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Instability analysis of spin-torque oscillator with an in-plane magnetized free layer
and a perpendicularly magnetized pinned layer
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We study the theoretical conditions to excite a stable self-oscillation in a spin-torque oscillator with an in-plane
magnetized free layer and a perpendicularly magnetized pinned layer in the presence of magnetic field pointing
in an arbitrary direction. The linearized Landau-Lifshitz-Gilbert (LLG) equation is found to be inapplicable to
evaluate the threshold between the stable and self-oscillation states because the critical current density estimated
from the linearized equation is considerably larger than that found in the numerical simulation. We derive a
theoretical formula of the threshold current density by focusing on the energy gain of the magnetization from
the spin torque during a time shorter than a precession period. A good agreement between the derived formula
and the numerical simulation is obtained. The condition to stabilize the out-of-plane self-oscillation above the
threshold is also discussed.
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I. INTRODUCTION

A spin polarized current injected into a nanostructured
ferromagnet creates spin torque through the spin-transfer effect
[1–3]. The spin torque provides a rich variety of magnetization
dynamics such as switching or self-oscillation [4–10]. In
particular, a spin-torque oscillator consisting of an in-plane
magnetized free layer and a perpendicularly magnetized
pinned layer has been an attractive research subject in the field
of magnetism [11–21]. In this type of spin-torque oscillator, the
spin torque forces the magnetization of the free layer into out
of plane, and excites a large amplitude oscillation around the
perpendicular axis. A high symmetry along the perpendicular
direction in this system makes it easy to investigate the
oscillation properties theoretically [17]. In order to observe the
oscillation experimentally through magnetoresistance effect,
however, the symmetry breaking should occur since the
change of the relative angle between the magnetizations of
the free and pinned layers in time is necessary. The linear
analysis in the presence of an in-plane anisotropy [16] or the
perturbation approach to the system additionally having an
in-plane magnetized reference layer [19] have been made to
develop practical theory.

The application of an external magnetic field tilted from the
perpendicular axis also breaks the symmetry and enables us to
measure the oscillation experimentally. In other geometries,
the experimental studies have shown that the oscillation
properties such as the threshold current to excite the self-
oscillation strongly depend on the field direction [6,10]. On the
other hand, the role of the magnetic field on the self-oscillation
properties in this geometry has not been fully understood yet.
For example, it is still unclear how much current is necessary
to excite the out-of-plane self-oscillation in the presence of
the magnetic field pointing in an arbitrary direction, while it is
known that infinitesimal current can excite the self-oscillation
for the highly symmetric case [12,17].

In this paper, we investigate theoretical conditions to excite
the self-oscillation in a spin-torque oscillator with an in-
plane magnetized free layer and a perpendicularly magnetized
pinned layer in the presence of an external magnetic field.
We solve the Landau-Lifshitz-Gilbert (LLG) equation both

numerically and analytically. The main findings in this paper
are as follows. First, we find that the linearized LLG equation
is no longer useful to evaluate the instability threshold in the
present system. The critical current density evaluated from the
linearized LLG equation is two orders of magnitude larger than
the instability threshold estimated from the numerical simula-
tion. Second, we derive the theoretical formula determining the
instability threshold. The main difference between the linear
analysis and our result is that when a periodic precession
around the stable state is assumed in the linear analysis,
while we focus on the transition of the magnetization from
the stable state to the out-of-plane self-oscillation state during
a time shorter than the precession period. A good agreement
between the numerical simulation and our formula is obtained.
Third, we derive theoretical conditions to guarantee the present
results, i.e., the condition that our formula of the threshold
current density works better than the linear analysis to estimate
the instability threshold, and the condition to stabilize the
out-of-plane self-oscillation.

This paper is organized as follows. In Sec. II, we show the
numerical simulation results near the instability of the initial
state. We also solve the linearized LLG equation analytically.
In Sec. III, we derive a theoretical formula of the threshold
current and confirm its validity by comparing the results
obtained from the formula with the numerical simulation. The
conclusion is summarized in Sec. IV.

