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Frustrated Ising chains on the triangular lattice in Sr3NiIrO6
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Inelastic neutron scattering study on the spin-chain compound Sr3NiIrO6 reveals gapped quasi-1D magnetic
excitations. The observed one-magnon band between 29.5 and 39 meV consists of magnon modes of the Ni2+

ions. The fitting of the spin wave spectrum reveals strongly coupled Ising-like chains along the c axis that are
weakly coupled into a frustrated triangular lattice in the ab plane. The magnetic excitations survive up to 200 K
well above the magnetic ordering temperature of TN ∼ 75 K, also indicating a quasi-1D nature of the magnetic
interactions in Sr3NiIrO6. Our microscopic model is in agreement with ab initio electronic structure calculations
and explains the giant spin-flip field observed in bulk magnetization measurements.
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I. INTRODUCTION

Low-dimensional and geometrically frustrated spin systems
exhibit some of the most interesting physical phenomena
seen in condensed matter physics. Due to the low site con-
nectivity and competing interactions, classical order is often
suppressed by quantum and thermal fluctuations, giving rise
to novel ground states and quasiparticle excitations. Besides
the spin-liquid states [1] where no long-range order exists,
certain geometries, such as the Ising model on the stacked
triangular lattice antiferromagnet (TLA), possess partially
disordered ground states [2,3]. Theory predicts two phases
beside the paramagnetic phase. The first phase consists of
two antiferromagnetically ordered sublattices and a disordered
third one, while the low-temperature phase has one fully
ordered site and two partially ordered sites with opposite
moment direction and zero net moment. The most prominent
experimental realizations of the Ising model on the TLA
are CsCoBr3 [4–6] and Ca3Co2O6 [7,8]. Both compounds
have strongly coupled Ising chains perpendicular to the
triangular plane. While CsCoBr3 has antiferromagnetic chains,
Ca3Co2O6 has ferromagnetic chains producing magnetization
plateaus [9–14]. We propose a frustrated system with Ising
spins on the stacked TLA with strongly coupled ferrimagnetic
chains of alternating Ni2+ and Ir4+ions: Sr3NiIrO6 [15–19].

Sr3NiIrO6 together with Ca3Co2O6 belongs to a larger
family of spin-chain systems with general formula A3MM ′O6

(A = alkaline-earth metal, M/M ′ = transition metals) that
have attracted much attention in recent years, due to their
reduced dimensionality. Sr3ZnRhO6 [20], Sr3CuIrO6 [21],
Sr3CuRhO6 [22], and Ca3CoRhO6 [23–25] are the most stud-
ied ones showing magnetization jumps, large thermoelectric
power, and magnetoresistance [26,27]. The crystal structure
consists of 1D chains that are oriented along the c axis and
arranged in a triangular lattice in the ab plane; see Fig. 1. The
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chains are formed by alternating a face-sharing MO6 trigonal
prism and M ′O6 octahedra, intercalated by an A2+ cation, thus
forming a triangular arrangement.

Beside the strongly one-dimensional crystal structure these
compounds show strong spin anisotropy. It can originate
from the single-ion property of the MO6 site, for example
in Ca3Co2O6 the weak spin-orbit coupling (SOC) induces a
large orbital moment on the high-spin carrier Co3+ due to
the distorted symmetry of the trigonal prism [28]. Besides
for heavier transition metals such as rhodium or iridium, the
strong SOC can induce anisotropic exchange interaction as for
Sr3CuIrO6 [21]. In Sr3NiIrO6 both of these mechanisms are
potentially active, where the Ni2+ occupy the trigonal prism
site with the d8 electronic configuration (S = 1) and the Ir4+

taking the octahedral site with a novel Jeff = 1/2 electronic
state. Recent ab initio results have shown that the coupling
along the chain is antiferromagnetic (AFM) [18] but only if
the SOC is taken into account, resulting in a ferrimagnetic
order due to the different moment sizes of the two magnetic
ions.

