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Bidirectional conversion between microwave and light via ferromagnetic magnons
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Coherent conversion of microwave and optical photons in the single quantum level can significantly expand our
ability to process signals in various fields. Efficient up-conversion of a feeble signal in the microwave domain to
the optical domain will lead to quantum-noise-limited microwave amplifiers. Coherent exchange between optical
photons and microwave photons will also be a stepping stone to realize long-distance quantum communication.
Here we demonstrate bidirectional and coherent conversion between microwave and light using collective spin
excitations in a ferromagnet. The converter consists of two harmonic oscillator modes, a microwave cavity mode
and a magnetostatic mode called the Kittel mode, where microwave photons and magnons in the respective modes
are strongly coupled and hybridized. An itinerant microwave field and a traveling optical field can be coupled
through the hybrid system, where the microwave field is coupled to the hybrid system through the cavity mode,
while the optical field addresses the hybrid system through the Kittel mode via Faraday and inverse Faraday
effects. The conversion efficiency is theoretically analyzed and experimentally evaluated. The possible schemes
for improving the efficiency are also discussed.
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I. INTRODUCTION

Understanding and exploiting the interactions in well-
controlled quantum systems are the key to build a large-
scale artificial many-body quantum system, such as quantum
computers, quantum communication networks, and quantum
simulators. By far the most important ingredient of the artificial
quantum system is the atomlike anharmonic energy-level
structures. Advances in superconducting quantum circuits,
which provide such energy-level structures with macroscopic
circuitry [1], make them one of the primary candidates [2].
The superconducting artificial atoms can be exquisitely ma-
nipulated by the electromagnetic fields in the microwave
domain [3,4]. However, the quantum information carried by
microwave photons has to be imprisoned in low-temperature
environment to prevent them from being jeopardized by the
thermal noise. Quasiparticle production in superconductors
also hinders the direct optical access which would enable
the robust, fast, and long-distance optical communications
between the superconducting artificial atoms.

Converting microwave to optical photons and vice versa
could, however, remedy the above weaknesses of supercon-
ducting artificial atoms and connect the two vastly different
worlds, i.e., low-temperature microwave quantum processors
and robust optical networks. The coherent and efficient conver-
sion can also open up a new avenue for quantum-noise-limited
amplification of microwave signals [5] in a variety of fields
such as radio astronomy, nuclear magnetic resonance, and
magnetic resonance imaging.

Any process that converts frequency of an electromagnetic
field inherently requires some nonlinear interaction. The chal-
lenge faced by the microwave-light conversion in the quantum
regime is the weakness of such nonlinearity. Nevertheless,
there are several attempts to realize such microwave-light
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conversions. Ferroelectric crystals such as lithium niobate
(LN) and potassium titanyl phosphate have the large quadratic
optical nonlinearity, χ (2), and are widely used as electro-optic
modulators. Using a high-quality optical whispering-gallery-
mode resonator made of LN, 10-GHz microwave photons are
up-converted to optical sideband photons with the conversion
efficiency of 1×10−3 [6]. Here the polariton modes in the
THz regime bring about the electro-optic effect and thus the
microwave-light conversion took place dispersively.

Instead of using nonlinearity in the dispersive regions
of optically transparent materials, sharp resonances can be
exploited for enhancing the nonlinearity. An example is a spin
resonance line in paramagnets. In particular, the sharp spin
resonance lines of rare-earth ions in solids are successfully
utilized for realizing the efficient quantum memories for
light [7–10]. The paramagnet-based schemes may have a few
concerns; one is the unwanted local spin-spin interaction when
the spin density becomes large, the other is the difficulty
of mode matching between optical field and microwave
field because of the absence of energetically well-separated
spin-wave modes. A magneto-optic modulator based on an
erbium-doped crystal placed in both an optical cavity and
a microwave cavity is suggested to overcome these difficul-
ties and expected to achieve a unit quantum efficiency in
the microwave-light conversion [11]. There are attempts to
implement this scheme [12,13].

The most efficient conversion so far (the conversion
efficiency 0.1) uses a nanomechanical resonator [14]. With
the deftly designed system where the optical and mechanical
resonators, as well as microwave and mechanical resonators,
are parametrically coupled with pump laser and pump
microwave, respectively, coherent and efficient conversion
between microwave and light within a bandwidth of 30 kHz is
demonstrated [14]. Much broader-bandwidth but less efficient
microwave-light conversion has also been reported with a
piezoelectric optomechanical crystal [15]. The mechanics-
based schemes have some advantages over the paramagnet-
based schemes. First, the strong nearest-neighbor atom-atom
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coupling gives the system the rigidity, which makes the system
insensitive to the local perturbations. Second, the system
with rigidity, in general, possesses robust long-wavelength
collective excitation modes, which makes it easier to mode
match between optical and microwave fields.

Here we put forward an idea of using collective spin
excitations in a ferromagnet not only to resonantly enhance the
microwave-light interaction but also to enjoy the advantages of
having robust collective excitation modes. We use a spatially
uniform magnetostatic mode, called the Kittel mode, in yttrium
iron garnet (YIG), which manifests itself as a precessing
large magnetic dipole. The largeness of the dipole moment
and the longevity of the coherence of the magnons in the
Kittel mode make it possible to couple them strongly to
the microwave photons in a microwave cavity mode and
to hybridize them [16,17]. By exploiting the hybrid system
formed by the Kittel mode and the microwave cavity mode,
we demonstrate bidirectional coherent conversion between
microwave and light, where the microwave field is coupled to
the hybrid system through the cavity mode, while the optical
field addresses the hybrid system through the Kittel mode via
the Faraday and inverse Faraday effect [18]. Note that in recent
years the inverse Faraday effect attracts considerable attention
in the context of optical manipulation of magnetization [19].
Magnetization oscillations at microwave frequencies have
been successfully induced by the inverse Faraday effect with a
single femtosecond laser [20,21]. Our approach to the inverse
Faraday effect is distinct from such works; coherent magnon
states are generated by two phase-coherent continuous-wave
(cw) lasers.

We evaluate the conversion efficiency of the converter
theoretically and experimentally with a careful calibration
scheme and find that the conversion efficiency is of the order of
10−10 and that it is limited by the small magnon-light coupling
rate. We envisage, however, that the conversion efficiency can
be improved by combining an optical cavity or replacing YIG
with other ferromagnets possessing a narrow optical transition.
Even with YIG, by incorporating an optical cavity and
arranging the cavity in such a way that it supports two optical
modes which are separated by Kittel-mode frequency (i.e.,
satisfying triple resonances) the efficiency can be significantly
improved (up to 10−3) with realistic parameters such as cavity
Q factor and sample dimensions [22].

The magnon-based microwave-light converter is even more
attractive from the viewpoint of enlarging the potential of
the superconducting qubits. The microwave-light converter
based on ferromagnetic magnons is expected to have a broad
bandwidth (around 1 MHz) and thus operates faster than the
lifetime of a superconducting qubit currently available (around
100 μs [2]). Moreover, the ferromagnetic magnon has recently
been coherently coupled to a superconducting qubit [23,24].
The magnon-based microwave-light converter can then be
considered as one of the candidates as a tool to coherently
connect distant superconducting qubits via light.

