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In this paper we resolve a contradiction between the fact that the method based on the Majorana representation
of spin- 1

2 is exact and its failure to reproduce the perturbative Bloch-Redfield relaxation rates. Namely, for the
spin-boson model, direct application of this method in the leading order allows for a straightforward computation
of the transverse spin correlations; however, for the longitudinal spin correlations it apparently fails in the
long-time limit. Here we indicate the reason for this failure. Moreover, we suggest how to apply this method to
allow, nevertheless, for simple and accurate computations of spin correlations. Specifically, we demonstrate that
accurate results are obtained by avoiding the use of the longitudinal Majorana fermion and that correlations of
the remaining transverse Majorana fermions can be easily evaluated using an effective Gaussian action.
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I. INTRODUCTION

Application of field-theoretical methods to spin systems is
hampered by the non-Abelian nature of the spin operators
[1]. To circumvent this problem, one can represent spin
operators in terms of fermions or bosons and use standard
field theory [2]. Several formulations have been suggested,
including the Jordan-Wigner [3] and Holstein-Primakoff [4]
transformations, the Martin [5] Majorana and Abrikosov [6]
fermion representations, and the Schwinger boson [7–10] and
slave-fermion [11–16] techniques.

Among other representations of spin operators the Ma-
jorana fermion approach has a special property. In most
other approaches the necessary extension of the Hilbert space
requires taking into account additional constraints on the bo-
son/fermion operators, which place the system in the physical
subspace. As was realized early on [17] and reemphasized re-
cently [18], for the Majorana representation this complicating
step is not needed. Moreover, it was further observed [19,20]
that a wide class of spin-correlation functions can be reduced
to Majorana correlations of the same order, so that the spin-
correlation functions can be computed very efficiently. This,
in particular, includes single-spin problems, like the Kondo
problem and the spin-boson problem. In this case one avoids
potentially complex vertex corrections to the external vertices,
and spin-spin correlation functions are essentially given by
single-particle fermionic lines rather than by loop diagrams.

Despite these advantages, the Majorana spin- 1
2 represen-

tation is not used very often. One possible reason is that its
application requires careful calculations. In particular, for the
spin-boson model, application of this method allows for a
straightforward computation of the correlation functions of
the transverse spin components [20], using the lowest-order
self-energy. However, for longitudinal spin correlations, it fails
in the long-time limit. Here we indicate the reason for this
behavior. Moreover, we suggest an approach that allows one
to use the Majorana fermion representation as a convenient and
accurate tool for generic spin correlations. More specifically,
we demonstrate that accurate results are obtained in low orders

by avoiding the use of the longitudinal Majorana fermion
operator. Furthermore, we demonstrate that correlations of
the remaining transverse Majorana fermions can be easily
evaluated using an effective Gaussian action.

Here we show how this problem arises and how it can
be solved. First, we do so using the standard diagrammatic
methods. Then we reformulate the problem, using the path-
integral formalism. This path-integral analysis also allows
us to formulate a generalized Wick theorem and to provide
a prescription for efficient computation of spin-correlation
functions. Finally, we demonstrate that the method indeed
produces the expected longitudinal spin correlations.

II. SPIN-BOSON MODEL

The spin-boson model [21] describes a spin- 1
2 in a finite

magnetic field. One of the transverse components of the spin
is coupled to the bosonic bath. The Hamiltonian reads

H = BŜz + X̂Ŝx + HB, (1)

where HB is the Hamiltonian of the bosonic bath, which
governs the free dynamics of X̂. The bath is characterized
by the correlation function �(τ − τ ′) ≡ 〈T X(τ )X(τ ′)〉. In the
Matsubara representation the correlation function �(τ − τ ′)
can be written as