The observed low-temperature magnetic structure of
Sr3NiIrO6 is also intriguing. Lefrançois et al. found a k =
(0,0,1) magnetic order with strongly reduced magnetic mo-
ments using neutron diffraction [19]. The refinement revealed
that all magnetic moments are parallel to the c axis and
within each Ni-Ir chain the moments are ferrimagnetically
ordered. However from diffraction alone the global phase of
the structure cannot be determined. This gives two qualitatively
different solutions (with a continuum of possibilities in
between). In the first solution one chain in the unit cell is
fully ordered, while the other two have ordered moments
reduced by half and the ferrimagnetic moment pointing in the
opposite direction. The second solution has two fully ordered
chains with opposite ferrimagnetic moment and a completely
disordered third chain. Both of these structures are predicted
theoretically for the Ising model on the stacked TLA.

Previous resonant inelastic x-ray scattering (RIXS) study
on Sr3NiIrO6 found a band of magnetic excitations centered at
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FIG. 1. Crystal structure of Sr3NiIrO6, showing the NiO6 trigonal
prism (light green) and IrO6 octahedra (dark green). The white vertical
bonds are the first-neighbor anisotropic exchange interactions Jxy

and Jz; the zigzag bonds with three different colors denote the three
inequivalent interchain couplings J3a , J3b, and J3c. The red vertical
arrows show the exchange coupling between Ir-Ir, J2a , and Ni-Ni,
J2b, along the chain direction.

95 meV [29] at 10 K. The observed inelastic intensity and the
size of the gap was gradually decreasing with increasing tem-
perature. At room temperature the excitations were centered
at 50(5) meV. Since the excitations were measured using the
resonant L3 edge of iridium, the experiment showed selectively
the magnetic signal only on the iridium atoms. The authors did
not discuss whether the width of the observed excitations is
resolution limited.

A good understanding of the magnetic properties of
Sr3NiIrO6 requires both high energy resolution probing
technique and spin wave calculations, in which the SOC is
presented in the form of anisotropic exchange interaction and
spin anisotropies. In the present work, we show a combination
of inelastic neutron scattering (INS) measurements and spin
wave calculation for Sr3NiIrO6 revealing a very anisotropic
exchange Hamiltonian and an effective Ising model on the
stacked triangular lattice.

II. EXPERIMENTAL DETAILS

A polycrystalline sample of Sr3NiIrO6 was prepared by
solid-state reaction of NiO, IrO2, and SrCO3. The Sr3NiIrO6

sample used in the present study is the same sample used
in our previous neutron diffraction measurement [19]. The
x-ray powder diffraction data at 300 K and neutron diffraction

data at 100 K show that the Sr3NiIrO6 sample was single
phase and crystallized in the space group R3c. The INS
measurements were performed on 6 g of sample using the
high count rate time-of-flight chopper spectrometer MERLIN
at the ISIS facility, UK. To reduce the neutron absorption of
iridium, we filled an aluminum foil envelope rolled into a
cylindrical shape with a diameter of 40 mm (and a height of
45 mm) with the fine powder of Sr3NiIrO6 and then inserted
it into a cylindrical aluminum can and finally mounted it in a
closed-cycle refrigerator under He-exchange gas. The average
sample thickness was less than 1 mm. We corrected the data
for neutron absorption, which was calculated to be 15% of
the incident beam. The INS measurements were carried out
with incident neutrons energies of Ei = 15, 80, 150, and
500 meV and temperatures between 5 K and 300 K. We
also measured a standard vanadium sample at the same set
of incident energies to determine the energy resolution at the
elastic line and to convert the intensities into normalized units
of cross section, mb/(sr meV f.u.), where f.u. stands for formula
unit of Sr3NiIrO6.

