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Although it has been known for decades that magnetocrystalline anisotropy is linked to spin-orbit coupling
(SOC), the mechanism of how it arises for specific systems is still a subject of debate. We focused on finding
markers of SOC in the density of states (DOS) and on using them to understand the source of magnetocrystalline
anisotropy for the case of adatoms and monolayers. Fully relativistic ab initio Korringa-Kohn-Rostoker Green’s-
function calculations were performed for Fe, Co, and Ni adatoms and monolayers on Au(111) to investigate
changes in the orbital-resolved DOS due to a rotation of magnetization. In this way, one can see that a significant
contribution to magnetocrystalline anisotropy for adatoms comes from pushing the SOC-split states above or
below the Fermi level. As a result of this, the magnetocrystalline anisotropy energy depends crucially on the
position of the energy bands of the adatom with respect to the Fermi level of the substrate. This view is supported
by model crystal-field Hamiltonian calculations.
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I. INTRODUCTION

Magnetic anisotropy, i.e., the preference of a system for
being magnetized in a certain direction, is one of the key
properties underlying the practical use of magnetic materials.
One contribution to the magnetic anisotropy comes from
the classical interaction of magnetic dipoles. This mecha-
nism stands behind the so-called shape anisotropy and can
be described using classical physics—although a quantum-
mechanical description has been developed as well [1,2].
Another contribution, which becomes important in particular
for small systems such as atomic clusters or nanostructures,
comes from spin-orbit coupling (SOC). This magnetocrys-
talline anisotropy can only be described within a relativistic
quantum-mechanical formalism. We will deal exclusively with
this SOC-induced contribution in this work.

A quantitative measure of the magnetocrystalline
anisotropy is the magnetocrystalline anisotropy energy
(MAE), i.e., the difference between total energies of the system
for two orientations of the magnetization M. Evaluating the
MAE is often numerically very difficult because one has to
subtract two large numbers to get a small difference between
them. To get accurate results, one has to tune several technical
parameters such as an integration mesh setup in k space [3,4]
or the adequacy of the basis set. For supported nanostructures,
the treatment of the substrate is also very important [5,6]. A
lot of attention was devoted to these issues recently.

Nevertheless, there is also another line of research on the
magnetocrystalline anisotropy, namely the effort to understand
its mechanism intuitively and, in particular, to see which
electronic structure features participate in the phenomenon.
One possibility is to use perturbation theory and to de-
scribe spin-orbit interaction approximately within the two-
component formalism by the SOC term HSOC = ξ L · S, where
L and S are the orbital and spin angular momentum operators
and ξ is the SOC strength. For systems studied here, the
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lowest-order nonvanishing contribution to the total energy is
the second-order term,

�E(2) = −
∑
i∈occ

j∈unocc

|〈ψi |HSOC|ψj 〉|2

Ej − Ei

. (1)

Relying on second-order perturbation theory has led to
concepts such as scaling of the MAE with the square of the
SOC strength or the frequently used Bruno and van der Laan
formulas relating the MAE to the anisotropy of the orbital
magnetic moment [7–11]. On the other hand, as the sum in
Eq. (1) involves a large number of summands that may be
of comparable magnitude, it may be very difficult to identify
just a few terms as the dominant ones and in this way to
link MAE of a particular system to specific features in the
electronic structure. Getting a simple intuitive understanding
of the MAE by looking at the interaction between individual
states thus may be very hard to achieve—despite the effort and
interesting results obtained [12–14]. Approaches that focus on
integral quantities such as a corresponding susceptibility (still
within second-order perturbation theory) could have a more
general use [11].

However, other mechanisms for generating the magne-
tocrystalline anisotropy, not accounted for by second-order
perturbation theory, are also possible and were discussed in
the past. In particular, Eq. (1) cannot be used if degenerate
levels are coupled. For that situation, another mechanism
contributing to the MAE was suggested, namely a SOC-
induced splitting of states that would be degenerate otherwise
[3,11,15–17]. If some of these states are pushed above or below
the Fermi level EF , a large change of the total energy occurs.
For layered and bulk systems, this effect may not be dominant
because relevant states occupy only a restricted region in k
space [13,17,18]. However, the situation could be different for
adatoms and clusters, where there is no dispersion in k space.

The question then remains whether there exist in reality
systems where the origin of magnetocrystalline anisotropy can
be traced to a SOC-induced splitting of otherwise degenerate
states at EF and where this mechanism can be effectively
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visualized in terms of integral quantities such as the density
of states (DOS). Such a mechanism could give rise to a
large MAE. In fact, lately there have been intensive efforts to
understand how the MAE could be made as large as possible
[19–23]. A better intuitive insight into the magnetocrystalline
anisotropy beyond the perturbation theory might be useful in
this context. From a more general point of view, it is desirable
to have a framework that would enable us to visualize the
emergence of the magnetocrystalline anisotropy by means of
simple concepts.

We decided, therefore, to perform a detailed ab initio, i.e.,
material-specific study of magnetocrystalline anisotropy for
Fe, Co, and Ni adatoms and monolayers on Au(111). The
motivation for this choice is that only a little hybridization
between 3d states and Au states is expected [24]. For adatoms,
the 3d states could thus have an atomiclike character where
the effect of SOC-induced splitting of states should be larger
than for delocalized states. Comparison between adatoms
and monolayers could further elucidate the role of different
factors. We employ a fully relativistic framework (solving
the four-component Dirac equation) to treat the SOC as
accurately as possible. The application of the Green-function
formalism allows a proper treatment of adatoms, avoiding
possible artefacts that might arise from a supercell approach.

Our paper is organized as follows. First we introduce our
computational method and the investigated systems. Then we
present numerical values of MAE and magnetic moments. The
main emphasis is on showing how the SOC affects the DOS
resolved into components according to the magnetic quantum
numbers. We demonstrate that the effect of SOC is much larger
if the magnetization is perpendicular to the plane than if it
is in-plane. This effect is reproduced using a simple crystal-
field Hamiltonian. Some technical details related to projecting
the DOS onto magnetic quantum number components for a
magnetic system are described in the Appendixes.

II. METHODS

A. Computational scheme

The electronic structure is calculated within the ab initio
spin-density-functional framework, relying on the local-spin-
density approximation with the Vosko, Wilk, and Nusair
parametrization for the exchange and correlation potential
[25]. The electronic structure is described, including all
relativistic effects, by the Dirac equation, which is solved
using the spin-polarized relativistic multiple-scattering or
Korringa-Kohn-Rostoker (KKR) Green-function formalism
[26] as implemented in the SPRKKR code [27]. The potential
was treated within the atomic-sphere approximation (ASA).
For the multipole expansion of the Green function, the angular
momentum cutoff �max = 3 was used. The energy integrals
were evaluated by contour integration on a semicircular path
within the complex energy plane using a Gaussian mesh of 32
points. The integration over the k points was done on a regular
mesh, using 10 000 points in the full surface Brillouin zone.

