, as was mentioned already in Ref. [28].

D. Transitional domain: Outer boundaries

Mutual deviations of the critical parameters at T < Tc

introduce the transitional domain between types I and II in
the (κ,T ) plane. Its boundaries are defined by the maximal
and minimal critical parameters. Equations (29)–(31) give the
transitional interval as [κ∗

2 ,κ∗
li].

These boundaries can be extracted from the magnetization
measured for different κ [10] (see also the review in Ref. [17]).
In experiments changing κ was achieved in lead alloys by
varying a thallium content and in TaN samples by nitrogen
doping, while remaining in the nearly clean regime. Reported
changes of the field dependence of the magnetization M(H )
are schematically illustrated in the left panels in Fig. 2. Inside
the transitional domain M(H ) has a jump at H ∗

c and a nonzero
tail at larger fields H ∗

c < H < Hc2. The tail disappears at
κ < κ∗

2 and the magnetization acquires the standard type-I
appearance. At κ > κ∗

li , the jump in the magnetization is
absent as expected for type II. Such a magnetization pattern
is referred to as type-II/1 in the literature and the related
explanations are usually reduced to the long-range attraction
between Abrikosov vortices [17], which is true only to some
extent and ignores other important aspects of the intertype
superconductivity (see the next subsection).

The critical parameters κ∗
2 and κ∗

li , obtained for different
materials, are shown in Fig. 2 together with theoretical results
given by Eqs. (30) and (31). One sees that at T/Tc � 0.4
all experimental data for both κ∗

2 and κ∗
li are almost linearly

dependent on T/Tc in excellent agreement with the EGL

theory, which can be regarded as a further confirmation of
its accuracy (see Fig. 1).

E. Transitional domain: Internal structure

As noted above, the physics of the transitional domain
is commonly restricted to the long-range vortex-vortex at-
traction. This, however, contradicts to the observation that
other critical parameters exist inside this domain with the
corresponding changes of admissible intertype flux patterns.
Moreover, the number of such internal critical parameters is
infinite due to the infinite degeneracy of the Bogomolnyi point.
A comprehensive study of all possible flux configurations
and the corresponding subdomains is beyond the scope of
this work. However, as an illustration we consider a simple
example of the states that generate an infinite set of the critical
parameters, namely, vortices that carry an arbitrary number
N � 1 of elementary magnetic-flux quanta (multiquantum or
giant vortices). Such vortices are known to be unstable in type-
II superconductors but this changes in the intertype regime.

The procedure of solving the GL equations at the Bogomol-
nyi point for an isolated vortex with an arbitrary N is outlined
in Appendix C. Using obtained solutions, we calculate the
corresponding integrals I and J and then critical parameters
κ∗

1,N , that control the appearance of N -quantum vortices, from
Eq. (26). The left panel in Fig. 3 shows the Gibbs free energy
difference for an isolated N-quantum vortex divided by N in
order to see its stability with respect to the decay into smaller
vortices.

Figure 3 demonstrates that for large δκ > 0 an Abrikosov
vortex (N = 1) has the lowest energy, as expected in type
II. For large negative δκ < 0 the Gibbs energy difference
is positive for any N and, therefore, any isolated vortex
is unstable, as expected in type I. However, when δκ ∼ 0,
isolated vortices with N > 1 become stable. For any value
of N there is an interval of δκ’s where GN (δκ)/N has the
lowest value among all the other isolated vortex states and,
thus, the N -quantum vortex is most stable in this interval. This
is further illustrated by the right panel of Fig. 3 which shows
the derivative (tangent) κ∗′

1,N = dκ∗
1,N/dτ as a function of N .

This function decreases monotonously from κ∗′
1 to κ∗′

s . Thus,
the appearance of multiquantum vortex states introduces an
infinite set of critical parameters inside the transitional domain,

*'
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FIG. 3. (a) The Gibbs free-energy difference for an isolated N -
quantum vortex normalized by N vs the deviation of the GL parameter
δκ = κ − κ0 at T = 0.7Tc and H = Hc. (b) The derivative dκ∗

1,N/dτ

as a function of the number of the flux quanta N . Dotted lines display
the τ derivatives of κ∗

1 and κ∗
s .
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FIG. 4. Internal structure of the transitional (intertype) domain
[κ∗

2 (T ),κ∗
li(T )] as following from analysis of different isolated-vortex

solutions. The subdivision in the three subdomains is dictated by
the presence of critical parameters κ∗

1,N (T ) displaying stability of
N -quantum vortices in the interval [κ∗

s (T ),κ∗
1 (T )].

κ∗
s < · · · < κ∗

1,N < · · · < κ∗
1,2 < κ∗

1 (κ∗
1,1 ≡ κ∗

1 ), splitting it
into an infinite number of subdomains.