After a brief discussion of a theoretical model of the
microwave-light converter based on ferromagnetic magnons
in Sec. II, we present experiments in which coherent and
bidirectional conversion between microwave and light is
demonstrated (Sec. III), followed by the discussion of future
prospects of magnon-based converters (Sec. IV). We elaborate
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FIG. 1. Architecture of the proposed microwave-light converter.
The converter consists of two strongly coupled harmonic oscillator
modes: a microwave cavity mode â, whose energy is specified by
�ωc, and a magnetostatic mode called Kittel mode ĉ, whose energy
is specified by �ωm, and these are strongly coupled at a rate g. An
input (output) itinerant microwave field mode âi (âo) is coupled to the
converter through the microwave cavity mode at a rate κc, whereas
an input (output) traveling optical field mode b̂i (b̂o) is coupled to the
converter through the Kittel mode at a rate ζ . γ and κ are the rates of
the intrinsic energy dissipation for the Kittel mode and the internal
energy loss for the cavity, respectively.

on the architecture of the converter in Appendix A. In
Appendices B and C the calibration scheme used to infer
the magnon-light coupling rate and that for evaluating the
conversion efficiency are explained, respectively.

II. THEORETICAL MODEL OF THE CONVERTER

The architecture of the microwave-light converter is shown
in Fig. 1. The converter is built on the three coupling
mechanisms with respective terms in the Hamiltonian, HI ,
Hc, and Hp. Here HI is the coupling between a microwave
cavity mode â and a magnetostatic mode called Kittel mode
ĉ, given by

HI = �g(â†ĉ + ĉ†â), (1)

with a coupling rate g. Hc describes the coupling between
an itinerant microwave mode âi(ω) and the microwave cavity
mode â, given by

Hc = −i�
√

κc

∫ ∞

−∞

dω

2π
[â†âi(ω) − â

†
i (ω)â], (2)

with a coupling rate κc. The parametric coupling between
Kittel mode ĉ and a traveling optical photon mode b̂i(�) can
be brought about with a strong optical drive field (angular
frequency �0). The term Hp is given by

Hp = −i�
√

ζ

∫ ∞

−∞

d�

2π
(ĉ + ĉ†)[b̂i(�)ei�0t − b̂

†
i (�)e−i�0t ],

(3)
where ζ represents a parametric-coupling rate depending on
the strength of the optical drive field.

The conversion from microwave to light means that the
input itinerant microwave photons in the mode designated by
âi are converted into the output traveling photons in the mode
b̂o or b̂

†
o in Fig. 1. The conversion from light to microwave

means the reverse process, i.e., the input traveling photons
b̂i or b̂

†
i are converted into the output itinerant microwave
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photons âo. In Appendices A 1, A 2, and A 3, we elaborate on
each element and their interactions.

Conversion efficiency

The total interaction Hamiltonian Ht = Hc + HI + Hp

with the intrinsic dissipations represented by the rates γ and
κ , for the Kittel mode and the cavity mode, respectively,
defines the dynamics of the variables in the converter. For the
cavity mode operator â we have the following Fourier-domain
relation from the equation of motion [Eq. (A2)]:

â(ω) = χc(ω)[−√
κcâi(ω) − igĉ(ω)], (4)

where the susceptibility χc(ω) is defined as

χc(ω) =
[
−i(ω − ωc) + κ + κc

2

]−1

. (5)

Here and hereafter the thermal and quantum noise terms are
omitted. For the Kittel mode operator ĉ the Fourier-domain
relation depends on the angular frequency of interest. When
the angular frequency of interest is ωa = �0 − � we have

ĉ(ωa) = χm(ωa)[
√

ζ b̂
†
i (�) − igâ(ωa)], (6)

which stems from the parametric-amplification-type Hamilto-
nian appearing in Eq. (A13) and HI in Eq. (1). On the other
hand, when the angular frequency of interest is ωb = � − �0,
we have

ĉ(ωb) = χm(ωb)[−
√

ζ b̂i(�) − igâ(ωb)], (7)

which stems from the beam-splitter-type Hamiltonian appear-
ing in Eq. (A14) and HI in Eq. (1). Here the susceptibility
χm(ω) is defined as

χm(ω) =
[

− i(ω − ωm) + γ

2

]−1

. (8)

Solving the algebraic equations (4) and (6) with the
boundary conditions âo(ω) = âi(ω) + √

κcâ(ω) and b̂
†
o(�) =

b̂
†
i (�) + √

ζ ĉ(ωb) [25] the amplitude conversion efficiency
from microwave to light with the angular frequency � =
�0 − ω (Stokes scattering) can be obtained as〈

b̂
†
o(�)

âi(ω)

〉
= ig

√
κcζχm(ω)χc(ω)

1 + g2χm(ω)χc(ω)
. (9)

On the other hand, solving the algebraic equations (4) and (7)
with the boundary conditions âo(ω) = âi(ω) + √

κcâ(ω) and
b̂o(�) = b̂i(�) + √

ζ ĉ(ωa) [25] the amplitude conversion ef-
ficiency from microwave to light with the angular frequency
� = �0 + ω (anti-Stokes scattering) can be written as〈

b̂o(�)

âi(ω)

〉
= ig

√
κcζχm(ω)χc(ω)

1 + g2χm(ω)χc(ω)
, (10)

which is, in fact, equal to the anti-Stokes case shown in Eq. (9).
The amplitude conversion efficiencies from light to mi-

crowave can similarly be obtained. For microwave with the
angular frequency ωa = �0 − � it is〈

âo(ωa)

b̂
†
i (�)

〉
= − ig

√
κcζχm(ωa)χc(ωa)

1 + g2χm(ωa)χc(ωa)
. (11)

For microwave with the angular frequency ωb = � − �0 it is〈
âo(ωb)

b̂i(�)

〉
= ig

√
κcζχm(ωb)χc(ωb)

1 + g2χm(ωb)χc(ωb)
. (12)

III. EXPERIMENTAL RESULTS

A. Characterizations

Here we first summarize experimentally achieved parame-
ters, which are relevant in the converter shown in Fig. 1, such
as the coupling rates g, κc, and ζ , appearing in Eqs. (1), (2),
and (3), respectively, as well as the intrinsic dissipations
represented by the rates γ and κ , for the Kittel mode and
the cavity mode.

1. Evaluation of κ , κc, g, and γ

The experimental setup used in evaluating these parameters
is shown in Fig. 2. An itinerant microwave field generated by
a vector network analyzer drives the hybrid system consisting
of a microwave cavity and the Kittel mode. We use the
fundamental mode (TE101) of the rectangular cavity made of
oxygen-free copper with the volume V of 21×19×3 mm3 and
the resonant frequency ωc/2π = 10.45 GHz. By measuring
the reflection coefficient from the cavity we obtain the
scattering parameter S11(ω) and evaluate the cavity-related
parameters as κ/2π = 3.3 MHz and κc/2π = 25 MHz.