�(iωm) =
∫ �

−�

dx

π

ρ(|x|)sgnx

x − iωm

, (2)

where ρ(|x|) is the bath spectral density and ωm = 2πmT . In
the Ohmic case considered here ρ(|x|) = g|x|. For ωm � �

this gives �(iωm) ≈ (2g/π )� − g|ωm|.
In the weak-coupling limit, g � 1, the spin-boson model

can be solved very efficiently by the master equation (Bloch-
Redfield) technique [22,23]. In this limit the dynamics is char-
acterized by two rates, �1 and �2 = �1/2. The dephasing rate
�2 describes the relaxation of the transverse spin components
Ŝx and Ŝy to their equilibrium values, 〈Sx〉 = 〈Sy〉 = 0. The
rate �1 describes the relaxation of the longitudinal component
Ŝz to its equilibrium value 〈Sz〉 = (1/2) tanh[βB/2]. One
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readily obtains

�1 = 2�2 = gB

2
coth[βB/2] . (3)

From this one immediately concludes that the symmetrized,
real-time correlation functions of the transverse spin compo-
nents, 2〈{Sx(t1),Sx(t2)}+〉 and 2〈{Sy(t1),Sy(t2)}+〉, are given
in the frequency domain by Lorentzians of unit weight and
width �2. In contrast, the longitudinal correlation function
2〈{Sz(t1),Sz(t2)}+〉 consists of the Fourier representation of
a δ function (zero-width Lorentzian) of weight 4〈Sz〉2 and a
Lorentzian of width �1 and weight 1 − 4〈Sz〉2. In Ref. [20]
an attempt was made to employ the Majorana representation
described in Appendix A and, specifically, the reduction (A4)
to reproduce these well-established facts. For the transverse
correlation functions these results were indeed reproduced,
and the calculation was significantly simpler than any of
those attempting to calculate the fermionic loop. Yet for the
longitudinal correlations a result was obtained which failed
in the long-time limit. Namely, instead of two Lorentzians
(one with zero width and the other with width �1), a single
Lorentzian with the width �̃1 = �1(1 − tanh2[βB/2]) and
unit weight was found. This solution reproduces correctly
the short-time (|t1 − t2| � 1/�1) decay of the longitudinal
correlation function but fails in the long-time limit. Indeed,
the wrong solution decays to zero, whereas the correct one
should decay to 4〈Sz〉2.

The reason for the failure is intuitively clear. In Eq. (A3)
the spin operator Ŝz is essentially represented by the Majorana
operator η̂z. The latter, however, is zero on average. How-
ever, since the Majorana representation is definitely valid, a
resolution of the problem is needed.

III. DIAGRAMMATIC ANALYSIS

In this section we show that from a technical viewpoint the
discussed failure of the diagrammatic calculation at long times
arises from the insufficiency of the lowest-order approximation
for the self-energy. In Sec. V we propose a method to
circumvent this problem.

In the Majorana representation (A1) the Hamiltonian of the
system reads

H = BŜz + Ŝx X̂ + HB = −iB η̂xη̂y − iη̂y η̂z X̂ + HB. (4)

We employ the standard diagrammatic rules for calculations
perturbative in the spin-bath interaction. The zeroth-order
Green’s function of the Majorana fermions is obtained from

[G0]−1 =
⎛
⎝−δ(τ−τ ′)∂τ ′ iBδ(τ−τ ′) 0

−iBδ(τ−τ ′) −δ(τ−τ ′)∂τ ′ 0
0 0 −δ(τ − τ ′)∂τ ′

⎞
⎠ .

(5)

The Green’s function is given by the Dyson equation [G]−1 =
[G0]−1 − ̂, where the matrix of the self-energies ̂ has only
two diagonal components, yy ≡ y and zz ≡ z.

FIG. 1. The first-order diagram for the self-energy. It also corre-
sponds to the saddle-point self-energy in the path-integral approach.
Solid line: fermionic Green’s function; wavy line: bosonic (bath)
correlator.

A. First order

We start by calculating the self-energies in the first order in
g. Diagrammatically, this corresponds to Fig. 1.