In interval κ∗
1 < κ < κ∗

li the Meissner state is unstable
with respect to the formation of Abrikosov vortices at fields
H > Hc,1 (Hc,1 < Hc). At κ < κ∗

1 an isolated Abrikosov
vortex is less stable then the Meissner state. However, for
κ∗

1,2 < κ < κ∗
1 a single two-quantum vortex becomes more

favorable thermodynamically than the Meissner state at fields
H > HN=2

c1 , with HN=2
c1 < Hc being the lower critical field for

the two-quantum vortex. We note that the condition HN
c1 = Hc

defines critical parameter κ∗
1,N . At κ < κ∗

1,2 the energy of both
single- and two-quantum vortices are higher than that of the
Meissner state and thus we arrive at the subdomain where
an isolated vortex with N = 3 becomes most favorable for
H > HN=3

c1 . When κ decreases further towards κ∗
s , the system

sequentially passes through subdomains with larger and large
N . Finally, at κ < κ∗

s isolated vortices become unstable for
all N and the representation of the mixed state as a set of
weakly interacting vortices is not applicable anymore. We
note, however, that at κ∗

2 < κ < κ∗
s a spatially nonuniform

mixed state with a nonzero penetrating magnetic flux is still
possible, following that Hc < Hc2.

Obtained results are illustrated by a sketch in Fig. 4, where
three sectors are distinguished: the upper one, where a single
Abrikosov vortex represents the only stable variant of an
isolated vortex solution, the lower one, where isolated vortices
are not possible, and the middle sector, divided into infinitely
many parts, where multiquantum vortices can exist.

It should be noted that some properties of the mixed state
remain degenerate even at T < Tc, at least in this order of
the τ expansion. For example, critical parameter κ∗

li,N that
corresponds to changing the sign of the long-range interaction
between two N -quantum vortices has the same value κ∗

li for
all N (see also the last paper in Ref. [11]).

We stress again that this analysis of the subdomain structure
based on the consideration of isolated multiquantum vortices
is only an illustration. It is, however, sufficient to highlight
inadequacy of the assumption that the physics of the magnetic
intertype response is reduced to the single property of the long-
range attraction between single-quantum (Abrikosov) vortices.

III. MULTI-BAND SUPERCONDUCTORS

A. GL theory of multiband materials

Before extending the consideration to multiband super-
conductors, we have to make sure that the Bogomolnyi
point does exist here. In fact, its existence follows from
the microscopic derivation of the GL theory for multiband
materials [19,20,30,31] for the most common case when
they do not possess some additional symmetry between
contributing bands. Then superconductivity is described by
a single-component order parameter 	, that determines all the
band-gap functions in the lowest order in τ as

−→
� (0) = 	

−→
ξ , (32)

where
−→
� (0) = (�(0)

1 , . . . ,�
(0)
M )T is the vector of the band-gap

components, M is the total number of bands, and
−→
ξ is

an eigenvector of a matrix that controls the equation for
Tc (referred to as the linearized gap equation) [20,30]. If a
system possesses additional symmetry between the carrier
bands, several such eigenvectors may exist, which is defined
by the dimensionality of the irreducible representation of the
symmetry group [22,23]. Thus, what determines the number of
the order-parameter components is the dimensionality of the
representation and not the number of the contributing bands.
When no such additional symmetry exists, a solution of the
linearized gap equation is not degenerate and the system has a
single order parameter associated with the single eigenvector
of the matrix in the linearized gap equation [30].

This order parameter satisfies the standard single-
component GL equation

a 	 + b |	|2	 − KD2	 = 0, (33)

however, its coefficients incorporate contributions of all bands,

a =
∑

n

ξ 2
nan, b =

∑
n

ξ 4
nbn, K =

∑
n

ξ 2
nKn, (34)

where an, bn, and Kn are obtained for band n. If considering
the clean limit and spherical Fermi surfaces for each band,
these coefficients are given by Eq. (10) with the band density
of states Nn(0) and band Fermi velocity vF,n.

The fact that the GL theory is single component means that
all conclusions of this theory for single-band superconductors
hold in the multiband case as well. In particular, multiband su-
perconductors follow the standard picture of two superconduc-
tivity types separated by the infinitely degenerate Bogomolnyi
point. One can also expect that at T < Tc the degeneracy
is lifted, giving rise to the intertype superconductivity in a
finite transitional interval (domain) of κ’s. However, in order
to confirm this, one needs to go beyond the standard GL theory,
now with the account of the multiband structure.
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B. Gibbs free-energy difference

As in the single-band case, we start with Eqs. (1) and (2).
However, now the Gibbs free-energy difference G must be
calculated using the EGL formalism for multiband supercon-
ductors [20]. Although the EGL approach applies, in principle,
to an arbitrary number of bands, here we restrict our analysis
to two-band systems, where most of the pertinent quantities
can be obtained in the explicit analytical form.

As before, G is calculated by means of the perturbation
expansion over τ , which is achieved by expanding all relevant
physical quantities. In particular, the vector gap function
writes as

−→
� = τ 1/2(

−→
� (0) + τ

−→
� (1) + τ 2−→� (2) . . . ), (35)

where
−→
� (0) is given by Eq. (32), while

−→
� (1) and

−→
� (2) are

corrections in the next two orders in τ . The τ expansion for
the magnetic field is given by Eq. (3). The free-energy density
is obtained as [20]

f = τ 2(τ−1f(−1) + f(0) + τ f(1) + · · · ), (36)

where the lowest-order contribution reads

f(−1) = 〈−→� (0)|Ľ|−→� (0)〉, (37)

with 〈· · · 〉 denoting the scalar product of vectors in the band
space. Here Ľ for a two-band system is given by

Ľ = 1

G

(
g22 − GN1(0)A −g12

−g12 g11 − GN2(0)A

)
, (38)

where gnm = gmn are the coupling constants (assumed real),
G = g11g22 − g2

12, and

A = ln

(
2eγ

�ωc

πTc

)
, (39)

with ωc the cutoff frequency. At the stationary point the
contribution f(−1) disappears due to the (linearized gap)
equation

Ľ
−→
� (0) = 0, (40)

which determines Tc and the eigenvector
−→
ξ . The next-order

contribution to the free energy density is the GL functional

f(0) = B2

8π
+ (〈−→� (0)|Ľ|−→� (1)〉 + c.c.)