Using a magnetic circuit consisting of a set of permanent
magnets, a yoke, and a coil, a static magnetic field B0 of
310 mT along the z axis is applied to the YIG sample
across the cavity. The static field B0 can be varied with the
current I through the coil (dB0/dI = 50 mT/A), which in
turn tunes the resonance angular frequency ωm of the Kittel
mode. Figure 3(a) shows a two-dimensional spectrum of the
measured power reflection coefficient |S11|2 as a function of
the frequency of the microwave drive (the angular frequency
ω) and the coil current. At the coil current I = 400 mA
indicated by the dashed line in Fig. 3(a), the parameters γ

and g are deduced based on Eq. (A5). Blue points in Fig. 3(b)
show the measured amplitude and phase of S11 and their
polar plot at the particular coil current. Red curves show
the fitting result based on Eq. (A5). From the fitting we
obtain γ /2π = 1.1 MHz and g/2π = 63 MHz. The system
is thus in the strong-coupling regime, i.e., g > γ,κc, at room
temperature. Two pronounced dips appear in |S11|, which is
the signature of the hybridization between the Kittel mode and
the cavity mode, that is, the normal-mode splitting with the
cooperativity C = 4g2

(κc+κ)γ = 510 [Eq. (A6)] being a very large
value.

2. Estimation of ζ

For the Kittel mode, we can assume that the coupling
constant G in Eq. (A7) is related to the Verdet constant
V as φF = Vl = 1

4Gnl with φF being the Faraday rotation
angle, l being the length of the sample, and n being the
spin density. With literature values of V and n we obtain
G = 7.2×10−26 m2 for YIG (see Appendix A 1). With this
value of G we can estimate the coupling rate ζ from the
relation ζ = G2l2

16Vs
n P0

��0
[Eq. (A12)]. With the parameters

l = 0.75 mm, Vs = (4π/3)×0.383 mm3, P0 = 0.015 W, and
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Coil

FIG. 2. Experimental setup for converting microwave to light. A spherical crystal (0.75 mm in diameter) made of yttrium iron garnet (YIG)
is placed in a microwave cavity to form a strongly coupled hybrid system between the Kittel mode and the microwave cavity mode. A static
magnetic field is applied to the YIG sample with permanent magnets. The field can be varied with a coil through a magnetic circuit made of
pure iron. A vector network analyzer is used to characterize the hybrid system by measuring the microwave reflection coefficient from the
system. To convert microwave to light, a 1550-nm cw carrier laser is impinged on the YIG sample. Under the microwave drive, the polarization
of the carrier laser oscillates at the frequency of the induced magnetization oscillation producing the optical sideband field. The beat signal
between the carrier and the sideband field is measured using a polarizer and a fast photodetector, is amplified with two low-noise microwave
amplifiers, and fed into the vector network analyzer.

�0/2π = 200 THz, we have ζ/2π = 0.33 mHz. The coupling
rate ζ is also independently evaluated by a simple magneto-
optical experiment where the shot noise is used as a calibrator
as explained in Appendix B. This procedure yields ζ/2π =
0.25 mHz, a reasonable agreement with the value obtained
from the Verdet constant V above.

B. Conversion from microwave to light

While the microwave absorption by the hybrid system can
be measured in the microwave reflection measurement (S11

measurement), the accompanying magnetization oscillation
induced in the YIG sphere can be probed by light. The process
can be understood as follows. First, the itinerant microwave
photons in the mode âi drive magnons coherently through the
microwave cavity with the two interactions denoted by Hc

and HI in Eqs. (2) and (1). The driven magnons then scatter
sideband photons b̂o through the Faraday interaction Hp in
Eq. (3) with the strong optical drive field. These quantum
transfer processes constitute the conversion from microwave
to light.

The experimental setup for converting microwave to optical
light is shown in Fig. 2. A 1550-nm cw laser with the angular
frequency of �0 (drive frequency) impinges on the YIG
sample, whose beam spot at the sample is roughly 0.15 mm
in diameter. The polarization of the laser before the sample
is linear and along the z axis. After passing the sample
the polarization oscillates at the frequency of the induced
magnetization oscillation by the Faraday effect, thus producing
the optical sideband at the angular frequency of �0 ± ωm.
The beat signal between the drive field and the sideband
field is measured using a polarizer and a fast photodiode
(New Focus 1554-B) with two low-noise microwave amplifiers
(MITEQ AFS4-08001200-09-10P-4) as shown in Fig. 2. This

measurement culminates in the beat-down heterodyne signal,
which corresponds to the measurement of the Stokes oper-
ator [see Eq. (A11)], ŝz(ω) ∝ [b̂†o(�0 − ω)e−i�0t + b̂o(�0 +
ω)ei�0t + h.c.]. The microwave-to-light amplitude conversion
coefficient, SLM(ω) ∝ 〈 ŝz(ω)

âi (ω) 〉, can then be defined as

SLM(ω) =
√

η

2i

(〈
b̂
†
o(�0 − ω)

âi(ω)

〉
+

〈
b̂o(�0 + ω)

âi(ω)

〉)

= g
√

ηκcζχm(ω)χc(ω)

1 + g2χm(ω)χc(ω)
, (13)

where η is the amplification factor including the field strength
of the drive field (here acting as a local oscillator) and
the gain of the photodetector and the microwave amplifiers.

Here 〈 b̂
†
o(�0−ω)
âi (ω) 〉 and 〈 b̂o(�0+ω)

âi (ω) 〉 are the amplitude conversion
efficiency with the anti-Stokes scattering [Eq. (10)] and that
with the Stokes scattering [Eq. (9)], respectively.

Figure 3(c) shows the two-dimensional spectrum of |SLM|2
as a function of the microwave drive frequency ω and the
coil current I . Note that the data are simultaneously taken
with the spectrum of |S11|2 in Fig. 3(a). The two spectra are
complementary in the sense that the dips in Fig. 3(a) appear as
the peaks in Fig. 3(c), suggesting the faithful conversions from
the microwave to the light quanta. Also plotted in Fig. 3(d) are
the amplitude and the phase of SLM and their polar plot, at
the coil current I = 400 mA indicated by the dashed line in
Fig. 3(c). The fact that the phase values of SLM in Fig. 3(d)
follow those of S11 in Fig. 3(b), except the scale factor of 2,
clearly displays the coherent nature of the conversions.