We obtain

(1)
y (τ − τ ′) = �(τ − τ ′)G0

zz(τ − τ ′), (6)

(1)
z (τ − τ ′) = �(τ − τ ′)G0

yy(τ − τ ′) . (7)

We use

G0
zz(εn) = 1

iεn

, G0
yy(εn) = 1

2

[
1

iεn − B
+ 1

iεn + B

]
. (8)

This gives

(1)
y (iεn) = −1

2

∫ �

−�

dx

π

gx coth[βx/2]

x − iεn

(9)

and

(1)
z (iεn)

= −1

4

∑
γ=±1

∫ �

−�

dx

π

gx[coth(βx/2)− tanh(βγB/2)]

x − iεn − γB
. (10)

Upon analytic continuation we obtain the retarded self-
energies. For the transverse component we find

Im(1)
y (iεn → ±B + i0) = −�1, (11)

where �1 is the standard longitudinal relaxation rate given
by Eq. (3). Note that upon substitution in the Dyson
equation [G]−1 = [G0]−1 − ̂ this gives the following de-
nominator for the transverse Green’s function: G⊥(ε) ∼
[ε(ε + i�1) − B2]

−1
. Thus the poles have the imaginary part

≈ −�1/2 = −�2, corresponding to the standard dephasing
rate.

For the longitudinal component we obtain

Im(1)
z (iεn → 0 + i0) = −�̃1, (12)

where

�̃1 = �1(1 − tanh2[βB/2]). (13)

Thus we reproduce the problem noticed in Ref. [20]. Instead
of the anticipated solution of the type

GR
zz,anticipated(ε) = A

ε + i0
+ 1 − A

ε + i�1
, (14)

where A ≡ (2〈Sz〉)2 = tanh2[βB/2], we obtain

GR
zz,obtained(ε) = 1

ε + i(1 − A)�1
. (15)
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FIG. 2. Second-order diagrams for self-energy. The colors indicate the two flavors of Majorana fermions (y and z).

One can easily observe that these solutions coincide in the limit
ε � �1. Thus our lowest-order evaluation of the self-energy
catches correctly the short-time limit, whereas the long-time
limit (t � 1/�1) needs further analysis.

B. Second order

We first compare the self-energies corresponding to (14)
and (15). For the anticipated solution we obtain

anticipated
z (ε) = −i

(1 − A)�1

1 + iA�1
ε

= −i(1 − A)�1 − A(1 − A)�2
1

ε + iA�1
, (16)

whereas in the lowest order we find (1)
z (ε) = −i(1 − A)�1.

We again observe the correspondence of the two for |ε| � �1.
We expand (16) in powers of g and obtain

anticipated
z (ε) = −i(1 − A)�1 − A(1 − A)�2

1

ε
+ · · · . (17)

Note that for ε < A�1 this series diverges, and the expansion
parameter in Eq. (17) is A�1/ε.

Equation (17) suggests that the higher order in g terms in
the expansion of the self-energy is singular. Thus we attempt
to obtain (17) perturbatively in g. Below we calculate the
next second-order term of this expansion from the relevant
second-order diagrams, which are shown in Fig. 2. For the
first diagram (Fig. 2, left) we obtain

(2,1)
z (ε) = 1

β2

∑
ω1,ω2

Gyy(ε − ω1)Gzz(ε − ω1 − ω2)

×Gyy(ε − ω2)�(ω1)�(ω2). (18)

The second diagram (Fig. 2, middle) is given by

(2,2)
z (ε) = 1

β2

∑
ω1,ω2

Gyy(ε − ω1)Gzz(ω1 + ω2 − ε)

×Gyy(ε − ω2)�(ω1)�(ω1) . (19)

Both diagrams strongly diverge (∝ �2), but their sum diverges
at most logarithmically. Indeed, it can be written as

(2,12)
z (ε) = (2,1)

z (ε) + (2,2)
z (ε)

= − 1

2β2

∑
ω1,ω2

Gyy(ε − ω1)Gzz(ε − ω1 − ω2)

×Gyy(ε − ω2)[�(ω1) − �(ω2)]2. (20)

Evaluating this expression (with the help of Mathematica), we
reproduced the second term in (17). All other diagrams, i.e.,
the third diagram (Fig. 2, right) for z and all diagrams for
y , do not lead to 1/ε divergences.

Thus we reproduce the anticipated expression for the
longitudinal self-energy (16) up to second order in g. This
shows that the discrepancy noticed in Ref. [20] is removed by
accounting for higher-order contributions to the self-energy
of the longitudinal Majorana fermions. Thus we confirm the
importance of higher-order corrections anticipated in Ref. [20]
and also discussed in Ref. [24].