+
∑

n

[
an

∣∣�(0)
n

∣∣2 + bn

2

∣∣�(0)
n

∣∣4 + Kn

∣∣D�(0)
n

∣∣2
]
. (41)

The leading correction to the GL functional is obtained in the
form

f(1) = (B · b)

4π
+ (〈−→� (0)|Ľ|−→� (2)〉 + c.c.)

+〈−→� (1)|Ľ|−→� (1)〉 +
∑

n

f(1)
n . (42)

As in the single-band case it is convenient to split the band-
dependent quantities f(1)

n into two parts,

f(1)
n = f

(1)
n,1 + f

(1)
n,2, (43)

where f
(1)
n,1 contains only the lowest-order contributions to the

band gap and the magnetic field,

f
(1)
n,1 = an

2

∣∣�(0)
n

∣∣2 + 2Kn

∣∣D�(0)
n

∣∣2 + bn

36

e2
�

2

m2c2
B2

∣∣�(0)
n

∣∣2

+ bn

∣∣�(0)
n

∣∣4 − Qn

{∣∣D2�(0)
n

∣∣2 + 1

3
(rot B · in)

+ 4e2

�2c2
B2

∣∣�(0)
n

∣∣2
}

− Ln

2

{
8
∣∣�(0)

n

∣∣2∣∣D�(0)
n

∣∣2

+ [
�(0)2

n

(
D∗�(0)∗

n

)2 + c.c.
]} − cn

3

∣∣�(0)
n

∣∣6
, (44)

while f
(1)
n,2 includes also the leading corrections to the band gap

and the field,

f
(1)
n,2 = (

an + bn

∣∣�(0)
n

∣∣2)(
�(0)∗

n �(1)
n + c.c.

)
+Kn

[(
D�(0)

n · D∗�(1)∗
n + c.c.

) − (a · in)
]
. (45)

Here we use the notation

in = i
2e

� c

(
�(0)

n D∗�(0)∗
n − �(0)∗

n D�(0)
n

)
, (46)

and coefficients Qn, Ln, and cn are calculated for each band
separately, similarly to an, bn, and Kn discussed above.

The obtained free-energy functional contains additional
terms that are not present in the single-band case. One extra
contribution is found in Eq. (41) mixing

−→
� (0) with

−→
� (1).

Equation (42) includes two more such terms: one mixes
−→
� (0)

with
−→
� (2) and the other reads 〈−→� (1)|Ľ|−→� (1)〉. However, both

mixing contributions are zero by virtue of Eq. (40). The last
of the extra terms does not disappear, 〈−→� (1)|Ľ|−→� (1)〉 �= 0.
Nevertheless, it can be calculated explicitly without solving
equations for

−→
� (1). In order to do this we write the leading

correction to the gap as the expansion
−→
� (1) = ψ

−→
ξ + φ−→η , (47)

where −→η and
−→
ξ must be linearly independent. Using

Eqs. (32), (40), and (47), one finds

〈−→� (1)|Ľ|−→� (1)〉 = |φ|2 〈−→η |Ľ|−→η 〉, (48)

where φ is related to 	 by a simple algebraic expression [20],

φ = − G

4g12
(α	 + β	|	|2 − �D2	), (49)

with

α =
∑

n

ξnηnan, β =
∑

n

ξ 3
nηnbn, � =

∑
n

ξnηnKn. (50)

It remains to note that a sum of (B · b)/(4π ) and
∑

n f
(1)
n,2

disappears as previously in the single-band case. Thus, in order
to calculate G in the two lowest nonvanishing orders, we need
only to know solutions 	 and B (A) to the GL equation (33).

For two contributing bands the eigenvalue problem for the
matrix Ľ is solved analytically and the eigenvector can be
chosen as

−→
ξ T = (S−1/2,S1/2), where

S = 1

2λ12

[
λ22 − λ11

η
+

√(
λ22 − λ11

η

)2

+ 4
λ2

12

η

]
, (51)
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with the dimensionless coupling constant λnm = gnmN (0),
N (0) = ∑

i Ni(0), and η = N2(0)/N1(0). The other vector in
the expansion (47) is chosen as −→η T = (S−1/2, − S1/2). Then
the coefficients that appear in the final expression for the
free-energy density are given by

a = a1

S
+ Sa2, b = b1

S2
+ S2b2, K = K1

S
+ SK2,

α = a1

S
− Sa2, β = b1

S2
− S2b2, Γ = K1

S
− SK2,

c = c1

S3
+ S3c2, Q = Q1

S
+ SQ2, L = L1

S2
+ S2L2,

c̄ = ca

3b2
, Q̄ = Qa

K2
, L̄ = La

bK , Ḡ = Ga

4g12
,

ᾱ = α

a
− �

K , β̄ = β

b
− �

K . (52)

One more quantity needed to calculate the Gibbs free-
energy difference in Eqs. (1) and (2) is the thermodynamic
critical field Hc. Its expression differs from the single-band
case. While its τ expansion is still given by Eq. (13), with H (0)

c

defined by Eq. (14) and constants a and b taken from Eq. (52),
its leading correction H (1)

c has additional contributions, i.e.,

H (1)
c = H (0)

c

[− 1
2 − c̄ − Ḡ(ᾱ − β̄)2

]
. (53)

In the following we also employ the dimensionless quantities
introduced by Eqs. (15) and (16), with the difference that the
coefficients are now defined by Eq. (52).