From the fitting in Fig. 3(d) based on Eq. (13) we deduce
g/2π = 63 MHz and γ /2π = 1.3 MHz, which are similar to
those obtained from S11 in Sec. III A 1. Here, the light-magnon
coupling rate ζ is multiplied by the uncalibrated amplification
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FIG. 3. (a) Power reflection coefficient |S11|2 as a function of the microwave drive frequency (drive power: 0 dBm) and the coil current.
(b) Spectrum of |S11|, arg(S11), and their polar plot, at a coil current I = 400 mA indicated by the dashed line in (a). Blue dots show the
experimental data and red curves show the fitting results based on Eq. (A5). The two pronounced dips in the reflection coefficient S11(ω) in (b)
are the signature of the hybridization between the Kittel mode and the cavity mode. (c) |SLM|2 as a function of the microwave drive frequency
and the coil current (carrier laser power: 450 μW). The data are simultaneously taken with |S11|2 in (a). (d) Spectrum of |SLM|, arg(SLM), and
their polar plot, at I = 400 mA indicated by the dashed line in (c). Blue dots show the experimental data and red curves show the fitting results
based on Eq. (13). Two tiny normal-mode splittings indicated by the arrows in (a) are caused by other magnetostatic modes. The dotted lines
in (a) and (b) indicate the coil current I = 564 mA, where the maximum conversion is realized (see Sec. III C).

factor η, and ηζ as a whole is used as a fitting parameter.
In the inverse conversion experiment, we shall provide the
evaluation of ζ with a careful calibration scheme explained in
Appendix C.

C. Conversion from light to microwave

In Sec. III B we discussed the conversion from microwave
photons to optical photons based on a magneto-optical effect,
i.e., the Faraday effect. In this section, we shall discuss
the inverse process; the conversion from optical photons to
microwave photons based on an optomagnetic effect, i.e.,
inverse Faraday effect [18]. Our approach to the inverse
Faraday effect is to use two phase-coherent cw lasers as
opposed to the impulsive method commonly used [19].

Figure 4(a) depicts the experimental setup. Two phase-
coherent laser fields generated from a monochromatic cw
laser are simultaneously impinged on the YIG sphere to
induce the inverse Faraday effect. To bring about the effect
the following considerations have to be taken. First, from the

energy conservation the frequency difference between the two
fields has to be the Kittel mode frequency ωm/2π . Next, since
the Kittel mode has no linear momentum, the two laser fields
have to be copropagating to conserve the total momentum in
the process. Finally, only the combination of the z-polarized
(π -polarized) field and the y-polarized field can create and
annihilate magnons, where the two phase-coherent light fields
interfere and create an oscillating fictitious magnetic field along
the x axis. Here, among the oscillating fictitious magnetic field,
only the component corotating with the magnetization of the
Kittel mode contributes to the creation and annihilation of
magnons, as in the standard magnetic resonance experiment
(see Appendix A 2) [26].

In the experiment the two phase-coherent fields are
separated by ωa = �0 − � in angular frequency as shown
in Fig. 4(c). Thus, only the parametric-amplification-type
interaction (i.e., the Stokes scattering) in Eq. (A13) is realized
(see Appendix A 3). Here the field with the angular frequency
�0 is polarized along the z axis, while the one with � is
along the y axis. The created magnons predominantly decay
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FIG. 4. (a) Experimental setup for converting light to microwave. The hybrid system consisting of the Kittel mode and the microwave cavity
mode is used for the conversion. Two phase-coherent laser fields generated from a monochromatic cw laser are simultaneously impinged on
the YIG sample to induce the inverse Faraday effect. The created magnons predominantly decay to the microwave cavity, and the coupled-out
microwave signal from the cavity is amplified and fed into a spectrum analyzer. (b) Scheme to generate two phase-coherent laser fields. A
monochromatic cw laser field with the wavelength of 1550 nm (the angular frequency of �c) is split into two paths. The field in one of the
paths is phase modulated with modulation angular frequency of ωE by an EOM and filtered out the carrier and all other sideband photons
except for the one of the first-order sidebands (the angular frequency of � = �c + ωE) with a Fabry-Pérot filter cavity. The filtered field is then
combined at a polarizing beam splitter with the field in the other path with the angular frequency of �0, which is also frequency shifted by
ωA/2π = 80 MHz from �c with an AOM. A piezoelectric actuator is used to compensate the fluctuation of the optical path-length difference
between two fields for stabilizing the relative phase between the two fields. The two resultant fields are separated by ωa = �0 − � in angular
frequency as shown in (c). Both of the fields are coupled to a polarization-maintaining (PM) fiber before the sample so as to match their spatial
modes. The power is about 15 mW for each field before entering the sample.

to the microwave cavity due the large cooperativityC = 4g2

(κc+κ)γ
[Eq. (A6)]. The coupled-out microwave signal from the cavity
is then amplified and fed to a spectrum analyzer. Note here that,
since the microwave cavity acts as a very good microwave
receiver, any stray microwave fields close to the resonance
frequency of the Kittel mode should be avoided. In order
to have the driving angular frequency of an electro-optic
modulator (EOM) ωE different from ωm, the y-polarized
field is also frequency shifted by ωA/2π = 80 MHz with an
acousto-optic modulator (AOM) before being combined with
the z-polarized field.

Figure 5(a) shows a measured noise power spectrum
recorded in the spectrum analyzer at a coil current I =
564 mA. The peak of the noise power corresponds to the lower
branch of the normal modes. Given the fact that the thermal
noise of the hybridized system appears above the instrument
noise level, our measurement is thermal noise limited at room
temperature. The inset in Fig. 5(a) shows the zoom-in of the
peak region in Fig. 5(a) when the YIG sample is illuminated
by the two laser fields so as to bring about the inverse Faraday
effect. The sharp peak above the broad noise level indicates

the presence of coherent magnetization oscillations induced
by the two phase-coherent optical fields.

The photon conversion efficiency from light to microwave
defined by |S+

ML|2 ≡ |〈 âo(ωa )
b̂
†
i (�)

〉|2, where the superscript “+”

emphasizes the fact that only the Stokes scattering process
is activated in the conversion process [see Eq. (11)], can then
be deduced from the power spectrum by expressing the laser
powers used for exciting the magnons and the microwave
signal power [within the bandwidth of the coherent magnon
signal, which is limited by the coherence of the two laser
fields (∼10 Hz)] in terms of numbers of photons. For this
purpose the gain and loss of the microwave amplifiers and
the intervened coaxial cables have to be properly calibrated.
The detailed calibration procedure is described in Appendix C.
The calibrated photon conversion efficiency |S+

ML|2 is plotted
as the blue points in Fig. 5(b) as a function of the frequency
difference between the two laser fields ωa = �0 − �. The
red curve is drawn based on Eq. (11) with the light-magnon
coupling rate ζ in Eq. (A14) multiplied by the transmittance
of light T as a whole being a fitting parameter. The maximum
photon conversion efficiency, |S+

ML|2 ∼ 10−10, is achieved at
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FIG. 5. (a) Measured noise power spectrum at a coil current I = 564 mA, indicated by the dotted lines in Figs. 3(a) and 3(c). The peak of
the noise power corresponds to the lower branch of the normal modes. The inset shows the zoom-in of the peak region in (a) under illumination
of the two laser fields inducing the inverse Faraday effect. The sharp peak above the broad noise level indicates the presence of the coherent
magnetization oscillations. (b) Calibrated photon conversion efficiency |S+

ML|2 as a function of the frequency difference between the two laser
fields ωa = �0 − �. The blue points are experimentally determined efficiencies, while the red curve is drawn based on Eq. (11). (c) arg(S+

ML)
of the generated microwave output as a function of time, where the upper and the lower points represent the data with the relative phase shift
by π .

the upper branch of the normal mode where the coil current is
I = 564 mA [see Fig. 5(b)]. At this point the detuning from the
cavity resonance ωc is �c/2π ≡ (ω − ωc)/2π = 320 MHz
and that from the Kittel mode resonance ωm is �m/2π ≡
(ω − ωm)/2π = 12 MHz.