II. NUMERICAL SIMULATION AND LINEAR ANALYSIS

In this section, we investigate the threshold current density
which is necessary to destabilize the magnetization in the
stable state by numerically solving the LLG equation. We also
compare the numerical result with the analytical values of the
critical current density jc estimated from the linearized LLG
equation. Throughout this paper, the term “threshold current”
indicates the current destabilizing the stable state calculated
in the numerical simulation or from the formula which is also
well consistent with the numerical simulation, while the term
“critical current” is a current estimated from the linearized
LLG equation.
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FIG. 1. (a) Schematic view of the system considered in this study. The unit vectors pointing in the magnetization direction of the free and
pinned layers are denoted as m and p, respectively. The positive electric current corresponds to the electrons flowing from the free layer to the
pinned layer. The external field lies in the xz plane. (b) Schematic views of the constant energy curves.

A. System description

The system we consider is schematically shown in Fig. 1(a).
The z axis is perpendicular to the film plane. The unit vectors
pointing in the magnetization direction of the free and pinned
layers are denoted as m and p, respectively. The magnetization
of the pinned layer points to the positive z direction, p =
+ez. The positive current is defined as the electrons flowing
from the free layer to the pinned layer. We use the macrospin
approximation to the free layer. The magnetization dynamics
is described by the LLG equation

dm
dt

= −γ m × H − γHsm × (p × m) + αm × dm
dt

, (1)

where γ and α are the gyromagnetic ratio and the Gilbert
damping constant, respectively. We use the approximation
1 + α2 � 1 because the damping constant for typical ferro-
magnets is on the order of 10−2−10−3 [22,23]. The spin-torque
strength is

Hs = �ηj

2eMd
, (2)

where η is the spin polarization of the electric current
density j , while M and d are the saturation magnetization
and the thickness of the free layer, respectively. We neglect
the asymmetry of the spin torque described by the term
1/(1 + λm · p) [1] here, for simplicity. The critical current
density in the presence of this factor, as well as its role, is
briefly summarized in Appendix A. The magnetic field H
consists of the demagnetization field along the z direction,
−4πM , and the applied Happl expressed as

H = Happl − 4πMmzez. (3)

The applied field Happl is tilted from the z axis and assumed to
lie in the xz plane for convention, i.e.,

Happl = Happl sin θH ex + Happl cos θH ez, (4)

where Happl and θH are the amplitude and the tilted angle from
the z axis of the applied field, respectively. The magnetic field
relates to the energy density E via E = −M

∫
dm · H, which

in the present system is

E = −MHappl(sin θHmx + cos θHmz) + 2πM2m2
z. (5)

Here, we assume that Happl < 4πM , and therefore, the stable
state, i.e., the minimum of Eq. (5), locates close to the x axis.
Note that the magnetization dynamics described by Eq. (1) can
be regarded as the motion of a point particle on a unit sphere.

The values of the parameters used in this section are
brought from typical experiments [24], M = 1300 emu/c.c.,
γ = 1.764×107 rad/(Oe s), α = 0.01, d = 2 nm, and η = 0.5.
The magnitude of the applied field is Happl = 650 Oe, while the
field angle is θH = 5◦. Figure 1(b) shows the constant energy
curves of Eq. (5) with these parameters. Note that the stable
(minimum energy) state, the saddle point, and the unstable
(local maximum) states of the energy density E all exist in
the xz plane. The stable state locates in the positive x region,
while the saddle point exists in the negative x region. Also, the
unstable states slightly shift from the z axis due to the applied
field. We denote the energies corresponding to the stable state,
the saddle point, and the unstable states as Emin, Esaddle, and
Emax±, where the subscript ± distinguishes the unstable states
in the positive (+) and negative (−) z region. For θH �= 90◦,
Emax+ �= Emax−. The constant energy curves in Fig. 1(b) are
classified to the ellipses around the x and z axes. The energy
density E corresponding to the curves around the x axis is
in the region of Emin � E � Esaddle, while that for the curves
around the z axis is in the region of Esaddle < E � Emax±.

B. Linear analysis

The conventional method to estimate the minimum current
density to destabilize the stable state is linearizing the LLG
equation and investigating the oscillating solution of the
magnetization with a complex frequency [25–27]. In this
section, we derive the theoretical formula of the critical current
density and estimate its value.