The τ expansion of the Gibbs free-energy difference is
defined by Eq. (17), with g(0) given by Eq. (18) (with multiband
coefficients) and with the leading correction

g(1) =
(

B

κ
√

2
− 1

)[
1

2
+ c̄ + Ḡ(ᾱ − β̄)2

]
+ 1

κ2
|D	|2

− 1

2
|	|2 + |	|4 + c̄ |	|6 + Ḡ|	|2(ᾱ − β̄|	|2)2

+ Q̄
4κ4

{
|D2	|2 + 1

3
(rot B)2 + B2|	|2

}

+ L̄
4κ2

{8 |	|2 |D	|2 + [	2(D∗	∗)2 + c.c.]}. (54)

As in the single-band case we employ the expansion with
respect to δκ = κ − κ0 and finally, in the lowest and next
orders in τ , obtain

G = τ 2

{
−

√
2Iδκ + τ

[
(1 − c̄ + 2Q̄ + Ḡ β̄(2ᾱ − β̄))I

+
(

2L̄ − c̄ − 5

3
Q̄ − Ḡβ̄2

)
J

]}
, (55)

where I and J are as previously given by Eq. (25). One notes
that in the dimensionless units solutions of the GL theory for
both single- and two-band systems are the same, which is a
significant advantage of the EGL formalism.

Equation (55) differs from its single-band counterpart (24)
in two respects. First, the coefficients c̄, L̄, and Q̄ comprise
contributions of two bands and so are different from c̃, L̃,
and Q̃. Second, there are extra terms ∝ Ḡ which are related
to the difference between the spatial profiles of the band-gap

functions �n [20] and, thus, to the interplay of different band
characteristic lengths.

C. Critical parameters

Using G of Eq. (55), we resolve Eq. (2) and obtain the
general expression for critical parameter κ∗ in the two-band
case as

κ∗ =κ0

{
1 + τ

[
1 − c̄ + 2Q̄ + Ḡβ̄(2ᾱ − β̄)

+ J
I

(
2L̄ − c̄ − 5

3
Q̄ − Ḡβ̄2

)]}
. (56)

Similarly to Eq. (26) this expression is generally related to any
nonuniform flux configuration and thus defines the intertype
domain with all its subdomains in the two-band case. However,
the parameters entering Eq. (56) are not reduced to universal
numbers any more but read as

c̄ = c̃
(1 + ηS6)(1 + ηS2)

(1 + ηS4)2
,

Q̄ = Q̃
(1 + ηγ 4S2)(1 + ηS2)

(1 + ηγ 2S2)2
,

L̄ = L̃ (1 + ηγ 2S4)(1 + ηS2)

(1 + ηγ 2S2)(1 + ηS4)
,

ᾱ = 1 − ηS2

1 + ηS2
− 1 − ηγ 2S2

1 + ηγ 2S2
,

β̄ = 1 − ηS4

1 + ηS4
− 1 − ηγ 2S2

1 + ηγ 2S2
,

Ḡ = −λ11λ22 − λ2
12

4 λ12 S

1 + ηS2

1 + η
, (57)

where γ = vF,2/vF,1 is the ratio of the band Fermi velocities,
and c̃, Q̃, and L̃ are given by Eq. (20). One sees that κ∗
in Eq. (56) depends on five microscopic parameters: three
dimensionless coupling constants λ11, λ22, and λ12, the ratio
of the band DOS’s η and the ratio of the band Fermi
velocities γ .

D. Transitional domain

The transitional domain is defined in the multiband case
by the same criteria of the type interchange. In particular,
we consider the critical parameters κ∗

li , κ∗
1 , κ∗

s , κ∗
2 as well

as κ∗
1,N related to multiquantum vortices. The corresponding

solutions of the dimensionless GL equations are adopted from
the single-band theory.

To calculate coefficients (57) we use material parame-
ters of several prototype systems: MgB2 [32], OsB2 [33],
FeSe0.94 [34], and LiFeAs [35]. These parameters are sum-
marized in Table II. Due to lack of experimental data on the
band Fermi velocities the ratio γ = vF,2/vF,1 is assumed to be
a free variable. Calculated tangents dκ∗/dτ of parameters κ∗

li ,
κ∗

1 , κ∗
s , and κ∗

2 are shown in Fig. 5 as functions of γ . The color
scheme in Fig. 5 remains the same as in the sketch of Fig. 4.

One notes that inequality κ∗
2 < κ∗

s < κ∗
1 < κ∗

li , that specifies
the internal structure of the intertype domain, holds for all
considered parameters, so that the curves do not intersect. In
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TABLE II. Microscopic material parameters used in our
calculations.