III. RESULTS

The inelastic neutron scattering data reveal two types

of excitations. At momentum transfers above 4 Å
−1

strong
inelastic scattering was observed with intensity increasing
proportionally to the momentum transfer square (|Q|2) and
with increasing temperature. These properties clearly indicate
scattering due to phonons. We also observed inelastic scatter-

ing below 4 Å
−1

between 29.5 and 39 meV that decreases in
intensity with increasing momentum transfer and temperature;
see Fig. 2. We assign these excitations to magnetic scattering.
To separate the magnetic and phonon scattering we collected
data at room temperature that contain only phonon scattering
and used this data to subtract the phonons from the magnetic
signal (for details see Appendix B). The magnetic signal is well
defined in the magnetically ordered phase below TN = 75 K
and survives up to 200 K with gradually decreasing intensity;
see Fig. 2(b). At low temperatures the signal is due to spin wave
scattering, while in the paramagnetic phase it is due to low-
dimensional scattering of the strongly correlated chains. The
momentum transfer dependence of the magnetic signal follows
the 〈j0〉 (spin only) form factor of the Ni2+ ions; see Fig. 3. The
energy width of the excitations far exceeds the instrumental
resolution, which is a sign of dispersive modes. Moreover
the peak is asymmetric with a well-developed shoulder at
the high-energy side. The full background subtracted powder
spectrum measured at 5 K is shown in Fig. 4(a).

We also measured inelastic neutron scattering with
150 meV and 500 meV incident energy to confirm the previous
RIXS results. However we only found a very weak scattering
centered at 87 meV. Due to the low signal to noise ratio
we could not unambiguously assign this scattering to the
magnetism of the iridium ions. There are two reasons why
the iridium signal is so weak compared to the nickel signal for
INS. Due to the smaller spin-1/2 effective quantum number of
Ir4+ it gives half the intensity compared to the spin-1 Ni2+ ions.
Besides at increasing energies, the lowest momentum transfer
that is measurable by a direct time of flight instrument is also
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FIG. 2. Imaginary part of the magnetic dynamical susceptibility
of Sr3NiIrO6 measured using inelastic neutron scattering on a
polycrystalline sample collected with incident neutron energy of
80 meV and after the subtraction of the nonmagnetic background.
The signal is in absolute units. (a) Data cuts measured at 5 K and
integrated for different Q ranges. (b) Data cuts measured at different

temperatures and integrated between 2 and 3 Å
−1

. Note that the
slightly negative signal is an artifact of the background subtraction.

increasing which gives strongly reduced intensity due to the
magnetic form factor. In the following we assume the upper
iridium mode is centered at 95 meV with unknown bandwidth.

IV. ANALYSIS

The observed magnetic excitations of Sr3NiIrO6 in the
ordered phase can be modeled using linear spin wave theory.
We will do this in two steps. First we propose a one-
dimensional Ni-Ir alternating chain model, where we neglect
the interchain couplings. Afterwards to improve the model
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the squared 〈j0〉 magnetic form factor of Ni2+ and Ir4+ ions [30].
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FIG. 4. (a) The magnetic scattering of Sr3NiIrO6 at 5 K obtained
after subtracting phonon scattering. The strong scattering below 10
meV is due to the incoherent background. (b) The simulated spin
wave cross section at 5 K was calculated using the parameters of the
best-fitting hexagonal structure. Intensity is scaled with a factor of
0.8 to fit the data; the solid peak at the bottom shows the instrumental
energy resolution at 32.5 meV. (c) Cuts at different Q ranges of both
the data (color circles) and simulation (black lines). (d) The complete
spin wave spectrum; blue and red areas show the intensity of spin
waves localized on iridium and nickel ions, respectively.

we will introduce additional magnetic exchange interactions
between the chains and we will show that the interchain
interactions are necessary to adequately fit the data.

To be able to model the magnetic excitations using linear
spin wave theory, we need a classical magnetic ground state.
However the experimentally determined magnetic structures
are incompatible with a zero-temperature classical ground
state. In the following we propose model Hamiltonians with
ground state close to the observed one and we will show that
the calculated excitation spectrum is insensitive to the details
of the magnetic ground state.