We introduce the zenith and azimuth angles (θ,ϕ) as m =
(sin θ cos ϕ, sin θ sin ϕ, cos θ ) to identify the magnetization
direction. In particular, the angles corresponding to the stable
state are denoted as (θ0,ϕ0). In the present case, ϕ0 = 0, and
θ0 is determined by the condition (∂E/∂θ )ϕ=ϕ0 = 0,

Happl sin(θH − θ0) + 4πM sin θ0 cos θ0 = 0. (6)

We introduce a new coordinate XYZ where the Z axis is
parallel to the magnetization in the stable state (θ0,ϕ0). A small
amplitude oscillation of the magnetization around a stationary
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point is described by the following linearized LLG equation
(the detail of the derivation is shown in Appendix A)

1

γ

d

dt

(
mX

mY

)
+ M

(
mX

mY

)
= Hs

(
sin θ0

0

)
, (7)

where

M =
(

αHX − Hs cos θ0 HY

−HX αHY − Hs cos θ0

)
(8)

with HX = Happl cos(θH − θ0) − 4πM cos 2θ0 and HY =
Happl cos(θH − θ0) − 4πM cos2 θ0. The solution of Eq. (7)
has a form of exp{γ [±i

√
det[M] − (Tr[M/2])2 − Tr[M]/2]t}.

The critical current density is defined as the current density
satisfying Re[±i

√
det[M] − (Tr[M/2])2 − Tr[M]/2] = 0. For

a small α, this condition is approximated to Tr[M/2] = 0
because (Tr[M/2])2/det[M] ∼ α2 � 0. Therefore, the critical

current density becomes

jc = 2αeMd

�η cos θ0

[
Happl cos(θH−θ0)−4πM

cos2 θ0+ cos 2θ0

2

]
.

(9)

Substituting the above parameters, we find that θ0 � 87.7◦ and
jc = 328×106A/cm2.

C. Numerical simulation

Figures 2(a)–2(d) show the magnetization dynamics on the
unit sphere and time developments of the components of m,
obtained by numerically solving the LLG equation, Eq. (1).
The current density is (a) 7.2, (b) 7.3, (c) −7.2, and (d)
−7.3×106 A/cm2. As shown, when the current magnitude
|j | is smaller than 7.2 × 106 A/cm2, the magnetization finally
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FIG. 2. The trajectories of the magnetization dynamics on the unit spheres. The time evolutions of the magnetization components are also
shown. The values of the current density j are (a) 7.2, (b) 7.3, (c) −7.2, and (d) −7.3×106 A/cm2.
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moves to another point and stops its dynamics. On the other
hand, the magnetization shows the self-oscillation for |j | �
7.3×106A/cm2. The z component of the magnetization moves
to the positive (negative) z direction for the negative (positive)
current because the negative (positive) current prefers m to be
parallel (antiparallel) to the magnetization of the pinned layer,
p = +ez.

Three important conclusions are obtained from Fig. 2.
First, the threshold current density to destabilize the initial
stable state, � ±7.3×106 A/cm2, is two orders of magnitude
smaller than the critical current density, jc = 328×106 A/cm2,
estimated from the linearized LLG equation. Second, both
positive and negative currents can destabilize the initial state,
while the sign of jc is fixed (positive for θH < 90◦). Third, the
magnetization precesses around the z axis above the threshold.
Note that the self-oscillation occurs on the trajectory close to
the constant energy curve. Although the energy landscape has
the constant energy curves around the x axis, as shown in
Fig. 1(b), an in-plane precession around the x axis does not
appear. In the next section, we explain the physical meanings
of such behavior.

III. THEORETICAL FORMULA
OF THRESHOLD CURRENT

The results discussed in the previous section indicates that
the linear analysis is no longer applicable to evaluate the
instability threshold, although the linear analysis has been
widely used to analyze the spin torque induced magnetization
dynamics [25–27]. In this section, we clarify the reason for
the breakdown of the linear analysis and derive a theoretical
formula of the threshold current density by focusing on the
energy gain of the free layer generated from the work done by
spin torque.

A. LLG equation averaged over constant energy curves

Here, let us discuss the averaging technique of the LLG
equation on the constant energy curves. This method has
been used in several works to analyze the self-oscillation and
the thermally activated magnetization switching induced by
spin torque, the microwave assisted magnetization reversal,
and so on [28–40]. As will be discussed below, the critical
current density jc introduced above corresponds to a special
limit of this averaging technique. Therefore, by reviewing the
derivation of the averaged LLG equation, the reason why
the linearized LLG equation does not work to estimate the
instability condition accurately will be clarified.