For a better understanding of this result, in the next section
we develop a path-integral description (see also Refs. [25,26]).

IV. PATH-INTEGRAL FORMULATION

We use the Matsubara imaginary-time technique (t = −iτ ,
∂τ = −i∂t ). The partition function, Z = ∫

D[· · · ] exp [iS],
reads

Z =
∫

D[X]D[ηα] exp

{
iSB +

∫ 1/T

0
dτ

[
− 1

2
ηα(τ )∂τηα(τ ) + iBηxηy + iηyηzX

]}
. (21)

Here SB is the free bosonic action. The first step is to average over the fluctuations of X, yielding

Z =
∫

D[ηα] exp

{∫
dτ

[
− 1

2
ηα(τ )∂τηα(τ ) + iBηx(τ )ηy(τ )

]
− 1

2

∫
dτdτ ′�(τ − τ ′)ηy(τ )ηz(τ )ηy(τ ′)ηz(τ

′)
}
. (22)

Next, we decouple the quartic Majorana-Majorana interaction in a different channel. To this end we rearrange

iSint[ηα] = −1

2

∫
dτdτ ′�(τ − τ ′)ηy(τ )ηz(τ )ηy(τ ′)ηz(τ

′)

= 1

2

∫
dτdτ ′�(τ − τ ′)[ηy(τ )ηy(τ ′)][ηz(τ )ηz(τ

′)]. (23)
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We now employ the Hubbard-Stratonovich transformation by introducing the fields y and z. These fields inherit the symmetry
of the Majorana propagators; therefore α(τ,τ ′) = −α(τ ′,τ ). The new effective action reads

iS[ηα,α] = 1

2

∫
dτdτ ′ηα(τ )(G−1)α,βηβ(τ ′) − 1

2

∫
dτdτ ′ y(τ,τ ′)z(τ,τ ′)

�(τ − τ ′)
. (24)

The Majorana Green’s function in (24) is

G−1 =
⎛
⎝−δ(τ − τ ′)∂τ ′ iBδ(τ − τ ′) 0

−iBδ(τ − τ ′) −δ(τ − τ ′)∂τ ′ − y(τ,τ ′) 0
0 0 −δ(τ − τ ′)∂τ ′ − z(τ,τ ′)

⎞
⎠ . (25)

The function �(τ − τ ′) is positive and nonzero. The
standard form reads

�(τ − τ ′) = gπT 2

sin2[πT (τ − τ ′)]
. (26)

The short-time divergence is to be cut off at |τ − τ ′| < 1/�,
leading to the maximal value of order g�2.

The redecoupled action (24) is again quadratic in the
Majorana Grassmann variables ηα , which allows us to integrate
them out and to obtain an effective action of the  fields:

iS[α] = 1

2
Tr log

(
G−1

) − 1

2

∫
dτdτ ′ y(τ,τ ′)z(τ,τ ′)

�(τ − τ ′)
.

(27)

A. Saddle point

We can now identify the saddle point and fluctuations of
the effective  action. A saddle-point solution 

sp
α is found

by expanding α = 
sp
α + δα (α = y,z) around the saddle

point and taking the linear order in δα . We obtain

sp
y (τ − τ ′) = �(τ − τ ′)Gsp

zz (τ − τ ′), (28)

sp
z (τ − τ ′) = �(τ − τ ′)Gsp

yy(τ − τ ′). (29)

These equations look similar to Eqs. (6) and (7) obtained in
the first order of the diagrammatic expansion (see Fig. 1).
However, here in contrast to the first-order calculation, the
fermionic lines should be broadened self-consistently. This
means that the Green’s functions should be calculated using
the Dyson equation [Gsp]−1 = [G0]−1 − ̂sp.

Straightforward analysis shows that the self-consistency
does not change the result considerably, and we again obtain
the results given by Eqs. (9) and (10). However, we still have
to investigate fluctuations around the saddle-point solution.