This work deals with adatoms and monolayers on a
substrate. The Green-function formalism allows us to treat
the substrate as truly semi-infinite: the electronic structure is
relaxed within the topmost seven substrate layers, while at

the bottom of this relaxation zone the electronic structure is
matched to the bulk via the decimation technique. Monolayers
are dealt with in the same manner as the clean substrate,
just adding a layer of 3d atoms on top. The vacuum is
represented by four layers of empty spheres. Adatoms are
treated as embedded impurities: first one calculates the
electronic structure of a semi-infinite host and then solves
the Dyson equation for an embedded impurity cluster [28].
The impurity clusters we used contain 62 sites in total; this
includes one 3d adatom, 25 substrate atoms, and the rest are
empty spheres.

The MAE is calculated as a difference of total energies for
M‖x̂ and M‖ ẑ,

EMCA = E(x) − E(z). (2)

Accordingly, a positive MAE means that the easy axis of
magnetization is out-of-plane.

If the Dirac equation is used, the influence of SOC cannot
be isolated in a straightforward way. One can achieve it,
nevertheless, using an approximate two-component scheme
[29] where the SOC-related term is identified via relying on
a set of approximate radial Dirac equations. This scheme
was used in the past to investigate the influence of SOC on
various properties including the MAE [6]. In this work, we
use this scheme to suppress the SOC when investigating the
DOS in Sec. III B. If SOC is to be included, the DOS can
be calculated either using the full Dirac equation or using the
approximative scheme [29]; the corresponding curves in the
graphs agree within the thickness of the line, demonstrating
that both schemes are equivalent as concerns the DOS. On the
other hand, there are small yet identifiable differences between
both schemes concerning the MAE (about 10% in the case of
adatoms and about 20% in the case of monolayers). The results
presented in Sec. III A were obtained using the fully relativistic
scheme.

B. Investigated systems

We investigated Fe, Co, and Ni adatoms and monolayers
on the fcc Au(111) surface. The corresponding structures
are shown in Fig. 1. To get proper interatomic distances,
we performed geometry optimization using the VASP code
[30,31]. These calculations were done for slabs of three layers
of substrate atoms covered either by a complete layer of 3d

atoms (for monolayers) or by a 3 × 3 surface supercell of
3d atoms (for adatoms). The positions of the substrate atoms

FIG. 1. Structure diagrams for an adatom and a monolayer on an
Au(111) surface. The 3d atoms are represented by blue (dark) circles,
and various shades of orange (gray) represent Au atoms in different
layers.
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TABLE I. Vertical distances z3d-Au in Å between the layer
containing the 3d atoms and the nearest layer containing Au atoms.

z3d-Au z3d-Au

3d adatom monolayer

Fe 1.889 2.088
Co 1.856 2.035
Ni 1.820 2.016

in the two lowermost layers were fixed while the positions
of the topmost substrate atoms and 3d atoms were relaxed.
This led to a mild buckling of the topmost Au layer for the
adatoms (about 0.02 Å), which we ignored in subsequent
KKR–Green-function calculations. Using a three-layer-thick
slab instead of a semi-infinite substrate is justified if one is
interested in relaxing the positions of the 3d atoms above
the host. However, using it for evaluating the MAE would
be inappropriate—for that, either a much thicker slab (as in
Ref. [5]) or a proper semi-infinite crystal (as in this work)
should be employed.

The optimized structural parameters as we took them from
VASP calculations and used in the SPRKKR calculations are
summarized in Table I. As concerns the distances between Au
substrate layers, we used the bulk interatomic distance 2.396 Å
everywhere except for the distance for the topmost Au layer,
which we took to be 2.431 Å for adatoms and 2.427 Å for
monolayers (as obtained via the VASP calculations).

III. RESULTS

A. MAE and magnetic moments

The results obtained for the MAE and magnetic moments
are presented in Table II. One can see that the easy axis
of the magnetization is perpendicular to the surface for
Fe and Co adatoms and monolayers and parallel to the
surface for Ni adatom and monolayer. The magnetic moments
were evaluated within atomic spheres around the 3d atoms.
Magnetic moments for Au atoms are small. In the case
of adatoms, the total magnetic moment induced in the Au
substrate amounts to about 5 % of the 3d adatom moment and
is oriented parallel to the moment of the adatom. In the case
of monolayers, the total magnetic moment induced in the Au

TABLE II. Magnetic properties of 3d adatoms and monolayers on
Au(111). The first two columns identify the system, the third column
shows the MAE obtained as a difference of total energies (in meV per
3d atom), the fourth column shows spin magnetic moments for M‖ ẑ,
and the fifth and sixth columns show orbital magnetic moments for
M‖ ẑ and M‖x̂, respectively. Magnetic moments are in units of μB .

EMCA μ(z)
spin μ

(z)
orb μ

(x)
orb

Fe adatom 4.07 3.40 0.536 0.062
monolayer 0.97 3.08 0.127 0.073

Co adatom 4.42 2.13 0.218 0.206
monolayer 0.42 2.01 0.156 0.168

Ni adatom − 1.63 0.67 0.063 0.158
monolayer − 1.97 0.73 0.118 0.191

substrate per a 3d atom is about 2% of the 3d atom moment
and is oriented antiparallel to the moments of the 3d atoms.

The spin moments μspin practically do not depend on
the magnetization direction, while the orbital moments μorb

strongly depend on it. For Fe and Ni atoms, μorb is significantly
larger if M is parallel to the easy axis of the magnetization
than if M is parallel to the hard axis—in agreement with the
expectations based on second-order perturbation theory [7–9].
Surprisingly, this is not the case for Co, where for the adatom
the value of μorb depends only slightly on the M direction, and
for the monolayer the trend is even reversed.

B. Density of states

We first look at the spin-projected density of states in a
range covering the whole valence region. This is presented
in Fig. 2. The data correspond to M‖ ẑ but the plot would
look practically the same also for M‖x̂ at this scale. There
is a considerable overlap between 3d majority-spin states and
Au states, implying that majority-spin states are affected by
hybridization while minority-spin states are more atomiclike.

One can see that the majority-spin states are nearly fully
occupied. The Fermi level EF is around the middle of the
minority-spin band. Thus if we are interested in the possible
effects of shifting the states across EF , we should focus on the
influence of the SOC on the minority-spin states. Restricting
ourselves to the minority-spin states will greatly simplify
further analysis without missing the important aspects.

Studying how the m-resolved DOS varies upon the rotation
of the magnetization requires some clarifications. The projec-
tion of the DOS according to the quantum number m has to
be done always in the same reference frame, disregarding the
orientation of M. We call this frame the “global reference
frame”—it is fixed to the underlying crystal lattice. If the m

projections are done in different reference frames for different
magnetization directions, the definitions of the m components
themselves also vary because they are linked to the spherical
harmonics Y�m, which are defined with respect to the x, y, and z

axes. On the other hand, if one wants to retain and emphasize
the difference between spin-up and spin-down contributions
to the DOS, one has to make the projection in a “local
reference frame,” rotated so that the z axis coincides with the
magnetization direction. The need for this can be easily seen
from the Stern-Gerlach term in the Pauli equation, σ · B, which
is diagonal only if the effective magnetic field B is parallel to
the z axis. If the spin quantization axis is not parallel to the
magnetization direction, the chosen representation strongly
mixes spin-up and spin-down components.