The self-oscillation is a steady precession on a constant
energy curve of E excited by the magnetic field torque
(−γ m×H). To maintain the precession, the spin torque should
balance with the damping torque. Note however that the
spin torque and the damping torque have different angular
dependences. Therefore, strictly speaking, the spin torque
may overcome the damping torque at certain points on
the precession trajectory, the damping torque may however
overcome the spin torque at other points. The self-oscillation
is maintained when the shift from the constant energy curve
due to the imbalance between the spin torque and the damping
torque is sufficiently small. In that case, the magnetization

can return back to the original constant energy curve during
the precession. When this condition is satisfied, we obtain the
following averaged LLG equation,∮

dt
dE

dt
= Ws(E) + Wα(E), (10)

where the integral range is a precession period on a constant
energy curve of E. The work done by spin torque and the
dissipation due to the damping during the precession are

Ws =
∮

dtγMHs[p · H − (m · p)(m · H)], (11)

Wα = −
∮

dtαγM[H2 − (m · H)2], (12)

respectively. Since the energy density averaged over the
precession is conserved in the self-oscillation state, the self-
oscillation is described by the equation

∮
dt(dE/dt) = 0.

Therefore, the current density necessary to excite a self-
oscillation on a certain constant energy curve of E is

j (E) = 2αeMd

�η

∮
dt[H2 − (m · H)2]∮

dt[p · H − (m · p)(m · H)]
. (13)

The explicit form of j (E) for an arbitrary E is obtained,
in principle, by substituting the solution of the precession
trajectory on a constant energy curve, which is described by
dm/dt = −γ m×H. However, the solution is hardly obtained
because the equation is a nonlinear equation. Therefore, we
evaluate the integrals in Eq. (13) numerically, except for special
cases mentioned below (see also Appendix B). The technique
to evaluate the integrals in Eq. (13) is shown, for example, in
Ref. [38]. The damping constant α is assumed to be scalar in
the above formulation. On the other hand, a tensor damping
was proposed in Ref. [41]. The presence of the tensor damping
was also suggested in the spin-torque problem [42]. The effect
of the tensor damping can be taken into account by replacing
α in Eq. (12) with the tensor damping; see Appendix C of
Ref. [38].

B. Derivation of threshold current

Note that the critical current density jc, Eq. (9), obtained
from the linearized LLG equation relates to Eq. (13) via

jc = lim
E→Emin

j (E). (14)

Therefore, the fact that the critical current density jc is quite
larger than the threshold current density found in the numerical
simulation indicates the breakdown of applying averaged LLG
equation.

An important assumption in the averaged LLG equation
is that the magnitudes of the spin torque and the damping
torque are sufficiently small. Thus, a shift of the magnetization
from a constant energy curve due to the imbalance between
these torques is also small. However, this assumption is not
satisfied in the present case. Figure 3 shows the trajectory
of the magnetization dynamics obtained from the numerical
simulation, where the current density j = −7.3×106 A/cm2

is the threshold value found in Fig. 2(d). We also show the
constant energy curve including the saddle point md. We
should remind the readers that there are two kinds of constant
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the constant energy curve of Esaddle and locating in the xz plane.

energy curves, as shown in Fig. 1(b), i.e., the curves around
the x axis corresponding to Emin � E � Esaddle and the curves
around the z axis corresponding to Esaddle < E � Emax±.
The constant energy curve of Esaddle separates these in-plane
and out-of-plane regions. As shown in Fig. 3, while the
magnetization moves from the initial state to a point close to
the saddle point, the magnetization crosses the constant energy
curves of Esaddle, and transfers from the in-plane region to the
out-of-plane region. A periodic oscillation around the stable
state (x axis) is not excited. This result is the evidence that
the assumption used in Eq. (13), as well as Eq. (9), is broken.
Therefore, the critical current density jc does not work to
estimate the instability of the magnetization around the stable
state accurately.

The inapplicability of the linearized LLG equation also
relates to the value of the damping constant α. Note that both
the spin torque and the damping torque move the magnetization
from a constant energy curve, by either supplying or dissipat-
ing the energy from the free layer. Therefore, the averaging
technique of the LLG equation, as well as the linearization
of the LLG equation, works well for low damping case. The
fact that the linearized LLG equation could not be applied in
the above numerical simulation indicates that the value of the
damping constant in the present system is high and that the
precession around the stable state is not stabilized. The range
of the damping constant where the linearized LLG equation
will be applicable is discussed in Sec. III C below.