B. Role of the fluctuations

Reanalyzing the diagrams shown in Fig. 2, we understand
that the third diagram is actually taken into account in
the saddle-point calculation presented above. The first two
diagrams of Fig. 2 correspond to fluctuations of the self-
energy. This becomes evident if we redraw these diagrams
as shown in Fig. 3. Thus these are the fluctuations around
the saddle point which are responsible for the divergence of
the longitudinal self-energy z. The first-order diagrammatic
expansion corresponds to the saddle-point approximation and
is insufficient for the longitudinal spin component.

V. GENERALIZED WICK THEOREM

The results obtained above allow us to formulate a pre-
scription for efficient calculation of spin-correlation functions
of arbitrary order. This prescription essentially reduces to the
suggestion to avoid ηz in all calculations. More specifically, in
order to avoid divergences and the need to account for high-
order contributions, one could use the following approach: for
calculation of a spin-correlation function replace Sx with ηx ,
Sy with ηy , and Sz with ηxηy .

Indeed, consider the effective action with sources for the
Majorana fermions:

S = 1

2
ηT ([Gsp]−1 − δ)η − 1

2

δzδy

�
+ I η. (30)

Here Gsp is the Green’s function at the saddle point, which
can be obtained from (25) by replacing  by sp. In
this expression and below in this section we use sloppy
notations implying proper time integrations. Integrating over
the Majorana fermions, we find

S = 1

2
Tr log([Gsp]−1 − δ) − 1

2

δzδy

�

+ 1

2
I T ([Gsp]−1 − δ)−1 I .

Since we are going to use only ηx and ηy , only the sources
Ix and Iy will be relevant. In turn, this means that only
the x,y components of ([Gsp]−1 − δ) will appear in the
preexponential and will be averaged. These include only δy

and not δz.
Expansion of the Tr log term to the second order gives

δS = 1

2
(δy δz)

(
G

sp
y G

sp
y �−1

�−1 G
sp
z G

sp
z

)(
δy

δz

)
.

In Ref. [18] we have shown that the kernel G
sp
z G

sp
z is small in

the case B = 0. This observation applies here as well since B

does not enter G
sp
z . This means that the 〈δyδy〉 correlator

is small. Since only δy is present in the preexponential, we
do not have to take into account the fluctuations. This proves
the Wick theorem for the saddle-point Green’s functions.

FIG. 3. Second-order diagrams for the self-energy that corre-
spond to fluctuations of the self-energy. The colors indicate the
two flavors of Majorana fermions (y and z). These are the first two
diagrams of Fig. 2.
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As an example, we employ the prescription to avoid ηz and
the generalized Wick theorem introduced above to compute the
longitudinal correlation function 2〈{Sz(t1),Sz(t2)}+〉. Details of
the calculation are given in Appendix C. The result reads

2〈{Sz(t1),Sz(t2)}+〉 = 4〈Sz〉22πδ(ω) + (
1 − 4〈Sz〉2

) 2�1

ω2 + �2
1

.

(31)

This is indeed the expected Bloch-Redfield result (see the
discussion in Sec. II), which is consistent with Eq. (14).

VI. CONCLUSIONS

We conclude that the problem noticed first in Ref. [20]
is apparently solved by taking into account fluctuations of
the self-energy. In other words, calculations beyond the
saddle-point approximation of Fig. 1 are needed. For the
transverse components the saddle-point approximation is
sufficient. Furthermore, efficient calculation is achieved if one
uses only transverse Majorana operators.
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APPENDIX A: MAJORANA REPRESENTATION
FOR SPIN- 1

2 OPERATORS

The following Majorana representation of the spin- 1
2

operators was introduced by Martin [5] in 1959:

Ŝα = − i

2
εαβγ η̂β η̂γ , Ŝx = −iη̂y η̂z,

(A1)
Ŝy = −iη̂zη̂x, Ŝz = −iη̂x η̂y .