To see why the maximum conversion can be achieved at
these particular detunings, let the photon conversion efficiency,
|S+

ML|2, be represented in terms of the cooperativity C in
Eq. (A6):

|S+
ML|2 =

4C κcζ

(κc+κ)γ(
C + 1 − 4 �c

κc+κ

�m

γ

)2 + (
2 �c

κc+κ
+ 2�m

γ

)2 . (14)

The resonant condition �c = �m = 0 leads to

|S+
ML|2 =

4C κcζ

(κc+κ)γ

(C + 1)2
, (15)

and is not favorable since the large cooperativity C works
adversely. The nonzero detunings �c and �m, on the other
hand, counteract the adverse effect of C in the denominator of
Eq. (14) at the expense of the additional penalty term (2 �c

κc+κ
+

2�m

γ
)2. The optimal detunings are found by solving the coupled

equations

∂

∂�c

|S+
ML|2 = 0, (16)

∂

∂�m

|S+
ML|2 = 0 (17)

whose solutions correspond to the extremal point of |S+
ML|2

with respect to the detunings �c and �m.

With the independently measured transmittance T ∼ 0.84
we deduce the light-magnon coupling rate ζ/2π = 0.18 mHz,
which is close to the value ζ/2π = 0.25 mHz independently
obtained from a shot-noise-based calibration scheme (see
Appendix B) as well as the value ζ/2π = 0.33 mHz evaluated
from the Verdet constant V , reinforcing the validity of the
conversion efficiency we obtained.

To see the conversion preserves the phase coherence,
arg(S+

ML) is also measured by replacing the spectrum analyzer
with a network analyzer. For this experiment the two laser
fields are stabilized to have a definite relative phase by
actively compensating the fluctuation of the optical path-length
difference between two fields by the piezoelectric actuator
shown in Fig. 4(b). In Fig. 5(c) arg(S+

ML) of the generated
microwave around 10.8 GHz is shown as a function of time,
where the efficiency of the microwave generation is the highest,
as indicated by a dashed line in Fig. 5(b). The upper and the
lower points in Fig. 5(c) represent the data with the relative
phases shifted by π . The result shows that the conversion from
light to microwave preserves phase coherence within the time
scale of several seconds.

IV. DISCUSSION

The maximum photon conversion efficiency we have
achieved is around 10−10 as shown in Fig. 5(b) and is
primarily limited by the small magnon-light coupling rate ζ .
To realize a microwave-light converter in the quantum regime
the magnon-light coupling rate ζ has to be improved by several
orders of magnitude.
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There are several ways in which we could improve the
coupling rate ζ . First, an appropriately designed optical cavity
can be incorporated in the converter architecture. The converter
then consists of three harmonic oscillator modes: a microwave
cavity mode, the Kittel mode, and an optical cavity mode.
A promising approach is to use whispering gallery modes
(WGMs) supported by a spherical crystal of ferromagnet
itself. There are some developments along this line [22,27,28].
With realistic parameters of WGMs made of a YIG disk,
the conversion efficiency |S+

ML|2 may improve up to around
10−3 [22].

Second, other magnetic materials with a larger Verdet
constant than that of YIG can be used. For instance, an ionic
ferromagnetic crystal, chromium tribromide (CrBr3), is known
to have an extremely large Verdet constant of the order of
V = 8700 radians/cm at 1.5 K for the light at 500 nm [29].
It was demonstrated that the conversion from microwave at
23 GHz to light was possible with magnons in a CrBr3

disk [30].
Given the fascinating developments of coherent light-

matter interfaces based on rare-earth ions [7–10], these ions
doped in a ferromagnetic crystal as spin impurities may be
interesting. While the Kittel mode is used for a microwave-
matter interface, the spin impurities are used as a light-matter
interface. When the temperature is sufficiently low these
spin impurities would interact with ferromagnetic magnons
coherently. The doping, however, arouses the breaking of
translational symmetry of the ferromagnetic crystal, which
would raise the intrinsic magnon decay rate γ . It may therefore
be beneficial to replace yttrium atoms with rare-earth atoms
completely, which would also be good for boosting the optical
density. The Faraday rotation of erbium iron garnet is, for
instance, reported to be significantly larger than that of YIG
around the absorption lines of Er [31].

V. SUMMARY

We have demonstrated bidirectional coherent conversion
between microwave and light via ferromagnetic magnons. The
converter is based on a hybrid system between a microwave
cavity mode and the Kittel mode. An itinerant microwave field
is coupled to the hybrid system through the microwave cavity,
while a traveling optical field addresses the hybrid system
through the Kittel mode via Faraday or inverse Faraday effect.
The maximum photon conversion efficiency of the converter
is around 10−10 and is limited by the small magnon-light
coupling rate ζ . We have suggested some strategies for
improving ζ . Given the fact that the ferromagnetic magnon
can be coherently coupled to a superconducting qubit [23],
pursuing the magnon-based microwave-light converter would
make sense for realizing large-scale quantum optical networks
with superconducting qubits.
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APPENDIX A: DETAILS OF THE ARCHITECTURE
OF THE CONVERTER

1. Kittel mode

The ferromagnetic sample we use in the microwave-light
converter is a spherical crystal made of YIG. YIG is a
ferrimagnetic insulator which possesses the following char-
acteristics: (a) high Curie temperature of about TC = 550 K;
(b) high net spin density of n = 2.1×1022 cm−3 [32]; and (c)
large Verdet constant of V = 3.8 radians/cm at 1.55 μm [33].
Under a uniform static magnetic field the strong exchange
and dipolar interactions among iron spins define the low-lying
energy levels of spin-wave excitations. For the modes with
small wave number, k, in small samples (∼1 mm), the
dipolar energy dominates and the electromagnetic forces are
effectively magnetostatic, resulting in the size-independent
resonant frequency [34,35]. Among these magnetostatic or
Walker modes, we exploit for the converter the Kittel mode
with k = 0, i.e., uniformly precessing magnetization mode.

The magnons in the Kittel mode can be treated as quanta in
a damped harmonic oscillator mode. The equation of motion
is given by

˙̂c(t) = −iωmĉ(t) − γ

2
ĉ(t) − √

γ ĉn(t), (A1)

where ĉ(t) is the annihilation operator for the magnon, ωm =
ωK

1+α2 is the angular frequency of magnetization oscillation with
ωK being the resonant angular frequency of the bare Kittel
mode [34,35], and α being the Gilbert damping constant [36].
γ = 2αωm is the intrinsic energy dissipation rate. Here, to take
into account the noise term accompanying the dissipation, the
noise field operator ĉn(t) is introduced [25].