λ11 λ22 λ12 η

MgB2 [32] 2.41 0.78 0.37 1.37
OsB2 [33] 0.39 0.29 0.0084 1.22
FeSe0.94 [34] 0.48 0.39 0.005 ≈ 1
LiFeAs [35] 0.63 0.64 0.008 ≈ 1

particular, the outer boundaries of the domain are given by κ∗
2

and κ∗
li . Thus, for the chosen parameters the intertype regimes

in single- and two-band superconductors are qualitatively
similar and therefore many conclusions drawn from the
analysis of the single-band case apply also for two-band
(multiband) superconductors.

However, Fig. 5 demonstrates a systematic enlargement of
the intertype region in two-band systems, and this enlargement
becomes most notable when the discrepancy between band
Fermi velocities increases. Outer boundaries κ∗

2 and κ∗
li shift

in the opposite directions, so that the difference κ∗
li − κ∗

2 grows
when γ increases. In panel (d) this difference is also increased
in the opposite limit γ � 1. The internal subdomains widen
accordingly.

The enlargement magnitude can be extraordinary large. For
example, it is more than an order of magnitude at γ = 6 for
parameters of MgB2 (a), OsB2 (b), and FeSe0.94 (c). To have
an idea about how large can be γ , we remark that according
to first-principle calculations [36], the band Fermi velocities
in the c-axis direction for MgB2 are estimated as 7 × 104 m/s
(band 1, σ ) and 6 × 105 m/s (band 2, π ), which gives γ ≈ 9.
The universality of the enlargement and its magnitude make it
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possible to expect that many multiband superconductors can
enter the intertype regime when the temperature is lowered.

One can further demonstrate that the observed enlargement
of the intertype domain is generally related to the competition
of different band length scales. Considering only contributions
proportional to Ḡ in Eq. (56) [as already mentioned after
Eq. (55), such terms are responsible for different spatial
profiles of band condensates], and taking into account that
α ∼ β, the upper boundary of the transitional domain is
estimated as

dκ∗
li

dτ
∼ −κ0Ḡβ̄2 > 0, (58)

where we again use J /I = 2 for the vortex-vortex long-range
interaction asymptote. This expression is positive because
Ḡ < 0 for the parameters in Table II. For the lower boundary
one uses J /I = 0 and obtains

dκ∗
2

dτ
∼ κ0Ḡβ̄2 < 0. (59)

This demonstrates that the boundaries of the transitional
domain are shifted by an equal value in the opposite directions,
which is in a very good agreement with the complete
results shown in Fig. 5. Thus, the competition of different
band length scales does not produce a new multiband type
of superconductivity (contrary to the controversial idea of
Refs. [1,18]; see the Introduction) but enhances the intertype
superconducting behavior.

It was mentioned earlier that the intertype regime in the
single-band case is related to nonlocal interactions that can be
described only beyond the GL theory [17]. This nonlocality is
inherent to the BCS gap equation, which can be demonstrated,
for example, by expanding it with respect to the gap parameter.
This expansion, which is an intermediate step in deriving the
EGL formalism, generates a series of contributions in the form
of multiple spatial integrals [20]. The GL theory minimizes
this nonlocality by keeping only the lowest-order derivatives
when applying the gradient expansion to the integrals (this
is why the GL theory is often referred to as a weakly
nonlocal approach). In this approximation the transitional
domain shrinks to κ = κ0. The EGL approach incorporates
higher-order spatial gradients, which results in a finite interval
of κ’s (at T < Tc) with the intertype superconducting magnetic
response.

The appearance of multiple bands further enhances nonlo-
cal effects. Indeed, on the mean-field level multiband super-
conductors are described by a set of coupled equations for each
band-gap function. The fact that the nonlocality is enhanced
by the interband coupling can be easily demonstrated with a
simple example of two coupled linear differential equations.
Resolving one of them and substituting the result into the
other, one obtains additional nonlocal interactions, often
referred to as “memory” effects in the context of dynamical
equations. Thus, we again conclude that the enlargement of
the transitional domain is a generic property of multiband
superconductors independent of fine details of theoretical
models. One can also expect that the effect increases with
the number of contributing bands.
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IV. CONCLUSIONS

This work investigated how the multiband structure affects
the mixed state and the interchange between superconductivity
types. The analysis was done within the EGL formalism
that obtains corrections to the GL theory as the perturbation
expansion over the proximity to the transitional temperature.
An advantage of this approach is that it is applicable to
systems with an arbitrary number of bands, which allows
one to consider single- and multiband superconductivity from
a single perspective, and that it gives universal analytical
expressions for the critical parameters defining the transitional
domain.

An important conclusion of the EGL-based analysis is that
in the absence of additional symmetry multiband systems
are described by a single-component order parameter. It
then follows that superconductivity classification in multiband
systems is qualitatively similar to the single-band case, with
types I and II separated by a transitional domain with the
intertype superconducting magnetic response.

Our discussion started with the single-band case for which
the concept of the intertype/transitional domain was introduced
and studied by calculating the critical parameters at which
the corresponding inhomogeneous flux configuration or its
particular property appears/disappears. It was demonstrated
that the intertype domain has a complex structure with different
possible variants of the mixed state. This structure appears
as a result of the removal of the infinite degeneracy of the
Bogomolnyi point when lowering temperature.