The simplest model Hamiltonian to describe the observed
spin waves is the Ni-Ir alternating chain along the c axis. Due
to the 3-fold symmetry along the c axis, the most general
spin Hamiltonian (up to two spin exchanges) allowed by the
symmetry is the following:

H =
∑

i

Jxy

(
Sx

i Sx
i+1 + S

y

i S
y

i+1

) + JzS
z
i S

z
i+1

+
∑
i=2k

ASz
i S

z
i +

∑
i

Di

(
Sx

i S
y

i+1 − S
y

i Sx
i+1

)
, (1)

where Si denotes the Jeff = 1/2 quantum number of iridium
ions if i = 2k + 1 and the S = 1 spin of nickel ions if i = 2k.
We also assumed that only the nickel ions have single-ion
anisotropy (A). The Dzyaloshinskii-Moriya (DM) interaction
is also allowed with the DM vector parallel to the c axis D =
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(0,0,Di) and the sign of Di is positive for i ∈ {4k + 1,4k + 2}
and negative otherwise.

The classical zero-temperature ground state of the above
Hamiltonian for dominating antiferromagnetic Jz exchange is
the ferrimagnetic chain in agreement with neutron diffraction
experiments. If the exchange interactions are Heisenberg type
(Jxy = Jz) as one would expect for transition metals the
excitation spectrum would have a zero gap (up to small
value due to negative A). However we observed a spin
wave gap much larger than the bandwidth of the excitations
which implies that Jz > Jxy . This anisotropic exchange is also
compatible with the strong spin-orbit coupling expected for
iridium. The energy width of the measured magnon band is
due to a dispersive mode, which is related to the size of Jxy , and
the double-peak structure is due to the Van Hove singularities
at the bottom and top of the magnon band smeared by the finite
instrumental resolution.

The separation of the nickel and iridium spin wave modes
is the consequence of the different Weiss field of the magnetic
ions that happens even for completely isotropic interactions.
Since the Weiss field is linear with the spin quantum number
of the neighbors, it is larger on the iridium ions than on the
nickel ions. Thus the spin wave modes that mainly localized
on the Ir acquire a larger gap than on the Ni. Due to the
large energy separation the mixing of the spin wave modes is
negligible. This also means that we cannot fit any coupling
between iridium spins (J2a and J3c) since it only influences
the upper iridium spin wave band of which we know only the
position but not the shape as a function of energy.

In order to fit the observed powder data, we extracted
a single cut through the inelastic signal integrated from
2 Å−1 to 3 Å−1 and binned in energy with 0.5 meV steps.
These data were compared with the calculated spin-spin
correlation function of the above Hamiltonian using linear spin
wave theory with SpinW [31]. The powder-averaged neutron
scattering cross section is calculated using the equation

I (Q,ω) = 1

4πQ2

∫
|q|=Q

∑
α,β

(1 − q̂αq̂β )Sαβ(q,ω)dq, (2)

where Sαβ(q,ω) is the spin-spin correlation function including
the magnetic form factors of the different ions and the
integration runs in reciprocal space covering the sphere with
radius Q. In the simulation we numerically integrated over

987 q points covering the Q = 2.5 Å
−1

radius sphere with
nearly uniform spacing (the points were generated according
to [32]). We chose to use a fixed set of Q points, since a random
distribution of Q points would make the fit unstable. The
calculated powder-averaged spectrum was convoluted with the
instrumental energy resolution function (see Appendix A).
These calculated data were then fitted to the measured
data using weighted least squares refinement. To determine
the optimal parameters of Eq. (1), we applied a stochastic
optimization method (described in Appendix B).

The parameters of the best-fitting single-chain model
are shown in the first column of Table I. The best fit is
achieved when the Dzyaloshinskii-Moriya interactions were
constrained to zero. We also included an isotropic second-
neighbor interaction along the chains J2a and J2b; however it
did not improve the χ2

red value. Although this model reproduced

TABLE I. Comparison of the best-fitting parameters of different
spin wave models of Sr3NiIrO6.

Chain Hexagonal Stripy FM

Jxy (meV) 22.7 21.6 11.7 15.6
Jz (meV) 49.8 46.6 45.3 42.6
A (meV) 6.31 4.95 7.19 5.17
J2b (meV) − 1.50 − 0.842
J3a (meV) − 2.83 − 2.78 2.02
J3b (meV) − 1.37 − 1.05 0.872
Jtri (meV) 0 1.46 1.47 − 1.15
χ 2

red 14.15 1.53 1.86 2.91

the main features of the spectrum, the large χ2
red value reveals

that the model has to be improved. It is important to note that
since we only have a poorly resolved upper iridium band, we
cannot fit iridium-iridium couplings that will only influence
the shape of the upper band.