These two circumstances suggest that if one wants to study
the DOS for different directions of the magnetization M, one
has to renounce either having a universal definition of the
m projections or retaining well-separated spin-resolved DOS
components. This is not an issue if the SOC is ignored because
then the direction of the magnetization has no effect on the
electronic structure anyway. However, if the SOC is accounted
for and the dependence of the DOS on the direction of M is in
focus, this is a serious obstacle.

Fortunately, this restriction can be bypassed in our case.
It is possible to get well-defined spin-minority DOS m-
decomposed in a global reference frame even if M is is not
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FIG. 2. Spin-projected DOS for 3d adatoms and monolayers on Au(111) (in states per eV) for M‖ ẑ. Full lines represent the DOS related
to 3d atoms, dashed lines represent the DOS related to those Au atoms that are nearest neighbors to 3d atoms, and dotted lines represent the
DOS for bulk Au.

parallel to the z axis, relying on an approximate procedure
that is described in Appendix A. The procedure combines
results for an m decomposition in global and local reference
frames. Employing this technique, we obtained the density
of minority-spin d states resolved according to the magnetic
quantum number m as shown in Figs. 3–5. The magnetization
is either out-of-plane (M‖ ẑ, θ = 0◦) or in-plane (M‖x̂, θ =
90◦), and the m projections are defined in the same (global)
reference frame in both cases. To highlight the effect of the
SOC, we present results obtained with SOC suppressed and
with SOC accounted for.

It can be seen readily from the plots in Figs. 3–5 that if the
SOC is suppressed, the DOS does not depend on the sign of m.
Components for +|m| and −|m| are the same in this case; the
only splitting comes from the crystal field. If the SOC is taken
into account, then the DOS depends further on whether m is
positive or negative. There is a significant difference in how
the ±|m| states are split for out-of-plane magnetization and
for in-plane magnetization (especially for the m = ±2 case).

The procedure outlined in Appendix A can be applied only
if the SOC-induced splitting of the majority-spin states is
negligible in the energy region in which we are interested, i.e.,
around EF . This assumption is well justified for Fe and Co.

However, it is not so good for Ni, where the exchange splitting
is quite small (cf. Fig. 2) and the influence of the SOC on the
majority-spin DOS is significant up to about 0.5 eV below EF .
Therefore, for Ni we present the data only for E > −0.6 eV
and even there they are less reliable than analogous data in
Figs. 3 and 4. The full energy range for M‖x̂ is covered by
Figs. 9–11 in Appendix B, where we present the m-resolved
DOS projected in a local reference frame rotated so that the
z(loc) axis is parallel to M. (For M‖ ẑ, the global reference
frame and the local reference frame coincide, because z(loc) is
then identical with z.)

The definitions of individual m-components employed in
Appendix B and employed in this section obviously differ. One
cannot, therefore, directly compare the plots where the DOS
was resolved into m-components in the global reference frame
(Figs. 3–5) with plots where the DOS was resolved in the
local reference frame (Appendix B). What is common in both
reference frames is that the SOC-induced splitting of the ±|m|
components it significantly smaller for M‖x̂ than for M‖ ẑ.

Let us summarize the picture obtained by inspecting the
DOS. First, note that the minority-spin DOS for the adatoms
has quite an atomic character: if the SOC is suppressed, it can
be seen as representing just three broadened atomic levels,
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FIG. 3. The d component of the minority-spin DOS for a Fe
adatom (left) and a Fe monolayer (right) on Au(111), resolved
according to the magnetic quantum number m. The case when the
SOC is suppressed is presented together with the case when the SOC
is included. The magnetization is either perpendicular to the surface
(θ = 0◦) or parallel to the surface (θ = 90◦). The dependence of the
MAE on the position of the top of the valence band is shown in the
top graphs.

depending on |m|. For monolayers, the hybridization between
states from different 3d atoms is considerable, so the DOS
does not have an atomic character anymore. The second point
to emphasize is that the influence of the SOC is significantly
larger for θ = 0◦ than for θ = 90◦. More specifically, for θ =
0◦ the SOC splits the m = ±2 peak into two and shifts their
positions in different directions, while for θ = 90◦ the peak
positions remain the same (only their intensities change).

The splitting of m-resolved DOS peaks by the SOC suggests
that the MAE could be very sensitive to the position of EF

with respect to these peaks. Therefore, we calculated the
MAE while varying the position of the top of the valence
band Eband, i.e., the band filling. The results are shown in the
top panels of Figs. 3–5. One can see that for the adatoms
there is indeed a sharp peak in the MAE just at the energy
where there is a peak for the |m| = 2 component in the case
of no SOC. This is especially visible for Co and Ni adatoms.
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graphs) and a Co monolayer (right graphs) on Au(111). Otherwise,
this figure is analogous to Fig. 3.

For the Fe adatom, this aspect is overshadowed by another
strong feature stemming from the fact that, in this case, also
the |m| = 1 states are affected by SOC. The situation for
monolayers is more complicated because the m-components
are not atomiclike anymore. Nevertheless, even here a strong
peak in the curve for EMAE as a function of Eband appears
at the energy where the DOS components for |m| = 2 have
their maximum. We would like to note in this context that the
density of the Eband mesh used in the calculation is the same for
adatoms and monolayers. This means that the observation that
the EMAE(Eband) oscillations are much wilder for monolayers
than for adatoms describes a real effect. This is probably
due to hybridization between 3d atoms, which is present for
monolayers but absent for adatoms.

C. Effect of SOC on the energy levels via model Hamiltonian

We could see in Sec. III B how the SOC splits electronic
states for different orientations of the magnetization. Let us
check to what extent this can be described within a simple
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this figure is analogous to Fig. 3.

model with only the crystal-field effects taken into account.
This corresponds to a situation in which the electron feels
only the Coulombic field generated by charges located at the
positions of the nuclei.

To highlight the essential features, we restrict ourselves
to d electrons in an axial field (corresponding to D4d , i.e.,
antiprism symmetry). If there is no magnetic order or SOC, the
crystal-field Hamiltonian is given as described, for example,
in the book of Bersuker [32] [Eqs. (4.9) and (4.10) and Table
4.1]. The Hamiltonian is determined by two parameters (if
the constant energy shift is omitted), resulting in three spin-
degenerate energy levels as given in Table III. The order of
levels E1, E2, and E3 depends on the values of parameters
P and Q. Levels E1 and E3 are doubly degenerate. Nonzero
terms of the crystal-field Hamiltonian are

H
(cry)
ms,m′s ′ =

⎧⎨
⎩

P, m = ±2, s = s ′,
Q, m = ±1, s = s ′,
−2P − 2Q, m = 0, s = s ′.

(3)

TABLE III. Energy levels of d electrons for an axial-crystal-field
Hamiltonian if there is no exchange splitting and no SOC.

Energy Y�m

E1 = P m = ±2
E2 = − 2(P + Q) m = 0
E3 = Q m = ±1

The subscript ms combines the magnetic quantum number m

and the spin quantum number s, meaning that our Hamiltonian
is represented by a 10 × 10 matrix.