As a particular example, we calculated the critical param-
eters that correspond to an isolated vortex solution with an
arbitrary number of the flux quanta. A complete analysis of
any other plausible flux configuration can also be done within
the EGL formalism but this general consideration is beyond
the scope of the current work. However, the obtained hierarchy
of the critical parameters demonstrates that the long-range
attraction between Abrikosov vortices does not suffice to
explain the intertype physics.

We generalized our consideration to the multiband case
and investigated a two-band prototype allowing for explicit
analytical results. Following the structure of the EGL for-
malism, one concludes that the qualitative results of this
work apply to systems with an arbitrary number of bands.
A more elaborate analysis of the general multiband case will
be presented elsewhere.

A central result of this work is that the intertype domain
extends in multiband superconductors. The enlargement is a
generic phenomenon and independent of the details of the
model for band states. Its origin is the nonlocality of inter-
actions in the aggregate condensate due to the appearance of
multiple bands. The enlargement becomes huge when the band
microscopic parameters, e.g., the band Fermi velocities, are
significantly different. Our results make it possible to expect
that many of multiband superconductors, especially with large
disparity between bands, are in fact in the transitional domain.
One of the candidates is MgB2 which can enter the intertype
regime at lowered temperatures, which can be an explanation
of its nonstandard vortex configurations [1]. However, a more
detailed analysis accounting for anisotropy of its bands is
certainly required.

Finally, we note that the size and structure of the intertype
domain in the (κ,T ) plane may be rather sensitive to many
other physical aspects, such as disorder, band dimensionality,
as well as the presence of shallow bands, where contributing
electrons have almost zero velocities [37].
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APPENDIX A: BOGOMOLNYI EQUATIONS AND
TOPOLOGICAL DEGENERACY OF THE GL THEORY

Here it is shown that at κ = κ0 the GL equations are
reduced to a couple of first-order equations referred to as the
Bogomolnyi self-duality equations [5,6] and also known in
the literature as the Sarma solution [3]. The derivation of the
Bogomolnyi equations follows the standard procedure (see,
e.g., the remark about the Sarma solution in Ref. [3]) and is
presented here for the convenience of the reader.

Our starting point is the standard GL equations

a 	 + b |	|2	 − KD2	 = 0,
1

4π
rot B = Ki, (A1)

where i is given by Eq. (9) [for both the single- and two-band
cases]. A magnetic field is set along the z axis, B = (0,0,B),
so that the system is homogeneous along this axis and the
order parameter is independent of z. We introduce the new
gauge invariant gradients

D± = Dx ± iDy, (A2)

that satisfy the identity

D2 = D+D− + 2 e

� c
B. (A3)

Let us assume that a solution to the GL formalism satisfies the
first-order equation

D−	 = 0, (A4)

i.e., the first of the two Bogomolnyi equations. Now we
proceed to establish the condition under which this assumption
is correct. One immediately notices that when inserting
Eq. (A3) in Eq. (A1), the latter simplifies to

|	|2 = −1

b

(
a − 2 eK

� c
B

)
, (A5)

which is known as the second Bogomolnyi equation. As seen,
Eqs. (A4) and (A5) dictate that the first equation in the GL
set (A1) is satisfied.

Now we turn to the second GL equation, that represents
the Ampére law, and check its compatibility with Eqs. (A4)
and (A5). Taking into account that rot B = (∂yB,−∂xB,0),
one can find from the second GL equation that

1

4π
(∂y + i∂x)B = i

2eK
� c

	D∗
+	∗. (A6)
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The left-hand side of this equation can be also calculated by
using Eq. (A5). This yields

1

4π
(∂y + i∂x)B = �cb

8πeK [	(∂y + i∂x)	∗

+	∗(∂y + i∂x)	]. (A7)

Substituting the explicit form of the first Bogomolnyi equation

(∂y + i∂x)	 = 2 e

�c
(iAy − Ax)	 (A8)

into Eq. (A7), one obtains the latter in the form

1

4π
(∂y + i∂x)B = i

� cb

8πeK 	D∗
+	∗. (A9)

Comparing Eq. (A9) with the second GL equation in Eq. (A6),
one finds the following consistency condition:

2eK
� c

= � cb

8πeK . (A10)

Now, using the definition of the GL parameter κ which is
written as

κ2 = λ2
L

ξ 2
= �

2c2b

32e2πK2
, (A11)

we find from Eq. (A10)

κ = κ0 ≡ 1√
2
. (A12)

Thus, solutions to the GL formalism 	 and A(B) obey the
two Bogomolnyi self-duality equations at κ = κ0.

When utilizing the dimensionless units of Eq. (15), the
Bogomolnyi equations are reduced to (we omit tildes, as
previously)

(∂y + i∂x)	 = (Ax − iAy)	, (A13)

B = 1 − |	|2. (A14)

Substituting these relations into Eq. (18), for the GL contribu-
tion to the Gibbs free energy one obtains (at κ = κ0)

G(0) =
∫

g(0)dr = 0, (A15)

which holds for an arbitrary solution to the GL formalism,
irrespective of its topological configuration.

APPENDIX B: SUPERCONDUCTING-NORMAL
INTERFACE AND ISOLATED SINGLE- AND

MULTIQUANTUM VORTICES

Equations (A13) and (A14) can be used to find a solution to
the GL equations for any desired topological configuration of
the mixed state at κ = κ0. Examples of this can be found
in earlier works, see, e.g., [15]. Since, however, most of
them provided only sketchy details, here we outline the
main solving steps for the convenience of the reader. Here
we consider solutions to the Bogomolnyi equations for the
normal-superconducting interface (flat domain wall) and also
for isolated single- and multiquantum vortices.