The Majorana operators are Hermitian, η̂†
α = η̂α , and obey the

Clifford algebra {η̂α,η̂β} = δαβ , η̂2
α = 1/2. It is easy to check

that the representation (A1) perfectly reproduces the SU(2)
algebra of the spin- 1

2 operators Ŝα:

[Ŝα,Ŝβ ] = iεαβγ Ŝγ , Ŝ
2 = 3/4 . (A2)

The representation (A1) can be realized in various Hilbert
spaces. The minimal Hilbert space is four-dimensional and
corresponds to two complex (Dirac) fermions, which we
call ĉ and d̂ . In this case one formally breaks the isotropy
between the axes by choosing, e.g., η̂x = (ĉ + ĉ†)/

√
2, η̂y =

(ĉ − ĉ†)/
√

2i, and η̂z = (d̂ + d̂†)/
√

2. Such a choice is called
a “drone”-fermion representation and was used, e.g., in
Ref. [17]. Another more symmetric option is to introduce
an eight-dimensional Hilbert space corresponding to three
complex fermions ĉα , where α = x,y,z. In this case η̂α =
(ĉα + ĉ†α)/

√
2. As discussed in Ref. [18], the choice of the

Hilbert space is irrelevant.
To obtain spin-spin correlation functions using (A1) one

would have to calculate four-fermion correlators or, more
specifically, fermionic loops. In 2003 an observation was made
[19,20] which allowed one to calculate just the (single-particle)

Green’s functions of the Majorana fermions. Indeed, let us
rewrite Eqs. (A1):

Ŝα = �̂η̂α, �̂ = −2iη̂x η̂y η̂z, �̂2 = 1/2. (A3)

Apparently, the operator �̂ commutes with all three Majorana
operators ηα . Hence it also commutes with the spin operators
and thus with any physical Hamiltonian; thus the correspond-
ing Heisenberg operator is time independent. The average
product of a pair of spin operators can now be represented
as

〈Ŝα(t1)Ŝβ(t2)〉 = 〈�̂η̂α(t1)�̂η̂β(t2)〉 = 1
2 〈η̂α(t1)η̂β(t2)〉. (A4)

Thus the average of two spin operators is expressed in terms
of the average of only two Majorana fermions instead of
four. Implications of this relation for time-ordered correlation
functions in the Matsubara or Keldysh formalism are discussed
in detail in Ref. [18].

APPENDIX B: FLUCTUATIONS IN THE KELDYSH
TECHNIQUE

For the Majorana Green’s function, the corresponding self-
energy, and the bath correlator we use the following Keldysh
structure:

Ĝα(ε) =
(

GK
α (ε) GR

α (ε)
GA

α (ε) 0

)
, ̂α(ε) =

(
0 A

α (ε)
R

α (ε) K
α (ε)

)
,

�̂(ω) =
(

�K (ω) �R(ω)
�A(ω) 0

)
. (B1)

The free Majorana Green’s functions are

G0,R
yy (ε) =1

2

[
1

ε − B + i0
+ 1

ε + B + i0

]
,

G0,R
zz (ε) = 1

ε+i0
, GK

αα(ε) = tanh

(
βε

2

)[
GR

αα(ε)−GA
αα(ε)

]
,

(B2)

and the spectral representation of the bath correlator
�̂ab(t,t ′) = 〈TKX̌a(t)X̌b(t ′)〉 in the Keldysh technique is given
by

�R/A(ω) =
∫ �

−�

dx

iπ

gx

ω + x ± i0
,

(B3)

�K (ω) = coth

(
ω

2T

)
[�R(ω) − �A(ω)].

In order to write the action in a Keldysh form, we introduce
the vectors X̌T = (Xcl,Xq) and η̌T

α = (ηcl
α ,η

q
α) [we use the

convention Xcl = (Xu + Xd )/
√

2 and Xq = (Xu − Xd )/
√

2]
and the matrices γ cl = 1, γ q = τ1 ≡ τx in the Keldysh space:

iSint = −
∫

C

dtX(t)ηy(t)ηz(t)

= − 1√
2

∫ ∞

−∞
dt

{
Xcl(t)

[
η̌T

y (t)γ qη̌z(t)
] + Xq(t)

× [
η̌T

y (t)γ clη̌z(t)
]}

(B4)

= − 1√
2

∑
a=q,cl

∫ ∞

−∞
dt[τ1X̌(t)]a

[
η̌T

y (t)γ aη̌z(t)
]
. (B5)
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The contribution of the first diagram in Fig. 3 to the retarded
self-energy R = q,cl reads