2. Purcell effect

For the coupling between the Kittel mode and the itinerant
microwave field the coupling rate is limited by the intrinsic
dissipation rate of the Kittel mode, γ . The coupling rate beyond
this can be achieved by using a microwave cavity to exploit
the Purcell effect [37]. The use of a microwave cavity is also
beneficial from the viewpoint of its magnetic field uniformity
at the sample inside. This makes highly selective excitation of
the Kittel mode possible.

When the resonant frequency of the cavity mode coincides
with the Kittel mode frequency, i.e., ωc = ωm, the coherent
interaction results in hybridization of the two modes. By
writing the annihilation and creation operators for the cavity
mode by â and â†, respectively, the interaction Hamiltonian is
given by Eq. (1), where g = g0

√
N is the collectively enhanced

coherent coupling rate between the two modes with g0 being
the single-spin coupling rate, where N is the total number of
spins in the sample [16,38]. With the zero-point amplitude of
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magnetic field B0 in a cavity of volume V is B0 =
√

μ0�ωc

2V
,

g0 can be given by γe( B0√
2
), where μ0 is the permeability

of vacuum, and γe is the electron gyromagnetic ratio. The
factor 1√

2
in the form of g0 comes from the fact that among

the intracavity field only the component corotating with the
magnetization of the Kittel mode contributes to the magnetic
resonance [26].

Coupling between the hybrid mode and the itinerant
microwave field requires an additional dissipation channel
associated with the cavity mode. Denoting the coupling rate
between the microwave field out of (into) a one-dimensional
(1D) transmission line âi(t) [âo(t)] and the cavity mode by
κc, the interaction Hamiltonian between the cavity mode â

and the itinerant microwave mode âi can be given by Eq. (2).
The equation of motion for the cavity mode is obtained from
Eqs. (1) and (2) as

˙̂a(t) = −iωcâ(t) − igĉ(t) − κ + κc

2
â(t) − √

κcâi(t), (A2)

where κ is the internal energy loss rate for the cavity added
into Eq. (A2) phenomenologically. Here the Kittel mode ĉ(t)
manifests itself in the second term in the right-hand side.

The equation of motion for the Kittel mode can similarly
be obtained as

˙̂c(t) = −iωmĉ(t) − igâ(t) − γ

2
ĉ(t) − √

γ ĉn(t). (A3)

Solving these two coupled equations (A2) and (A3) in the
Fourier domain leads to the microwave reflection coeffi-
cient, S11(ω) = âo(ω)/âi(ω). First, neglecting the noise term√

γ ĉn(t) in Eq. (A3) we have an algebraic relation between
â(ω) and ĉ(ω), that is,

ĉ(ω) = ig

i(ω − ωc) − γ

2

â(ω). (A4)

Then by substituting the relation (A4) into Eq. (A2) and using
the boundary condition âo(t) = âi(t) + √

γcâ(t) [25] we have

S11(ω) =
i(ω − ωc) − 1

2 (κ − κc) + g2

i(ω−ωm)− γ

2

i(ω − ωc) − 1
2 (κ + κc) + g2

i(ω−ωm)− γ

2

. (A5)

This implies that by measuring the microwave reflection coef-
ficient S11(ω) the parameters g, κc, γ , and κ can be evaluated.
The dissipation hierarchy, g > κc > κ ∼ γ , would suggest
that the energy stored in the Kittel mode is predominantly
dissipated as the itinerant microwave photons. The strength
of the coupling between the Kittel mode and the microwave
cavity can then be evaluated by the cooperativity,

C = 4g2

(κc + κ)γ
. (A6)

3. Faraday effect

A traveling optical field addresses the hybrid mode via the
Faraday effect or the spin-Raman effect [39]. The Faraday
effect can be understood phenomenologically as follows: the
polarization of the linearly polarized light rotates due to
the circular birefringence of the transparent material. Any
material showing circular birefringence possesses nonzero

vector polarizability and exhibits the vector light shift in the
ground-state Zeeman manifold [40–42], which leads to the
Faraday effect.

Suppose that the light propagating along the x axis is
linearly polarized along the z axis and interacts with a
ferromagnetic sample with a length l, which is magnetized
along the z axis under a uniform static magnetic field. In this
configuration the magnetization oscillation perpendicular to
the z axis is imparted to the polarization oscillations as a result
of the Faraday effect. In this case the interaction Hamiltonian
ĤF (t) can be given by [40–42]

HF (t) =
∫ τ

0
dt �Gm̂x(t)ŝx(t)Ac, (A7)

where G is the coupling constant in the Faraday effect, τ = l
c

is the interaction time with c being the speed of light in the
material, and A is the cross section of the light beam. Here
m̂x(t) is the x component of the magnetization density, which
can be denoted in terms of ĉ(t) and ĉ†(t) as

m̂x(t) =
√

N

2Vs

[ĉ(t) + ĉ†(t)] (A8)

with Vs being the sample volume and N being the total number
of spins in the sample. The operator ŝx(t) is related to the x

component of the Stokes operator for the polarization of light
and given by

ŝx(t) = 1

2A
[b̂†r (t)b̂r (t) − b̂

†
l (t)b̂l(t)], (A9)

where b̂
†
l and b̂l are the creation and annihilation operators

for the mode of left-circular polarized light traveling along the
x axis per unit time, and b̂

†
r and b̂r are likewise for those of

right-circular one. Other components of the Stokes operator
are similarly defined:

ŝy(t) = 1

2A
[b̂†r (t)b̂l(t) + b̂

†
l (t)b̂r (t)], (A10)

ŝz(t) = 1

2iA
[b̂†r (t)b̂l(t) − b̂

†
l (t)b̂r (t)]. (A11)

Assume that a strong carrier field in the mode with linear
polarization along the z axis impinges on the YIG, for which
the annihilation operator b̂z(t) can be approximated as a

c-number, i.e., b̂z(t) =
√

P0
��0

e−i�0t with P0 being the input

power in the mode and �0 being its angular frequency.
Let b̂i(t) be an annihilation operator for the mode with
linear polarization along the y axis; then the operators for
the circular polarization mode, b̂r (t) and b̂l(t), are written
as b̂r (t) = 1√

2
[b̂i(t) + ib̂z(t)] and b̂l(t) = 1√

2
[b̂i(t) − ib̂z(t)],

respectively. Assuming that the interaction time τ is shorter
than the typical time scale of the magnon dynamics, 1/ωm, the
operators ĉ(t) and ĉ†(t) and the operators b̂i(t) and b̂

†
i (t) in the

frame rotating at the carrier frequency �0 can be considered as
constant during the interaction. Then the Hamiltonian HF in
Eq. (A7) becomes Eq. (3), where the integration is performed
to get

∫ τ

0 c dt = cτ = l. The light-magnon coupling rate ζ is
defined as

ζ ≡ G2l2

16Vs

n
P0

��0
. (A12)
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Detuning

FIG. 6. Energy-level diagram relevant to the Faraday and the
inverse Faraday effects with YIG. The states describing the electronic
ground and excited states are specified by |g〉 and |e〉 and the magnon
Fock states are denoted as |n〉. Here depicted is the configuration in
which the inverse Faraday effect with the parametric-amplification-
type Hamiltonian (A13) is induced by two phase-coherent fields with
a detuning from the |g〉 ↔ |e〉 transition being �. One of the two
fields (blue arrows) having the angular frequency �0 and being z

polarized (π polarized) and the other field (red arrows) having the
angular frequency � (� < �0) and being y polarized coherently
create and annihilate magnons (brown arrows). b̂z, b̂i , and ĉ denote
the annihilation operators for the z-polarized field, the y-polarized
field, and the magnon, respectively.