First we outline how to obtain a solution for a flat interface
(domain wall) between the superconducting and normal state

that arises in the problem of the surface energy. The domain
wall is chosen to be parallel to the (y,z) plane, so that all
observables vary only along the x axis. We choose the vector
potential as A = (0,A,0) and then recast the first Bogomolnyi
equation (A13) in the form

	 ′ = −A	, (B1)

where prime denotes the derivative with respect to x. The
second Bogomolnyi equation (A14) now reads

A′ = 1 − 	2, (B2)

where 	 is real because the GL equations do not involve any
imaginary coefficients in the chosen gauge. Differentiating this
equation and using Eq. (B1), one obtains the equation

A′′ = 2A(1 − A′). (B3)

It differs from the equation for the vector potential for the
superconducting-normal interface problem in Refs. [3,4] only
by the presence of factor 2 (due to different dimensionless
units in our work). This equation must be solved with the
boundary conditions that follows from that the system is in
the superconducting state to, say, the left of the wall and,
respectively, normal to its right. The boundary conditions read

A(x → −∞) = 0, A′(x → +∞) = 1, (B4)

so that the magnetic field approaches zero in the supercon-
ducting domain while goes to the thermodynamic critical field
B = 1 in the normal domain.

Isolated vortex solutions are naturally considered in the
cylindrical coordinates (ρ,θ,z). The solution for a vortex with
the single magnetic flux quantum is sought in the form

	 = �(ρ) exp(−iθ ) = (x − iy)
�(ρ)

ρ
, (B5)

where � is a real function. The vector potential is chosen
so that it has only single θ -component, A = (0,A(ρ),0).
Returning back to the Cartesian coordinates one obtains
A = A(ρ)(− sin θ, cos θ,0). The magnetic field has only the
z component which is given by

B = A′ + A
ρ

, (B6)

where the prime denotes the derivative with respect to ρ.
Using Eqs. (B5) and (B6), we recast the first Bogomolnyi
equation (A13) in the form

�′ − �

ρ
= −A�. (B7)

Utilizing this expression together with Eq. (B6) makes it
possible to express B only in terms of �. Then, employing
the second Bogomolnyi equation (A14), one obtains

−�′′ − �′

ρ
+ �′2

�
− � + �3 = 0. (B8)

This equation must be solved together with the boundary
conditions

�′(0) = C, �(∞) = 1, (B9)

where the constant C should be chosen in such a way that
to satisfy the second (asymptotic) condition at ρ → ∞. The
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FIG. 6. The radial part �N (ρ) of the solution for an isolated
multiquantum (giant) vortex with different N .

boundary condition for the derivative of � ensures that the
solution has an asymptote �(ρ) ∝ ρ in the limit ρ → 0, as it
should be for a single-quantum vortex.

For an isolated vortex that carries N elementary magnetic
fluxes a solution is of the form

	N = �N (ρ) exp(−iNθ ) = (x − iy)N
�N (ρ)

ρN
. (B10)

The vector potential is chosen as before, to have only a single
θ component. The first Bogomolnyi equation now reads as

�′
N − N

�N

ρ
= −A�N. (B11)

Utilizing this relation together with Eqs. (A14) and (B6), we
find for �N the same equation as previously for �. However,
the boundary conditions are now different and depend on the
number of flux quanta, i.e.,

∂N
ρ �N (0) = C, �N (∞) = 1, (B12)

where the first of these conditions ensures the asymptote
�(ρ) ∝ ρN for ρ → 0. This is rather inconvenient for nu-
merical calculations because a solution is very sensitive to C.
One can, however, rewrite this equation by introducing the
new quantity

φN = �
1/N

N . (B13)

Substituting it into Eq. (B8), we obtain

−φ′′
N − φ′

N

ρ
+ φ′2

N

φN

− φN

N
+ φ2N+1

N

N
= 0. (B14)

Now the boundary conditions are the same as previously for
�, i.e., φ′

N (0) = C and φN (∞) = 1. In Fig. 6 one can see
how the modulus of 	 varies with the radial coordinate for
several selected N = 1 . . . 40. For the reader’s convenience,
the data are plotted versus ρ/λL, where ρ is the unscaled
radial coordinate here.

APPENDIX C: MULTIVORTEX CONFIGURATIONS:
LONG-RANGE INTERACTION OF TWO VORTICES

Here we consider multivortex configurations. In particular,
we rewrite the Bogomolnyi equations so that to significantly

simplify analysis of a solution for an arbitrary spatial con-
figuration of vortices (both single- and multiquantum). To
this aim we recall that the vector potential is generally given
by A = (Ax,Ay,0) when the magnetic field has only its z

component, i.e., B = (0,0,B). Adopting the Coulomb gauge,
∂xAx + ∂yAy = 0, one can introduce the scalar potential ϕ so
that

Ax = −∂yϕ, Ay = ∂xϕ. (C1)

In this case for the magnetic field we have

B = (
∂2
x + ∂2

y

)
ϕ. (C2)

Then, a solution to the first Bogomolnyi equation (A4) can be
sought in the form

	 = e−ϕ �. (C3)

Substituting this ansatz into Eq. (A4), we obtain

(∂x + i∂y)� = 0. (C4)

This is the standard condition that � is an analytic function of
the complex variable Z = x + iy. The same is expressed as
∂Z∗� = 0, i.e., � can be an arbitrary function of Z but does
not involve Z∗. The fact that � is an arbitrary analytic function
of Z is a consequence of the infinite topological degeneracy
of the Bogomolnyi point in the GL formalism at κ = κ0.