To improve the model we have to take into account further
neighbor interactions that couple the chains. The shortest
interchain interactions couple the chains into a frustrated
triangular lattice. There are three bonds with similar length
denoted by J3a , J3b, and J3c; see Table II. Due to the larger
length, we expect that these couplings are much weaker than
the ones along the chain; thus we simply model them as being
Heisenberg type (isotropic). Altogether there are 72 interchain
bonds per unit cell.

To determine the possible classical ground states of the
coupled chain model, we introduce an effective Ising model.
Since the anisotropy along the chains is very strong, in the
classical ground state the degree of freedom of a chain is
equivalent to that of a single Ising spin. If we group the
neighboring iridium and nickel spins together along the chain,
we get an effective ferromagnetic spin-1/2 chain. Also the
coupling between the chains can be mapped to couplings
between the Ising spins. If we index the three chains in the
unit cell with 1 for position (0,0,z), 2 for (2/3,1/3,z), and 3
for (1/3,2/3,z) and define the sign of the first nickel magnetic
moment along the z axis as ϕi on the ith chain, then the classical

TABLE II. List of symmetry-allowed exchange couplings in
Sr3NiIrO6. r denotes the bond length at 100 K [19], n denotes the
number of bonds per unit cell, JS denotes the symmetric part of the
exchange matrix (diagonal elements are given; otherwise there is no
symmetry constraint), and JA denotes the antisymmetric part of the
exchange matrix (given as a DM vector).

Label Atoms r (Å) n JS JA

J1 Ni-Ir 2.791 12 (Jxy,Jxy,Jz) (0,0,D1)
J2a Ir-Ir 5.583 6 (a,a,b) (0,0,c)
J2b Ni-Ni 5.583 6 (a,a,b) (0,0,0)
J3a Ni-Ir 5.626 36 general (a,b,c)
J3b Ni-Ni 5.852 18 general (0,0,0)
J3c Ir-Ir 5.852 18 general (a,b,c)
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FIG. 5. Phase diagram of the triangular lattice Ising model with
interactions up to the second neighbor. Jtri is the effective coupling
between the Ni-Ir chains (see text) and Jtri2 is the effective coupling
between second-neighbor chains. Gray and white circles denote spins
with opposite directions.

energy per formula unit for k = 0 magnetic structures is

E = (ϕ1ϕ2 + ϕ1ϕ3 + ϕ2ϕ3)Jtri,

Jtri = J3bS
2
Ni + J3cS

2
Ir − 2J3aSNiSIr, (3)

where Jtri is an effective coupling between the ferromagnetic
Ising chains creating a triangular lattice perpendicular to
the chains. The possible classical ground states of the Ising
model on the triangular lattice are well known. If Jtri is
ferromagnetic, the ground state is a simple ferromagnet,
while for antiferromagnetic Jtri the system is frustrated with
disordered ground state [33]. However if we introduce a
vanishingly small effective coupling between second-neighbor
chains, we would get two types of ordered phases [34] (see
Fig. 5): hexagonal (phase II) and stripy (phase III). It is
important to note that the stripy phase would give a nonzero k

magnetic structure in respect to the crystallographic unit cell
which disagrees with the observed k = 0 in-plane ordering
wave vector. However we will keep both models in order to
see how sensitive is the result to the type of ground state. We
can also calculate the magnetic moment per formula unit along
the z axis for the k = 0 structures:

Mz = − 1
3 (ϕ1 + ϕ2 + ϕ3)(MNi − MIr), (4)

where MNi and MIr are the atomic magnetic moment of nickel
and iridium, respectively. Assuming the gyromagnetic ratio
g = 2 for both ions, the magnetic moment per formula unit
is 1μB , 0.3μB , and 0 for the ferromagnetic, hexagonal, and
stripy structures, respectively. The magnetization value of the
hexagonal ordering agrees well with the experimental field-
cooled magnetization value of 0.25μB [19].