With the rotating-wave approximation the Hamiltonian Hp

in Eq. (3) becomes either the parametric-amplification-type
Hamiltonian given by

Ha = −i�
√

ζ

∫ ∞

−∞

d�

2π
[ĉb̂i(�)ei�0t − ĉ†b̂†i (�)e−i�0t ], (A13)

which is effective only around � = �0 − ωm, or the beam-
splitter-type Hamiltonian given by

Hb = − i�
√

ζ

∫ ∞

−∞

d�

2π
[ĉ†b̂i(�)ei�0t − ĉb̂

†
i (�)e−i�0t ], (A14)

which is effective only around � = �0 + ωm. Here b̂
†
i (�)

and b̂i(�) are the frequency-domain creation and annihilation
operators defined as b̂i(t) = ∫ ∞

−∞
d�
2π

b̂i(�)e−i�t and b̂
†
i (t) =∫ ∞

−∞
d�
2π

b̂
†
i (�)ei�t .

Figure 6 shows the energy-level diagram relevant to the
Faraday and the inverse Faraday effects with YIG. The
states describing the electronic ground and excited states
are specified by |g〉 and |e〉 and the magnon Fock states
are denoted as |n〉. The transition between |g〉 and |e〉
corresponds to the charge transfer transition in YIG, i.e.,
6S(3d52p6) ↔ 6

P (3d62p5), with the relevant wavelength
being 440 nm [43,44]. The wavelength of the laser we
use is around 1.5 μm and thus the detuning � from the
|g〉 ↔ |e〉 transition is large, which leads to the excited
state |e〉 being only virtually populated. To bring about the
inverse Faraday effect with two phase-coherent fields there are
two choices: either employing the parametric-amplification-
type Hamiltonian (A13) or the beam-splitter-type Hamilto-
nian (A14). Depicted in Fig. 6 is the configuration in which the
inverse Faraday effect with the parametric-amplification-type

Hamiltonian (A13) is induced. Note that, since the parametric
amplification process intrinsically accompanies noise, it would
be preferable to use the beam-splitter-type Hamiltonian (A14)
for realizing a noise-free microwave-light convertor in the
quantum regime.

APPENDIX B: EVALUATION OF ζ WITH A
SHOT-NOISE-BASED CALIBRATION SCHEME

The magnon-light coupling rate ζ can be independently
evaluated by a simple magneto-optical experiment, where the
shot noise is used to calibrate the measurement instruments.
This evaluation complements the one obtained from the Verdet
constant and the one obtained from the light-microwave
conversion experiment presented in Sec. III C, which requires a
more involved calibration scheme as discussed in Appendix C.

The basic idea of estimating ζ is the following: First,
excite magnons in the Kittel mode by a microwave field
through the coupling coil with an a priori known power. Here
the absence of any intervening microwave cavity makes the
evaluation procedure easier. Second, measure the amount of
the Faraday rotation induced by the excited magnons, which
constitutes the signal and contains the information of the
magnon-light coupling rate ζ . Third, the noise of the Faraday
rotation measurement is easily calibrated if the measurement
is performed under the shot-noise-limited condition. Thus,
evaluating the signal power referred to the shot noise power
gives us an estimate of ζ .

The magneto-optical experiment used to evaluate ζ is
depicted in Fig. 7(a). The setup is similar to the one shown
in Fig. 2 except that the microwave cavity is replaced with a
coupling coil and the diameter of the YIG crystal is 0.4 mm
instead of 0.75 mm. Let us denote the coupling rate between
the microwave field out of (into) a 1D transmission line
âi(t) [âo(t)] and the Kittel mode ĉ(t) by γc. Measuring
the microwave reflection at the coupling coil reveals the
ferromagnetic resonance as shown in Fig. 7(b). The reflection
coefficient of the Kittel mode S11 is written as

S11(ω) =
〈
âo(ω)

âi(ω)

〉
= i(ω − ωm) + 1

2 (γc − γ )

i(ω − ωm) − 1
2 (γc + γ )

. (B1)

Because S11(ω) reaches zero around ω = ωm

(ωm/2π = 9.5 GHz, the 1D transmission line and the
Kittel mode are critically coupled and we can set γ = γc. In
the case of the coherent and resonance excitation (ω = ωm)
under the critical coupling condition the spectral number
density Sn(ω) of the magnon reads

Sn(ω) = Pi

�ωmγc

2πδ(ω − ωm), (B2)

where Pi is the microwave power used to excite the magnons.
Thus the relation between the a priori known microwave
power Pi and the spectral number density of the magnon in
the Kittel mode, Sn(ω), is established.

To measure the amount of Faraday rotation induced by the
excited magnons, a linearly polarized 1550-nm cw laser is
sent through the sample. Here, the angle of the output light
polarization varies due to the Faraday effect and the resulting
polarization-oscillating field is measured by a high-speed
photodetector and a spectrum analyzer after passing through
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FIG. 7. Shot-noise-based calibration scheme. (a) Schematic of
the experimental setup. A loop coil generates an oscillating magnetic
field perpendicular to the saturated magnetization. The light before
entering the sample has the polarization plane inclined by +45◦ from
the z axis. After a polarization beam splitter (PBS), a high-speed
photodetector converts the z-polarized photon flux as an instantaneous
voltage signal. The resultant voltage signal is fed into a spectrum
analyzer to give SV V (ω) in Eq. (B8). (b) Power reflection coefficient
|S11(ω)|2 measured through the coupling coil. The blue dots are the
measured value, while the red line shows a fitting curve based on
Eq. (B1). (c) Observed power spectrum SV V (ω)�ω corresponding
to Eq. (B9). Here the resolution bandwidth �ω/2π of the spectrum
analyzer is set to 100 Hz. The inset shows the power spectral densities
(PSD) of the total noise (blue triangles) and the noise after subtracting
the electrical contribution (green squares) as a function of the incident
laser power. The latter grows linearly with the laser power as indicated
by the red line. In the main panel the laser power is −0.5 dBm and
the electrical noise has been subtracted.

a polarization beam splitter. What we actually measure is the
instantaneous output voltage of the photodetector, which is
proportional to the z-polarized photon flux within the cross
section A, that is,

V̂D(t) ∝ b̂†z(t)b̂z(t) = A[ŝ0(t) − ŝy(t)], (B3)

where ŝ0(t) is the total photon flux per unit area, i.e., ŝ0(t) =
1
A

P0
��0

≡ |β|2
A

with P0 and �0 being the power and the angular
frequency of the incident laser, respectively. Here, ŝy(t) is the
Stokes operator introduced in Eq. (A10) and is rewritten in
terms of b̂i , b̂

†
i , b̂z, and b̂

†
z as

ŝy(t) = 1

2A
[b̂†i (t)b̂i(t) − b̂†z(t)b̂z(t)]. (B4)

From the Hamiltonian HF in Eq. (A7) the evolution of ŝy(t)
can be tracked as

ŝy(τ ) = ŝy(0) + Gc

∫ τ

0
dt m̂x(0)ŝz(0)

∼ ŝy(0) + Gcτm̂x(0)ŝz(0) (B5)

and thus the magnon excitations manifest themselves as the
second term, while the shot noise appears in the first term.