The magnetization of the system is reflected by the
exchange field Hamiltonian H (ex). To distinguish between
two orientations of the magnetization, we keep the spin
quantization axis fixed (parallel to z) and vary the Hamiltonian
H (ex). The nonzero terms of H (ex) for M‖x̂ are

H
(ex)
ms,m′s ′ = B, m = m′, s 	= s ′ (4)

and for M‖ ẑ they are

H
(ex)
ms,m′s ′ = B, m = m′, s = s ′ = −1/2, (5a)

H
(ex)
ms,m′s ′ = −B, m = m′, s = s ′ = +1/2. (5b)

The third contribution to the model Hamiltonian comes
from the SOC. The spin quantization axis is kept parallel to
z, so the Hamiltonian H (SOC) = ξ L · S can be represented as
(cf. Stöhr [33])

H (SOC)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ξ 0 0 0 0 0 ξ 0 0 0

0 − ξ

2 0 0 0 0 0 ξ
√

6
2 0 0

0 0 0 0 0 0 0 0 ξ
√

6
2 0

0 0 0 ξ

2 0 0 0 0 0 ξ

0 0 0 0 ξ 0 0 0 0 0
0 0 0 0 0 ξ 0 0 0 0
ξ 0 0 0 0 0 ξ

2 0 0 0

0 ξ
√

6
2 0 0 0 0 0 0 0 0

0 0 ξ
√

6
2 0 0 0 0 0 − ξ

2 0
0 0 0 ξ 0 0 0 0 0 −ξ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(6)

The total Hamiltonian we have to diagonalize is

H = H (cry) + H (ex) + H (SOC). (7)

We want to apply this model for an adatom, where the
hybridization is small and the crystal-field effects will be
important. Looking at the adatom-related panels of Figs. 3–5,
we can see that in the absence of SOC, the minority-spin DOS
indeed resembles three atomiclike energy levels, as in Table III.
It is convenient to introduce level spacings

�1 ≡ E2 − E1, (8)

�2 ≡ E3 − E2, (9)
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TABLE IV. Parameters (in eV) for the model Hamiltonian
simulating 3d adatoms on Au(111) by means of an axial crystal
field model.

Fe Co Ni

�1 0.24 0.21 0.06
�2 0.05 0.06 0.20
E↓ − E↑ 2.81 1.96 0.57
ξ 0.065 0.085 0.108

through which we can express the model Hamiltonian param-
eters as

P = − 3�1 + 2�2

5
, (10)

Q = 2�1 + 3�2

5
. (11)

To simulate 3d adatoms on Au(111), one should read the
�1, �2 splittings from Figs. 3–5 to get the values for the
parameters P , Q and the exchange splitting from Fig. 2 to get
the parameter B using E↓ − E↑ = 2B. The SOC parameters ξ

can be obtained via ab initio calculations [34]. The appropriate
values are given in Table IV.

A general idea of how the SOC affects the energy levels can
be obtained by diagonalizing the Hamiltonian (7) for different
orientations of M while the SOC strength ξ is gradually
increased from zero to a realistic value. The corresponding
results are presented in Fig. 6, where we show energy levels
E↑(ξ ) and E↓(ξ ) for parameters given in Table IV. The
“proper” value of ξ for each element is marked by a thin
dashed line. To avoid confusion, we should note that our
categorizing of levels as E↑ or E↓ is done just for convenience,
by comparing their positions to the spin-projected DOS shown

in Fig. 2. We care only about the energy levels in this context
and not about the wave functions, so the issue of mixed
spin character for θ = 90◦, discussed in Sec. III B and in
Appendix A, does not interfere with our analysis.

A prominent feature of Fig. 6 is that the effect of ξ

is much less for in-plane magnetization (θ = 90◦) than for
perpendicular magnetization (θ = 0◦). This is especially true
for the lowest energy, which corresponds to m = ±2. By
comparing this observation to Figs. 3–5, we see that the
simple crystal-field model indeed accounts for the trends in
the m-resolved DOS for the 3d adatoms. It is worth noting
that if the exchange-field parameter B decreases (i.e., going
from Fe to Co to Ni), the m = ±2 energy levels split also for
the θ = 90◦ case (in-plane magnetization). A similar trend can
also be seen in the DOS in Sec. III B: the difference between
m = ±2 curves in the lowermost left panels in Figs. 3–5
increases when going from Fe to Co to Ni.

IV. DISCUSSION

Our aim was to investigate whether markers of MAE can
be seen in intuitive quantities such as the m-resolved DOS.
Figures 3–5 (in conjunction with Figs. 9–11) show how
SOC affects the DOS depending on the orientation of the
magnetization M. The corresponding changes in the DOS can
be linked to the magnetocrystalline anisotropy of adatoms.
Particularly for the Fe and Co adatoms, one can see that for
θ = 0◦ the SOC splits the |m| = 2 component of the DOS in
such a way that one of the peaks is pushed above EF (or at
least an essential part of it). The band-energy contribution to
the total energy is thus substantially reduced. As this effect
does not occur for θ = 90◦, the out-of-plane orientation of M
is energetically more favored and the corresponding MAE is
positive, in agreement with Table II.
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FIG. 6. Dependence of eigenenergies of the model Hamiltonian given by Eq. (7) on the SOC strength ξ for two orientations of M. The
model parameters for Fe, Co, and Ni adatoms are given in Table IV. Thin dashed lines mark ξ values appropriate for each element. The zero
of energy corresponds to the case with no magnetization and no crystal field.
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The SOC-induced splitting of the |m| = 2 peak occurs for
θ = 0◦ also for the Ni adatom. However, in that case both
peaks remain below EF and the change in the band energy is
therefore much smaller. The influence of SOC for the θ = 90◦
case is best seen if the m projection is done in a rotated local
reference frame, as in Fig. 11. This is because the isolation of
the minority-spin DOS in the global reference frame cannot be
done properly due to the small energy separation between the
majority-spin and minority-spin states of Ni. The lowermost
graphs in Fig. 5 have to be seen as primarily illustrative in this
respect because they are affected by the fact that majority-spin
states are still influenced by the SOC in this region. Focusing
on the unambiguous data in Fig. 11, one can see that for
θ = 90◦ the states with |m(loc)| = 2 are split in such a way
that part of one of the SOC-split peaks is pushed above EF .
This effect overruns the corresponding effect on the |m| = 2
states for θ = 0◦ (Fig. 5), and, accordingly, the easy axis of
magnetization is in-plane for the Ni adatom.

Effects of this kind can hardly be identified for monolayers.
In this case, the hybridization between the 3d states distorts
the atomiclike character of the states, and one would have to
consider a lot of contributions, similarly as if the E(k) band
structure of layered systems is analyzed [12,14,16].

The simple crystal-field model accounts qualitatively for
many aspects of the magnetocrystalline anisotropy of adatoms,
indicating that this anisotropy can be understood intuitively as
an interplay between the axial crystal field, the exchange field,
and the spin-orbit coupling. However, there are also differences
between the pictures offered by the model Hamiltonian and by
the DOS obtained from ab initio calculations. For example, the
model Hamiltonian suggests that for an in-plane magnetization
(θ = 90◦), the splitting between the m = ± 1 levels is larger
than the splitting between the m = ±2 levels (Fig. 6); however,
we do not observe this feature in Figs. 3–5. This means that
effects not included in the simple model of Sec. III C, such as
hybridization, are important as well.