To calculate the spin wave spectrum for the three different
ground states we have to return to the original lattice of
Sr3NiIrO6 since the equivalence between the effective Ising
model and Sr3NiIrO6 holds strictly only for the classical
ground state. For the hexagonal and ferromagnetic structures

a

b

c(a)

(b) c

a

b

FIG. 6. Magnetic structures used for the modeling of the (a)
hexagonal structure and (b) stripy structure. The underlying gray
parallelepipeds show the equivalent Ising model with black and white
spheres for the down and up spins.

the crystallographic unit cell is the minimal cell that can
describe the ground state, while for the stripy structure the
smallest cell is rectangular in the ab plane with lattice vectors
of (1,0,0) and (1,2,0) in units of the crystallographic lattice
vectors. The two frustrated magnetic structures are plotted in
Fig. 6.

The best fits of both the stripy and hexagonal structures with
interchain interactions are significantly better than the single-
chain model; see Table I. The calculated powder spectrum
of the best-fitting hexagonal model is shown in Fig. 4(b) and
constant energy cuts are directly compared to the experimental
data on Fig. 4(c). We could achieve reasonable good fits with
both ground states, although the ideal fit should give χ2

red ≈ 1.
The increased χ2

red values can be attributed to systematic errors,
such as the nonideal background subtraction and the nonexact
definition of the energy resolution function. The fits reveal
that the effective exchange interaction Jtri between the chain
is antiferromagnetic and the fit value is not sensitive to the
ground-state magnetic structure.

V. DISCUSSION

The observed magnetic excitations of Sr3NiIrO6 survive up
to 200 K which is a sign of low dimensionality. Our linear
spin wave model indeed revealed strong coupling along the
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chains with strongly anisotropic exchange matrix. Moreover
the magnetic peak as a function of energy is much broader than
the instrumental resolution, which is the sign of dispersive
spin wave modes along and between the chains. The fitting
of the coupled chain model parameters to the experimental
data revealed essential information regarding the magnetism of
Sr3NiIrO6. Considering the leading terms in the Hamiltonian,
our fit results provide a reliable answer. The largest term
in the Hamiltonian is the first-neighbor antiferromagnetic
exchange interaction between nickel and iridium ions along the
c axis in agreement with other experiments [15,19] and theory
[18,35]. Moreover we found that the exchange interaction is
strongly anisotropic which was not shown before and which is
compatible with the strong spin-orbit coupling of the iridium.
The exchange values with a conservative error estimation are
Jxy = 21.6(10) meV and Jz = 46.6(13) meV. We also found
that the nickel ion shows easy plane anisotropy in the ab

plane, with a value of A = 5.0(10) meV, while anisotropy
on the iridium site is much smaller. Assuming single-ion
anisotropy on the iridium site alone cannot describe the data.
These values show that the strong uniaxial magnetism of
Sr3NiIrO6 originates from the anisotropic exchange interaction
between iridium and nickel. The unusually strong anisotropy
of the nickel ion is the result of the strongly distorted local
environment within the strained trigonal prism of oxygens.
A similar value with opposite sign [D + Jz = −7.20(2)meV]
was found in Ca2Co2O6 by inelastic neutron scattering and ab
initio calculations [8,28]. Additional terms in the single-chain
Hamiltonian do not play an important role, regarding the spin
wave excitations. Dzyaloshinskii-Moriya and further neighbor
interactions along the chain can be also neglected with a
good approximation. The strongly anisotropic ferrimagnetic
single-chain model allows us to rewrite it into an equiv-
alent Ising model, where each chain would be equivalent
to a large Ising spin with M ≈ 1μB moment per formula
unit.