The vacuum expectation value of the autocorrelation of
V̂D(t) can then be given by

〈V̂D(0)V̂D(t)〉0 ∝ 1
4 |β|4 + 1

4 |β|2δ(t) + 1
4 |β|2δ(t)

+ 1
4G2c2τ 2|β|2〈m̂x(0)m̂x(t)〉, (B6)

where the first and the second terms are the dc offset and
the shot noise stemming from the penalty imposed by the
unbalanced Faraday measurement. The third term is due to
the intrinsic shot noise. The fourth term contains the signal
〈m̂x(0)m̂x(t)〉, which is the expectation value of the autocor-
relation of m̂x(t). Here the autocorrelation 〈m̂x(0)m̂x(t)〉 is
related to the spectral number density Sn(ω) of the magnon
given in Eq. (B2) in the following way:

〈m̂x(0)m̂x(t)〉

= N

4V 2
s

(∫ ∞

−∞

dω

2π
Sn(ω)e−iωt +

∫ ∞

−∞

dω

2π
Sn(ω)eiωt

)

= N

4V 2
s

(
Pi

�ωmγc

e−iωmt + Pi

�ωmγc

eiωmt

)
. (B7)

Plugging Eq. (B7) into Eq. (B6) and Fourier transforming
it, we obtain the following power spectrum SV V (ω):

SV V (ω) ∝ 1

2
|β|2 + G2l2|β|4NPi

16V 2
s �ωmγc

[δ(ω − ωm) + δ(ω + ωm)],

(B8)
where the dc offset is omitted as of no interest here. At
resonance ω = ωm the spectral power within the bandwidth
�ω reads

SV V (ωm)�ω = 1

2
|β|2�ω + G2l2|β|4NPi

16V 2
s �ωmγc

, (B9)

where the first term is the frequency-independent shot noise
and the second term is the signal due to the coherent magnon
excitation. The signal-to-noise ratio (SNR) is then given by

SNR = G2l2|β|2nPi

8Vs�ωmγc�ω
, (B10)

where n = N
Vs

is the spin density. All the parameters in the
right-hand side of Eq. (B10) are a priori known except for
the phenomenological coupling strength G. Experimentally
evaluating the SNR allows us to evaluate the coupling strength
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G and thus the magnon-light coupling rate ζ from Eq. (A12).
The shot noise automatically calibrates the gains and losses
intervened within the measurement instruments.

Figure 7(c) shows the power spectrum SV V (ω)�ω when
the frequency of the microwave drive is adjusted to around
ωm/2π = 9.5 GHz with the power Pi = −41 dBm. Here,
since our measurement is performed under the condition
where the shot noise and the electronic noise are comparable
as shown in the inset of Fig. 7(c), the electronic noise
is subtracted from the data. The resultant SNR at the
resonance excitation yields 36.8 dB. With this value of
SNR and the following parameters, l = 0.75 mm, |β|2 =
P0

��0
= 1.2×1017 s−1, n = 2.1×1028 m−3, Pi = −41 dBm,

Vs = (4π/3)×0.383 mm3, ωm/2π = 9.5 GHz, γc/2π = 1.5
MHz, and �ω/2π = 100 Hz, we obtain ζ/2π = 0.25
mHz. Since this value is close to the value ζ/2π = 0.33
mHz obtained from the Verdet constant V , our claim that the
coupling between the Kittel mode and the light can be captured
by a single macroscopic parameter V is verified. The validity
of our estimate of the conversion efficiency given in Sec. III C
is also certified by the fact that the value ζ/2π = 0.18 mHz
estimated from the light to microwave conversion experiment
shows a reasonable agreement with the other two.

APPENDIX C: CALIBRATION SCHEME
TO DEDUCE

∣
∣S+

ML

∣
∣

2

In Sec. III C the photon conversion efficiency from light
to microwave |S+

ML|2 shown in Fig. 5(b) is deduced from the
power spectrum shown in Fig. 5(a). To deduce |S+

ML|2 we
carefully calibrate the power spectrum by taking into account
the variation of the gain of the microwave amplifiers and the
loss and the interference effect due to the intervened coaxial
cables. These effects can be collectively denoted as a single
transfer function Ta(ω).

The basic idea of the calibration scheme is to input a known
calibration tone to the microwave cavity via an additional
port (antenna pin) as shown in Fig. 8(a). The transmission
coefficient |S21|2 for the cavity can be written as

|S21(ω)|2 =
∣∣∣∣∣

√
κ1κc

i(ω − ωc) + κ1+κc+κ

2

∣∣∣∣∣
2

, (C1)

where the input itinerant microwave field used as the calibra-
tion tone is coupled to the cavity at a rate κ1 (2π×42 kHz),
which is far smaller than the coupling rate κc (2π×25 MHz)
in Eq. (2) so as not to disturb the original cavity mode much.
All the parameters of the cavity can then be deduced from this

(a)

Coil

Microwave
amplifiers

Added port
for calibration

(b)

Microwave
cavity mode

Itinerant microwave

FIG. 8. (a) Experimental setup for calibrating the transfer func-
tion Ta(ω) from the cavity port to the spectrum analyzer. A known
calibration tone from a microwave generator is input to the microwave
cavity via an additional port (antenna pin). (b) Pictorial representation
of the calibration scheme. Pi is the power of the itinerant microwave
from a microwave generator, which is a priori known. The input and
output powers of the cavity, Pi and P0, are related by Eq. (C1). Here,
κ1 (κc) is the coupling rate between the input (output) field and the
cavity and κ is the intrinsic energy dissipation rate of the cavity. Pm

is the power at the spectrum analyzer, which is generated after going
through the gains of amplifiers and the losses and the interferences
due to the intervened coaxial cables collectively denoted as Ta .

formula and the relation between the power at the input of the
cavity Pi(ω) and that of the output Po(ω) can be established.
We can then measure the power at the spectrum analyzer Pm

while driving the cavity by the known calibration tone with
the power Pi as shown in Fig. 8(b). From the simple relation
Pm(ω) = Ta(ω)×|S21(ω)|2×Pi(ω), we can obtain Ta(ω) and
thus establish the relation between Po(ω) and Pm(ω), which is
used to obtain |S+

ML|2 shown in Fig. 5(b).
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