It should be noted that by monitoring SOC-induced changes
in the DOS, one accounts only for the band-energy contribution
to the total energy, omitting thus the terms that explicitly
depend on the change of the potential upon rotation of M
(see, e.g., Chap. 6 of the monograph of Weinberger [35]
for more details). This is equivalent to relying on the so
called force theorem. If the MAE is evaluated accounting for
the band energy contribution only (by means of the torque
method [36,37]), we obtain EMCA = 5.7 meV for the Fe
adatom, 1.9 meV for the Co adatom, and −0.8 meV for
the Ni adatom. Comparison with Table II that gives EMCA

as a difference of total energies shows that the change in the
band energy does not fully account for the magnetocrystalline
anisotropy but nevertheless constitutes a significant part of it.
One should also keep in mind that the SOC-induced splitting
of the DOS is not the only way the band energy is changed
upon rotation of M. For example, all effects contained in
Eq. (1) contribute as well. Accordingly, what has been done
here is identifying and visualizing one important mechanism
contributing to the magnetocrystalline anisotropy. We suggest
(following earlier hints [3,11,15–17]) that this mechanism may
be the dominant one for some adatoms and small clusters
on surfaces—including those that attracted a lot of attention
recently [21,23,38,39].

Another interesting system to be mentioned in this context
is lithium nitridoferrate Li2[(Li1−xFex)N], which attracted
a lot of attention due to its very high magnetocrystalline
anisotropy [11,40–42]. This system can be viewed as a
collection of semi-isolated Fe impurities. A similar effect
to the one investigated here could therefore be important
for Li2[(Li1−xFex)N], and attention was indeed paid to it in
this respect [11,42]. Generally, the mechanism we explored
here should be important whenever the width of the electronic
bands becomes comparable to the SOC-induced changes in the
orbital-resolved DOS upon the rotation of the magnetization.

If the magnetocrystalline anisotropy is generated via push-
ing some SOC-split levels across the Fermi level, it must
crucially depend on their mutual positions. Specifically in our
case, it must depend on the position of the energy bands of the
adatom with respect to the Fermi level of the substrate (cf. also
the top graphs of Figs. 3–5). Therefore, one might be able to
manipulate the MAE by changing the substrate EF , e.g., via
doping.

Even though the aim of this study is not to reproduce
experimental MAE for specific systems, it is useful to compare
our values of MAE with available experiments. There are no
data for adatoms on Au(111), but there have been several
experimental studies of Fe and Co layers on Au(111). Before
comparison with experiment is done, the dipole or shape
anisotropy energy for monolayers must be given. It is −0.18,
−0.08, and −0.01 meV for Fe, Co, and Ni monolayers,
respectively. These values are smaller than the magnetocrys-
talline anisotropy energy given in Table II. So we predict that
Fe and Co monolayers on Au(111) have out-of-plane easy
axes of magnetization, and a Ni monolayer (for which there
are no experiments available) has an in-plane easy axis of
magnetization. Earlier calculations for a Co monolayer on
Au(111) predicted an in-plane easy axis of magnetization for
this system [6,43]; the reason for the difference is almost
certainly the structural relaxation, which was accounted for
here but not in the two earlier works.

Despite several experimental studies of magnetocrystalline
anisotropy of Fe and Co layers on Au(111) done in the past,
drawing conclusions from them is not easy or unambiguous
because the growth conditions vary and typically do not
favor formation of a single monolayer. A critical analysis of
experiments is beyond our scope. For a Fe monolayer, it is
probably safe to say that experiment suggests an out-of-plane
easy axis [44–47], as our calculations do. For a Co monolayer,
the situation is more complicated. For bilayer islands on
Au(111), one gets an out-of-plane easy axis [48–50]. Again
growth conditions may be crucial [51]. No data seem to exist
for a single monolayer on Au(111). As a whole, even though
we cannot verify our results by a comprehensive comparison
with experiment, agreement with available data as well as the
fact that our values of MAE are in the same range of values
as those obtained for similar systems indicate that our results
are reliable and can be used as a basis for the analysis we
performed in Secs. III B and III C.

V. CONCLUSIONS

The effect of spin-orbit coupling on adatoms that only
weakly hybridize with a substrate consists in splitting atom-
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iclike levels that would be degenerate in its absence. The
splitting is much larger if the magnetization is oriented
perpendicular to the surface than if it is oriented parallel to
the surface, and it can be viewed as a combined result of
crystal field, exchange splitting, and spin-orbit coupling. If the
originally degenerate level is close to the Fermi level, one of the
peaks can be pushed above it, thereby decreasing the energy of
the system. This effect represents a significant contribution to
the magnetocrystalline anisotropy of adatoms. If hybridization
smears out the atomiclike character of energy levels, as is the
case for monolayers, this effect is not so important.
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APPENDIX A: SPIN-RESOLVED AND m-RESOLVED
DOS FOR M ∦ ẑ

It was argued in Sec. III B that if one wants to see how
individual m components of the DOS are affected by the
rotation of the magnetization M, one should perform the m

projections always in a global reference frame so that the
definitions of the m components remain the same. However,
when M ∦ ẑ, projecting the DOS in a global reference frame
mixes the spin components because the spin quantization axis
is no longer parallel to M. In this appendix, we present
a method to restore the separation of spin components in
the DOS even in such a case. Our goal is achieved by a
detour, combining results of projections in the global and local
reference frames. Effectively, it could be seen as a way to make
the spin projection and the m projection in different reference
frames.

Let us recall that inside an atomic sphere, the DOS for
a spin channel can be represented by means of the Green
function G(E) as

n(E) = − 1

π
Im

∫
d3r〈r|G(E)|r〉. (A1)

We omit the spin labels here for brevity. Angular-momentum
projections of n(E) can be obtained by means of spherical
harmonics. These spherical harmonics Y�m can be defined in a
global reference frame (fixed to the crystal lattice) or in a local
reference frame chosen so that the z(loc) axis is parallel to M.
The way the DOS components nL are defined thus depends
on the reference frame. We can write schematically (again, for
each spin channel)

n
(glo)
L (E) = − 1

π
Im

〈
Y

(glo)
L

∣∣G(E)
∣∣Y (glo)

L

〉
, (A2)

n
(loc)
L (E) = − 1

π
Im

〈
Y

(loc)
L

∣∣G(E)
∣∣Y (loc)

L

〉
. (A3)

Integration over the radial coordinate is implicitly assumed.
We start by projecting the DOS in the local reference frame,

where M‖ ẑ(loc). In this way, we perform the separation of
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FIG. 7. Spin-projected DOS for a Co adatom and a Co monolay-
ers on Au(111) for M‖ ẑ (solid blue lines) and for M‖x̂ (red cross
markers).

the spin components. We assume that this separation was
performed “once for all times,” i.e., it will be preserved during
the whole subsequent procedure. All the manipulations will
be applied to minority-spin DOS and to majority-spin DOS
separately.