We could achieve reasonable fits of the inelastic data
of Sr3NiIrO6 after including the interchain couplings (see
Fig. 4). However due to the powder averaging many details
of the dispersion are lost; thus to unambiguously identify
all interchain bonds, inelastic neutron scattering on a single-
crystal sample is necessary. The determined coupling constant
between spins in the effective model is antiferromagnetic
Jtri = 1.46(1) meV although the individual couplings are
ferromagnetic. Using this value we can determine the critical
field of the spin-flip transition between the hexagonal and the
ferromagnetic order. Using mean field theory, the critical field
of the field-induced transition between the hexagonal and the
ferromagnetic structure is

BC = 6Jtri

MNi − MIr
. (5)

Assuming g = 2 for both magnetic ions, the spin-flip field
would be 155 T. This value is in the same order of magnitude
as the BC = 55 T value found by high-field magnetization
measurements [36]. The difference can be also caused by the
unknown J3c exchange between iridium ions. The experimen-
tally found 0.6μB flipped magnetic moment also agrees with

the magnetization difference between the ferromagnetic and
the hexagonal structure.

VI. CONCLUSION

In conclusion, we have investigated Sr3NiIrO6 using inelas-
tic neutron scattering, along with a spin wave analysis. Our INS
study reveals spin wave excitations with a giant energy gap
of 30 meV at 5 K. More strikingly, these gapped excitations
survive up to a high temperature of 200 K, well above TN , thus
confirming the quasi-1D nature of the magnetic interaction.
Our spin wave analysis has given a reasonably good description
of the experimental data. Furthermore our fitted values of
the anisotropic exchange parameters are in agreement with
those calculated theoretically using DFT+U+SOC [37]. The
presence of the giant spin gap, as compared to the very
small spin gap in Sr3ZnIrO6 having only 5d magnetic ion
(below 1.5 meV with zone boundary energy of 5 meV) reveals
that mixed 3d − 5d (or 3d − 4d) compounds can generate
distinct exchange pathways and can show novel magnetic
behavior. Therefore, the present study can foster research on
the magnetic excitations in spin-chain systems to consider such
hitherto unrealized factors, and would generate theoretical
interest of the development of a more realistic model to
understand the complex magnetic behavior of these systems.
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APPENDIX A: ENERGY RESOLUTION FUNCTION

The energy resolution of a direct time of flight instrument
on a neutron spallation source is an asymmetric function with
typically a long tail at the low-energy side [38]. To model
the resolution function, we fitted the inelastic cross section
integrated between 2 Å−1 and 4 Å−1 as a function of E; see
Fig. 7. The peak of the resolution function is not positioned at
zero energy transfer due to the asymmetry, but the intensity-
weighted average should be at zero. We chose a model to
fit the peak that is more accurate than a single Gaussian, but
simple enough to enable fast convolution of the simulated data.
We chose a linear combination of Lorentzian and Gaussian
functions with different width on both sides of the peak. The
best fit revealed that the high-energy side of the peak is purely
Gaussian. The fit parameters are shown in Table III. To account
for the resolution change as a function of energy transfer we
scaled the width of all components using the function

w(E) = w(0) [1 + (d1 + d3)/d2(1 − E/Ei)
3/2], (A1)
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FIG. 7. Elastic signal of the sample integrated between 2 Å−1

and 4 Å−1 momentum transfer. The red line denotes the resolution
function model using a linear combination of different Lorentzian
and Gaussian functions on each side.

which accounts for the neutron pulse width generated by the
chopper system. Here d1 is the moderator to chopper distance,
d2 is sample to detectors distance, and d3 is chopper to sample
distance. To keep the integrated intensity of the resolution
function constant as a function of E, we divide the amplitude
with w(E).

APPENDIX B: DATA TREATMENT
AND FITTING METHOD

In order to fit the parameters of a model spin Hamiltonian to
inelastic neutron scattering data collected on a polycrystalline
sample we used the following method. In the first step we
removed the phonon scattering from the raw data. This can
be done using a few different methods. To remove coherent
phonons, we collected the spectrum at high temperature where
the magnetic signal is weak and used it as a background for
the low-temperature data. Before the subtraction we applied
an energy-dependent scaling to correct for the temperature-
dependent cross section due to the Bose statistics of phonons
and magnons:

C(E) = 1 − exp[−E/(kBT1)]