Scalar potential ϕ obeys the equation that is obtained by
inserting Eqs. (C2) and (C3) into the second Bogomolnyi
equation (A14), i.e.,(

∂2
x + ∂2

y

)
ϕ = 1 − |�|2e−2ϕ. (C5)

The boundary conditions for this equation are derived from
those for the magnetic field via Eq. (C2).

� can easily be chosen to represent a mixed state with
an arbitrary vortex spatial configuration. Indeed, the positions
of vortices are defined by the zeros of � that fully define
any analytic properties of a complex function. For example, a
single vortex positioned at a is obviously described by � =
Z − a, where a = ax + iay . Two vortices located at a1 and a2

correspond to � = (Z − a1)(Z − a2), with ai = ai,x + iai,y .
Similarly one can construct � that corresponds to any spatial
configuration of multiple single-quantum vortices at positions
ai’s, i.e., � = ∏

i(Z − ai); see Ref. [38]. In turn, an isolated
N -quantum vortex located at a yields � = (Z − a)N , etc.

A solution to Eq. (C5) can be obtained using standard
numerical methods. However, one can follow a different
strategy and seek a solution for a multivortex configuration
in the form

	 = e−δϕ
∏

i

	i, (C6)

where 	i represents the solution for an isolated Ni-quantum
vortex located at ai . As already mentioned in the previous
paragraph, 	i is given by

	i = (Z − ai)
Ni e−ϕi , (C7)

where ϕi satisfies (
∂2
x + ∂2

y

)
ϕi = 1 − |	i |2, (C8)
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so that

ϕ = δϕ +
∑

i

ϕi . (C9)

The equation for δϕ is obtained by substituting the ansatz of
Eq. (C6) into Eq. (C5), which yields(

∂2
x + ∂2

y

)
δϕ = ∑

i

(|	i |2 − 1) + 1 − ∏
i

|	i |2e−2δϕ. (C10)

Now, Eqs. (C10) and (B8) can be used to check properties
of the multivortex configuration at long separations between
vortices. From Eq. (B8) one can find that at large distances
from the vortex core

|	|2 ≈ 1 − D e−√
2ρ

√
ρ

, (C11)

where D is some constant. Substituting this into Eq. (C10)
one can see that δϕ is exponentially small in any region
sufficiently remote from the cores of vortices present in a
given multivortex configuration (it holds for both single- and
multiquantum vortices). This makes it possible to write the
ansatz given by Eq. (C6) at a point remote from any vortex
core as the additive law for the magnetic field [15],

B ≈
∑

i

Bi , (C12)

where B = 1 − |	|2 is the total magnetic field of the multi-
vortex configuration and Bi = 1 − |	i |2 is the magnetic field
created by the ith vortex.

We further utilize the additive approximation of Eq. (C12)
to investigate the long-range interaction between two vortices
and calculate the corresponding integrals I and J ; see
Eq. (25). Based on Eq. (C12), the integrand of I in Eq. (25)
writes as

|	|2(1 − |	|2) ≈ |	1|2(1 − |	1|2)

+ |	2|2(1 − |	2|2) − 2B1B2. (C13)

As we are interested in the interaction between two vortices,
we now select the contribution that depends on the distance
between the vortices, i.e., the last term in the right-hand side
of the above expression. So, I is given by

I ≈ −2P, P =
∫

B1B2dr. (C14)

When rearranging the integrand of J with Eq. (C12), one
obtains

|	|4(1 − |	|2) ≈ |	1|4(1 − |	1|2)

+ |	2|4(1 − |	2|2) − 4B1B2. (C15)

Again keeping the contribution dependent on the distance
between vortices, we find

J ≈ −4P. (C16)

Thus, we arrive at the general result J /I = 2 for the long-
range interaction of arbitrary vortices. It means that the critical
GL parameter κ∗

li controls the onset of the long-range attractive
interaction for any pair of vortices, including multiquantum.
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[14] P. Miranović and K. Machida, Phys. Rev. B 67, 092506 (2003).
[15] I. Luk’yanchuk, Phys. Rev. B 63, 174504 (2001).
[16] L. Neumann and L. Tewordt, Z. Phys. 189, 55 (1966); 191, 73

(1966).
[17] E. H. Brandt and M. P. Das, J. Supercond. Novel Magn. 24, 57

(2011).
[18] E. Babaev and M. Speight, Phys. Rev. B 72, 180502(R) (2005);

E. Babaev, J. Carlström, and M. Speight, Phys. Rev. Lett.
105, 067003 (2010); J. Carlström, E. Babaev, and M. Speight,
Phys. Rev. B 83, 174509 (2011).

[19] V. G. Kogan and J. Schmalian, Phys. Rev. B 83, 054515 (2011);
see also the comment in E. Babaev and M. Silaev, ibid. 86,
016501 (2012), and the reply V. G. Kogan and J. Schmalian,
ibid. 86, 016502 (2012).
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