This requires a further comment. By doing the spin
projection in the rotated local reference frame, we get spin-up
and spin-down states assuming that the spin quantization
axis is in a general direction, while when dealing with the
global reference frame, the spin-quantization axis is fixed and
parallel to z. However, this difference can be neglected in
our case: we checked that the spin-projected DOS (without
any m decomposition) looks practically the same regardless of
whether the magnetization is in-plane or out-of-plane. As an
illustration, the spin-projected DOS for a Co adatom and a Co
monolayer is shown in Fig. 7 for two magnetization directions.
These spin projections were obtained in local reference frames
defined so that the z(loc) axis is always parallel to M. One
can see that there is hardly any difference between the DOS
for M‖x̂ and M‖ ẑ. Another hint that the spin projections
can be maintained upon rotating M comes from the fact that
if the magnetization is rotated, the spin magnetic moments
almost do not change. There is a common experience that
this is the case for all magnetic systems. By assuming that
the spin-projected DOS does not depend on the direction of
the magnetization, we make an effective decoupling of spin
and orbital degrees of freedom. This enables us to focus on
changes in the m-resolved components. A similar decoupling
is used, e.g., when deriving useful relations for the angular
dependence of the magnetic dipole term Tz for analyzing the
x-ray magnetic circular dichroism spectra [52,53].

So far we have obtained minority-spin DOS and majority-
spin DOS, m-resolved in the local frame. Now we need to
transform the spin-polarized DOS from the basis spanned
by Y

(loc)
L to the basis spanned by Y

(glo)
L . A straightforward

transformation between the n
(loc)
L and the n

(glo)
L components

is generally not possible—one always has to start with the
Green function G to get nL in a new basis. However, the
transformation can be done provided that G is diagonal in
the basis in which nL has been initially known. Indeed, if we
assume that

〈
Y

(glo)
L

∣∣G(E)
∣∣Y (glo)

L′
〉 = δLL′

〈
Y

(glo)
L

∣∣G(E)
∣∣Y (glo)

L

〉
,
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we obtain

n
(loc)
L (E) = − 1

π
Im

〈
Y

(loc)
L

∣∣G(E)
∣∣Y (loc)

L

〉
,

= − 1

π
Im

∑
L′L′′

〈
Y

(loc)
L

∣∣Y (glo)
L′

〉 〈
Y

(glo)
L′

∣∣G(E)
∣∣Y (glo)

L′′
〉

× 〈
Y

(glo)
L′′

∣∣Y (loc)
L

〉
,

=
∑
L′

∣∣〈Y (loc)
L

∣∣Y (glo)
L′

〉∣∣2
(

− 1

π

)
Im

〈
Y

(glo)
L′

∣∣G(E)
∣∣Y (glo)

L′
〉
,

=
∑
L′

ULL′ n
(glo)
L′ (E). (A4)

Specifically in our case, we need to describe the situation for
in-plane magnetization, i.e., M‖x̂. The local reference frame
is then defined by the rotation y → y(loc), z → x(loc), x →
−z(loc). Considering the explicit forms of Y

(glo)
�m and Y

(loc)
�m for

� = �′ = 2, one gets for the d states

Umm′ ≡ ∣∣〈Y (loc)
2m

∣∣Y (glo)
2m′

〉∣∣2 =

⎡
⎢⎢⎢⎢⎢⎣

1
16

1
4

3
8

1
4

1
16

1
4

1
4 0 1

4
1
4

3
8 0 1

4 0 3
8

1
4

1
4 0 1

4
1
4

1
16

1
4

3
8

1
4

1
16

⎤
⎥⎥⎥⎥⎥⎦

. (A5)

More generally, the transformation between the bases is given
by Wigner matrices [54].

Strictly speaking, Eq. (A4) with matrix U defined in (A5)
can be used only if the Green function G is diagonal in the
L indices. This is generally not the case (depending on the
symmetry of the system). Fortunately, nondiagonal elements of
〈Y (glo)

L |G|Y (glo)
L′ 〉 are small and can be neglected for the systems

with which we are dealing. We verified this explicitly: If n
(loc)
L is

obtained from n
(glo)
L by the transformation (A4), the m-resolved

DOS curves obtained thereby agree within the thickness of the
line with curves obtained directly from the Green function via
Eq. (A3). It should be noted that this verification ought to be
applied to a sum of the spin components, because for M ∦ ẑ
the spin components in n

(glo)
L are mixed if they are evaluated

directly. Additionally, the SOC has to be suppressed to get
exact equalities.

So far we found a transformation from the global frame
to the local frame. However, we started our procedure by
finding spin-projected DOS in the local reference frame, so
we need an opposite transformation, from the local frame to
the global frame. A procedure analogous to that we used to
derive Eqs. (A4) and (A5) cannot be used, because if the
Green function is evaluated in the rotated local reference
frame, its nondiagonal elements 〈Y (loc)

L |G|Y (loc)
L′ 〉 cannot be

neglected (the z(loc) axis of the rotated frame is chosen in
an “inconvenient” way—parallel to the surface). That means
we have only Eq. (A4) at our disposal and the transformation
from n

(loc)
L to n

(glo)
L has to be accomplished by inverting it.

The inversion of the transformation matrix U defined by
Eq. (A5) cannot be done straightforwardly because this matrix
is singular. However, the singular 5 × 5 matrix U of Eq. (A5)
can be folded down to a regular 3 × 3 matrix U (fold) if we
assume that the m components do not depend on the sign of

m, i.e., if

n
(glo)
|m| = n

(glo)
−|m|. (A6)

In such a case, one does not have to deal with all five
independent components n

(glo)
−2 , . . . ,n

(glo)
2 . It is enough to keep

three of them, n
(glo)
−2 , n

(glo)
−1 , n

(glo)
0 , and the remaining two can

be recovered by taking n
(glo)
2 = n

(glo)
−2 and n

(glo)
1 = n

(glo)
−1 . This

means that the original Eq. (A4), which we write here in a
more explicit form as

n(loc)
m (E) =

2∑
m′=−2

Umm′n
(glo)
m′ (E), m = −2, . . . ,2,

is reduced to

n(loc)
m (E) =

0∑
m′=−2

U
(fold)
mm′ n

(glo)
m′ (E), m = −2,−1,0 (A7)

with

U
(fold)
mm′ =

⎡
⎢⎣

1
8

1
2

3
8

1
2

1
2 0

3
4 0 1

4

⎤
⎥⎦. (A8)

The matrix U (fold) is regular and can be inverted. Its inversion
yields a matrix

V
(fold)
mm′ =

⎡
⎣− 2

3
2
3 1

2
3

4
3 −1

2 −2 1

⎤
⎦, (A9)

which transforms the m-resolved DOS from the local reference
frame to the global reference frame:

n(glo)
m (E) =

0∑
m′=−2

V
(fold)
mm′ n

(loc)
m′ (E), m = −2,−1,0.