1

4

∑
a,b,c,d=q,cl

∫ ∞

−∞

dω1dω2

(2π )2
[γ aĜy(ω2)γ bĜz(ω1 + ω2)γ c

× Ĝy(ω1 + ε)γ d ]q,cl[τ1�̂(ω2 − ε)τ1]ca[τ1�̂(ω1)τ1]db,

(B6)

while the second diagram contributes

−1

4

∑
a,b,c,d=q,cl

∫ ∞

−∞

dω1dω2

(2π )2
Tr{Ĝy(ω2)γ bĜz(ω1 + ω2)γ c}

×[γ aĜy(ω1 + ε)γ d ]q,cl[τ1�̂(ω1)τ1]ca[τ1�̂(ω1)τ1]db.

(B7)

Both diagrams were evaluated using the spectral represen-
tation (B3). We found (with the help of Mathematica) that the
result agrees with that obtained in the Matsubara technique
and therefore confirms that the two diagrams in Fig. 3 are
responsible for the divergent term in the expansion (17).

APPENDIX C: LONGITUDINAL SPIN CORRELATIONS

In this Appendix we demonstrate how the generalized Wick
theorem can be utilized in practice. To this end, we compute
the longitudinal spin-spin correlation function C(2)

zz (t,t ′) =
2〈TKScl

z (t)Scl
z (t ′)〉 employing the Keldysh technique. We avoid

the longitudinal Majorana fermion ηz and use instead the
relation Sz = −iηxηy . The correlator is thus given by

C(2)
zz (t,t ′) = −〈TK [η̌x(t)γ clη̌y(t)][η̌x(t ′)γ cl η̌y(t ′)]〉. (C1)

The generalized Wick theorem for saddle-point Green’s func-
tions means that vertex corrections to the z-spin vertices are
absent. Thus computing (C1), we obtain three contributions,
which correspond to the diagrams in Fig. 4:

C(2)
zz (ω) = 2πδ(ω)

(∫
d�

2π
Gsp,K

xy (�)

)2

−
∫

d�

2π
Tr

[
Ĝsp

xy(�)Ĝsp
xy(� − ω)

]

+
∫

d�

2π
Tr

[
Ĝsp

xx(�)Ĝsp
yy(� − ω)

]
. (C2)

(a) x

y

y

x

(b)

y

y

x

x
(c)

x

y

x

y

FIG. 4. Three contributions to the longitudinal spin-correlation
function. Double lines: Majorana saddle-point Green’s functions.

Here the traces are taken over the Keldysh indices. In order
to perform the calculation we need the saddle-point Green’s
functions of Majorana fields ηx and ηy . It is sufficient to
calculate the retarded components of these Green’s functions,
and we obtain

Gsp,R
xx (ε) = ε − 

sp,R
y (ε)

ε
[
ε − 

sp,R
y (ε)

] − B2
,

Gsp,R
yy (ε) = ε

ε
[
ε − 

sp,R
y (ε)

] − B2
,

(C3)

Gsp,R
xy (ε) = −iB

ε
[
ε − 

sp,R
y (ε)

] − B2
,

Gsp,R
yx (ε) = −Gsp,R

xy (ε).

Here the retarded self-energy 
sp,R
y (ε) is (approximately)

given by the analytic continuation of (9). It is sufficient to
replace 

sp,R
y (ε) by its value in the vicinity of the poles

ε ≈ ±B, i.e., 
sp,R
y (ε) → −i�1 [see (11)].

We can now calculate the longitudinal spin correlator
C(2)

zz (ω). We consider the limit of high magnetic field B � �1.
The first term in (C2), corresponding to Fig. 4(a), yields a
factor of A = tanh2 B

2T
= 4〈Sz〉2. The second and third terms

in (C2), i.e., Figs. 4(b) and 4(c), both give rise to a Lorentzian
of width �1. Thus we obtain

C(2)
zz (ω) = A2πδ(ω) + (1 − A)2�1

ω2 + �2
1

, (C4)

which indeed coincides with the Bloch-Redfield result dis-
cussed in Sec. II.
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