1 − exp[−E/(kBT2)]
, (B1)

where T1 is the temperature of the phonon data (300 K in
our case), while T2 is the temperature of the magnetic data
(5 K). After this correction, a weak Q-dependent background
remained that increased linearly with Q2 and it seemed to
originate from incoherent phonon scattering. This survived the
previous subtraction probably due to the change in the Debye-
Waller factor at high temperature that we did not account for.
To subtract the incoherent phonons, we averaged the scattering

TABLE III. Fit parameters of the energy resolution function of
MERLIN at Ei = 80 meV. w denotes the standard deviation of the
Gaussian and the γ parameter of the Lorentzian functions; the peak
amplitude is normalized to 1.

AG
1 AG

2 AL
1 AL

2 wG
1 wG

2 wL
1 wL

2

0.58(2) 1 0.42(3) 0 3.22(4) 1.93(3) 1.97(10)

intensity above Q > 8 Å−1:

I IC
j = 1

N (Qi > Qmin,ωj )

∑
Qi>Qmin

S(Qi,ωj )/Q2
i , (B2)

where S(Qi,ωj ) is the measured inelastic scattering intensity
on a (i,j ) pixel centered at (Qi,ωj ) and N (Qi > Qmin,ωj )
is the number of pixels above Qmin with a fixed ωj value.
Afterwards we subtracted the I IC

j Q2
i value from each (i,j )

pixel. After these corrections the inelastic signal was clean
from phonon scattering up to 4 Å−1; see Fig. 4.

Fitting the complete measured data set is challenging, due
to the computationally intensive powder averaging. To speed
up the fitting process, we fitted only a single cut integrated

between 2 and 3 Å
−1

. The spin wave spectrum was simulated at
5 different Q points evenly distributed in the same range. Due
to the weakly dispersive nature of the spectrum as a function
of Q, the result of the fit is insensitive to the number of Q

points averaged. The most common method to calculate the
powder average is to use a Monte Carlo technique to average
the spectrum over a |Q| = constant sphere in reciprocal space.
However this method is not ideal for a fitting purpose since the
simulated data would contain noise. We used a deterministic
method to generate evenly distributed points on a unit sphere
according to Ref. [32]. The number of points to average over
has to be a Fibonacci number; we chose 987 which gave a
reliable average (it gave less than a 1% error in estimating χ2

red
compared to simulations including more points on the unit
sphere).

We used the least squares method to define the goodness of
the fit:

χ2 =
∑

i

1

σ 2
i

(
yi − yLSWT

i

)2
, (B3)

where yi are the measured intensities along the cut and ySIM
i

are the simulated intensities. Since we do not have reliable data
on the upper iridium band, we used the available RIXS data
[29] to fix the position of the upper iridium band to 95 meV.
To constrain the energy of the upper band we summed up all
simulated intensity above 65 meV and calculated the center
of mass. We added the squared deviation of the upper band to
the calculated χ2 with a large weight which effectively gave a
constraint.

To minimize the χ2 value we used a particle swarm opti-
mization method [39,40]. Unfortunately due to the noisy nature
of both the data and the simulation (due to powder averaging)
there is no reliable method to extract the standard deviations
of the fitted parameters. To compare different simulations
with different number of fit parameters we calculated the
reduced χ2:

χ2
red = χ2

Ndat − Npar − 1
, (B4)

where Ndat is the number of data points along the cut and Npar

is the number of fitting parameters. For a data set with reliable
error bars a good model fit should give χ2

red = 1.

174422-7



TOTH, WU, ADROJA, RAYAPROL, AND SAMPATHKUMARAN PHYSICAL REVIEW B 93, 174422 (2016)

[1] L. Balents, Nature (London) 464, 199 (2010).
[2] A. Nihat Berker, G. S. Grest, C. M. Soukoulis, D. Blankschtein,

and M. Ma, J. Appl. Phys. 55, 2416 (1984).
[3] Y. Jiang and T. Emig, Phys. Rev. B 73, 104452 (2006).
[4] W. B. Yelon, D. E. Cox, and M. Eibschütz, Phys. Rev. B 12,
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