If we assume that the m-resolved DOS is independent of the
sign of m not only in the global frame but also in the local
frame,

n
(loc)
|m| = n

(loc)
−|m|

[consistently with the fact that the matrix U in Eq. (A5) is
symmetric], we can unfold the 3 × 3 matrix V (fold) to a full
5 × 5 matrix V ,

Vmm′ =

⎡
⎢⎢⎢⎢⎢⎣

− 1
3

1
3 1 1

3 − 1
3

1
3

2
3 −1 2

3
1
3

1 −1 1 −1 1
1
3

2
3 −1 2

3
1
3

− 1
3

1
3 1 1

3 − 1
3

⎤
⎥⎥⎥⎥⎥⎦

, (A10)

to get a complete transformation of the m-resolved DOS from
the local reference frame to the global reference frame:

n(glo)
m (E) =

2∑
m′=−2

Vmm′n
(loc)
m′ (E), m = −2, . . . ,2. (A11)

From the way the transformation Eq. (A11) was derived,
it follows that it can be used only if the m-resolved DOS
for the +|m| states is the same as the DOS for the “−|m|
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FIG. 8. The m = −2 and 2 components of the majority- and
minority-spin DOS for a Co adatom and a Co monolayer on Au(111).
Magnetization is out-of-plane. Data for majority-spin DOS are
labeled by n↑, data for minority-spin DOS by n↓.

states.” As a whole, this is not the case because the SOC splits
the “±|m| states.” Therefore, one cannot simply apply the
transformation (A11) to the minority-spin DOS m-resolved
in the local reference frame to get the minority-spin DOS
m-resolved in the global reference frame: the minority-spin
±|m| states are split by the SOC, therefore the folding of
Eqs. (A4)–(A7) cannot be done and the unfolding of the matrix
(A9) to a full matrix (A10) cannot be done either. However, in
the energy region in which we are interested, i.e., in the region
where the minority-spin states dominate, there is only a little
SOC-induced splitting of the ±|m| states for the majority spin.
This can be checked explicitly by looking on the m-resolved
majority-spin DOS curves in the energy region around Fermi
level. As an example, we show here the m = −2 and +2 DOS
components for a Co adatom and a Co monolayer (Fig. 8).
We select the case for M‖ ẑ, where the SOC-induced splitting
is the largest. One can see that indeed the splitting of the
majority-spin DOS (labeled by n↑) around EF is much less
than the splitting of the minority-spin DOS (labeled by n↓).
So even though the transformation (A11) cannot be applied to
the minority-spin DOS, it can be applied to the majority-spin
DOS.

The m-resolved minority-spin DOS in the global reference
frame can thus be recovered in the following way: First, let us
evaluate the m-resolved DOS directly in the global reference
frame, as indicated in Eq. (A2). Both global spin channels are
strongly mixed for in-plane magnetization, so there is only
a very small difference between “spin-up” and “spin-down”
m-resolved DOS components; if there is no SOC, even this
difference disappears. By adding contributions from both spin
channels, we get a “total” m-resolved DOS in a global frame,
with spin components unresolved. In a second step, we take the
m-resolved DOS in the local (rotated) reference frame, keep
only its majority-spin component, and transform it to the global
reference frame via Eq. (A11). This provides us with a well-
defined majority-spin m-resolved DOS in the global reference
frame. Finally, we subtract this majority-spin DOS m-resolved
in a global frame from the total m-resolved DOS obtained in
the first step. This leaves us with minority-spin m-resolved
DOS in a basis defined in the global reference frame. This
detour (getting minority-spin DOS by subtracting majority-
spin DOS from the total DOS) provides more accurate values
than what would be obtained if the transformation (A11) was
applied to the minority-spin DOS, because the condition (A6)

is satisfied much better for the majority-spin states than for the
minority-spin states in the energy region of interest.

The procedure described in this appendix should be used
only for systems in which there is a substantial exchange
splitting between the majority-spin and minority-spin states.
Only then can one neglect the SOC-induced ±|m| splitting
of the majority-spin states with respect to the splitting of
the minority-spin states (for energies where the minority-spin
DOS is much larger than the majority-spin DOS). As an
indicative parameter for whether the procedure can be applied
or not, we suggest the ratio between the exchange splitting
E↓-E↑ and the SOC constant ξ . Using the parameters given in
Table IV, one gets the following values for the (E↓ − E↑)/ξ
ratio: 43.2 for the Fe adatom, 23.1 for the Co adatom, and 5.3
for the Ni adatom. This illustrates why our procedure works
nicely for Fe and Co but not so well for Ni, as acknowledged
in Sec. III B.

APPENDIX B: DOS FOR M‖x̂ RESOLVED
IN A LOCAL REFERENCE FRAME

The DOS presented in Sec. III B was resolved according
to the magnetic quantum number m in a global reference
frame, with the z axis perpendicular to the surface. This
ensured the same meaning of the m components no matter
how the magnetization is oriented. However, one had to apply
an additional procedure described in Appendix A to resolve the
spin components. As this procedure assumes that SOC does
not split the majority-spin DOS, which is not quite the case
here (especially for systems with low exchange splitting such
as Ni adatoms and monolayers), one might wonder whether
the conclusions based on Figs. 3–5 can be trusted.

Therefore, we present in this appendix the m-resolved
DOS for M‖x̂ where the magnetic quantum number m refers
to a local reference frame, with the spin quantization axis
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FIG. 9. The d component of the minority-spin DOS for a Fe
adatom (left) and a Fe monolayer (right) on Au(111) for magnetiza-
tion parallel to the surface, with SOC either ignored (top) or included
(bottom). The DOS is resolved according to the magnetic quantum
number m in a local reference frame where the z(loc) axis is parallel
to the Au(111) surface.
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FIG. 10. The d component of the minority-spin DOS for a
Co adatom (left) and a Co monolayer (right) on Au(111) for
magnetization parallel to the surface. This figure is analogous to
Fig. 9.

z(loc) parallel to M. The outcome is presented in Figs. 9–11.
Analogous plots for M‖ ẑ would be the same as respective
panels in Figs. 3–5, because in such a case the local and
global reference frames coincide. Note that the individual
m-components presented in Figs. 9–11 cannot be directly
compared to analogous components in Figs. 3–5 because their
definitions differ. This can be clearly seen when comparing
the DOS for systems without SOC, when there can be
in principle no dependence on the magnetization direction.
The graphs in the panels that are second from the top in
Figs. 3–5 and in the top panels of Figs. 9–11 describe
the same physical situation and yet the individual curves
differ—because the magnetic quantum numbers are defined
with respect to different reference frames.
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FIG. 11. The d component of the minority-spin DOS for a
Ni adatom (left) and a Ni monolayer (right) on Au(111) for
magnetization parallel to the surface. This figure is analogous to
Fig. 9.

Even though the m components are defined differently, one
can still qualitatively compare how SOC affects the DOS for
θ = 0◦ and for θ = 90◦. Concerning the situation for θ = 0◦,
one monitors in Figs. 3–5 how the plot without SOC changes
if SOC is switched on (i.e., one looks at the two middle panels
of the corresponding figure). Concerning the situation for θ =
90◦, one monitors analogous changes in Figs. 9–11. One can
clearly see that the effect of SOC is much more pronounced
for θ = 0◦ than for θ = 90◦. This confirms and strengthens
the conclusions drawn in Sec. III B, where the emphasis was
put rather on maintaining the possibility for a component-by-
component comparison than on formal correctness.
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[52] J. Stöhr and H. König, Phys. Rev. Lett. 75, 3748 (1995).
[53] J. Stöhr, J. Magn. Magn. Mater. 200, 470 (1999).
[54] M. E. Rose, Elementary Theory of Angular Momentum (Wiley,

New York, 1957).

174409-13

http://dx.doi.org/10.1126/science.1252841
http://dx.doi.org/10.1126/science.1252841
http://dx.doi.org/10.1126/science.1252841
http://dx.doi.org/10.1126/science.1252841
http://dx.doi.org/10.1126/science.1254402
http://dx.doi.org/10.1126/science.1254402
http://dx.doi.org/10.1126/science.1254402
http://dx.doi.org/10.1126/science.1254402
http://dx.doi.org/10.1103/PhysRevLett.115.237202
http://dx.doi.org/10.1103/PhysRevLett.115.237202
http://dx.doi.org/10.1103/PhysRevLett.115.237202
http://dx.doi.org/10.1103/PhysRevLett.115.237202
http://dx.doi.org/10.1103/PhysRevB.86.104436
http://dx.doi.org/10.1103/PhysRevB.86.104436
http://dx.doi.org/10.1103/PhysRevB.86.104436
http://dx.doi.org/10.1103/PhysRevB.86.104436
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1139/p80-159
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://dx.doi.org/10.1088/0034-4885/74/9/096501
http://olymp.cup.uni-muenchen.de/ak/ebert/SPRKKR
http://dx.doi.org/10.1007/s00339-005-3359-1
http://dx.doi.org/10.1007/s00339-005-3359-1
http://dx.doi.org/10.1007/s00339-005-3359-1
http://dx.doi.org/10.1007/s00339-005-3359-1
http://dx.doi.org/10.1103/PhysRevB.53.7721
http://dx.doi.org/10.1103/PhysRevB.53.7721
http://dx.doi.org/10.1103/PhysRevB.53.7721
http://dx.doi.org/10.1103/PhysRevB.53.7721
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
http://dx.doi.org/10.1103/PhysRevB.47.558
https://www.vasp.at
http://dx.doi.org/10.1103/PhysRevB.37.9985
http://dx.doi.org/10.1103/PhysRevB.37.9985
http://dx.doi.org/10.1103/PhysRevB.37.9985
http://dx.doi.org/10.1103/PhysRevB.37.9985
http://dx.doi.org/10.1103/PhysRevB.54.61
http://dx.doi.org/10.1103/PhysRevB.54.61
http://dx.doi.org/10.1103/PhysRevB.54.61
http://dx.doi.org/10.1103/PhysRevB.54.61
http://dx.doi.org/10.1103/PhysRevB.74.144411
http://dx.doi.org/10.1103/PhysRevB.74.144411
http://dx.doi.org/10.1103/PhysRevB.74.144411
http://dx.doi.org/10.1103/PhysRevB.74.144411
http://dx.doi.org/10.1103/PhysRevLett.111.236801
http://dx.doi.org/10.1103/PhysRevLett.111.236801
http://dx.doi.org/10.1103/PhysRevLett.111.236801
http://dx.doi.org/10.1103/PhysRevLett.111.236801
http://dx.doi.org/10.1103/PhysRevLett.113.237201
http://dx.doi.org/10.1103/PhysRevLett.113.237201
http://dx.doi.org/10.1103/PhysRevLett.113.237201
http://dx.doi.org/10.1103/PhysRevLett.113.237201
http://dx.doi.org/10.1038/ncomms4333
http://dx.doi.org/10.1038/ncomms4333
http://dx.doi.org/10.1038/ncomms4333
http://dx.doi.org/10.1038/ncomms4333
http://dx.doi.org/10.1103/PhysRevB.66.184434
http://dx.doi.org/10.1103/PhysRevB.66.184434
http://dx.doi.org/10.1103/PhysRevB.66.184434
http://dx.doi.org/10.1103/PhysRevB.66.184434
http://dx.doi.org/10.1103/PhysRevB.90.094406
http://dx.doi.org/10.1103/PhysRevB.90.094406
http://dx.doi.org/10.1103/PhysRevB.90.094406
http://dx.doi.org/10.1103/PhysRevB.90.094406
http://dx.doi.org/10.1103/PhysRevLett.77.1805
http://dx.doi.org/10.1103/PhysRevLett.77.1805
http://dx.doi.org/10.1103/PhysRevLett.77.1805
http://dx.doi.org/10.1103/PhysRevLett.77.1805
http://dx.doi.org/10.1016/0304-8853(93)91253-4
http://dx.doi.org/10.1016/0304-8853(93)91253-4
http://dx.doi.org/10.1016/0304-8853(93)91253-4
http://dx.doi.org/10.1016/0304-8853(93)91253-4
http://dx.doi.org/10.1063/1.1689231
http://dx.doi.org/10.1063/1.1689231
http://dx.doi.org/10.1063/1.1689231
http://dx.doi.org/10.1063/1.1689231
http://dx.doi.org/10.1109/TMAG.2009.2025183
http://dx.doi.org/10.1109/TMAG.2009.2025183
http://dx.doi.org/10.1109/TMAG.2009.2025183
http://dx.doi.org/10.1109/TMAG.2009.2025183
http://dx.doi.org/10.1103/PhysRevB.81.064405
http://dx.doi.org/10.1103/PhysRevB.81.064405
http://dx.doi.org/10.1103/PhysRevB.81.064405
http://dx.doi.org/10.1103/PhysRevB.81.064405
http://dx.doi.org/10.1103/PhysRevB.59.R701
http://dx.doi.org/10.1103/PhysRevB.59.R701
http://dx.doi.org/10.1103/PhysRevB.59.R701
http://dx.doi.org/10.1103/PhysRevB.59.R701
http://dx.doi.org/10.1103/PhysRevB.75.184415
http://dx.doi.org/10.1103/PhysRevB.75.184415
http://dx.doi.org/10.1103/PhysRevB.75.184415
http://dx.doi.org/10.1103/PhysRevB.75.184415
http://dx.doi.org/10.1016/j.susc.2014.06.023
http://dx.doi.org/10.1016/j.susc.2014.06.023
http://dx.doi.org/10.1016/j.susc.2014.06.023
http://dx.doi.org/10.1016/j.susc.2014.06.023
http://dx.doi.org/10.1103/PhysRevB.61.72
http://dx.doi.org/10.1103/PhysRevB.61.72
http://dx.doi.org/10.1103/PhysRevB.61.72
http://dx.doi.org/10.1103/PhysRevB.61.72
http://dx.doi.org/10.1103/PhysRevLett.75.3748
http://dx.doi.org/10.1103/PhysRevLett.75.3748
http://dx.doi.org/10.1103/PhysRevLett.75.3748
http://dx.doi.org/10.1103/PhysRevLett.75.3748
http://dx.doi.org/10.1016/S0304-8853(99)00407-2
http://dx.doi.org/10.1016/S0304-8853(99)00407-2
http://dx.doi.org/10.1016/S0304-8853(99)00407-2
http://dx.doi.org/10.1016/S0304-8853(99)00407-2