Figure 3 suggests that the magnetization can climb up the
energy barrier Esaddle − Emin by absorbing energy due to the
work done by the spin torque during a time shorter than
a precession period around the stable state. Therefore, the
threshold current density can be defined as a current density
satisfying the following equation,∫ md

mmin

dt
dE

dt
= Esaddle − Emin, (15)

where mmin corresponds to the initial stable state. Strictly
speaking, the exact solution of the LLG equation is necessary
to evaluate the threshold current density from Eq. (15).
However, the LLG equation is a nonlinear equation, and it is

difficult to obtain the exact solution. Instead, we approximate
Eq. (15) as ∫ md

md±
dt

dE

dt
� Esaddle − Emin, (16)

where md± are the points on the constant energy curve of
Esaddle and are located in the xz plane; see Fig. 3. We note
that Eq. (15) is well approximated by Eq. (16) when md±
locate close to mmin, which means that Happl/(4πM) � 1.
Note that the left hand side of Eq. (16) can be evaluated in
a similar manner to calculating Eq. (13) because the integral
range is on the constant energy curve. However, the integral
range is limited to [md±,md] in Eq. (16), while the range
is over a periodic precession in Eq. (13). The values of the
integrals for these different regions are, in general, different.
Since the value of the integral in Eq. (16) is determined by the
energy landscape, and the time-dependent solution of Eq. (1)
is unnecessary, the integral in Eq. (16) is more easily evaluated
than that in Eq. (15) [31].

The current density satisfying Eq. (16) is given by

jth± = 2αeMd

�η

∫ md

md±
dt[H2 − (m · H)2]∫ md

md±
dt[p · H − (m · p)(m · H)]

+ 2ed

γ �η

Esaddle − Emin∫ md

md±
dt[p · H − (m · p)(m · H)]

. (17)

Equation (17) is the theoretical formula of the threshold current
density and is the main result in this paper. This equation
provides the estimation of the threshold current density with
high accuracy. For example, the values of jth± with the
parameters used in Fig. 2 are jth+ = −7.7×106A/cm2 and
jth− = 7.6×106A/cm2, which show good agreement with the
numerical results in Fig. 2. These values are estimated for
θH = 5◦. Below, we show that the agreement between Eq. (17)
and the numerical simulation is obtained also for different
values of θH ; see Fig. 5. Note that |jth+| �= |jth−| because
the magnetic field pointing in the positive z direction breaks
the symmetry between the magnetization dynamics moving
to the positive and negative z directions, although the differ-
ence is small. We emphasize that Eq. (17) consists of two
parts. One is proportional to α because this term arises from
the energy dissipation due to the damping. The other is, on the
other hand, independent of α but proportional to the energy
barrier Esaddle − Emin.

Equation (17) can be simplified into a different form
for θH = 90◦ (see also Appendix C). In this case, Esaddle =
MHappl, Emin = −MHappl, and md± = (

√
1 − z2

d±,0,zd±)
with zd± = ±2

√
h(1 − h) and h = Happl/(4πM). Then, we

find that

∫ md

md±
dt[p · H − (m · p)(m · H)] = ∓π

γ
(1 − h)2, (18)∫ md

md±
dt[H2 − (m · H)2]

= 16πM

3γ

√
h(1 − h)(3 − 5h + 2h2). (19)
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Therefore, Eq. (17) becomes

jth±(θH = 90◦)

= ∓2eM2d

�η

[
16α

3

√
h

1 − h
(3 − 2h) + 8h

(1 − h)2

]
. (20)

Note that jth± → 0 in the limit of h = Happl/(4πM) → 0,
indicating that infinitesimal current can destabilize the stable
state in the absence of the applied field.

We note that both the positive and negative currents can
destabilize the stable state in our picture, contrary to jc having
a fixed sign (positive for θH < 90◦). The physical meaning of
this difference is as follows. Since the damping torque always
dissipates energy from the free layer, positive energy should
be supplied from the work done by spin torque to destabilize
the stable state. In the derivation of jc, a steady precession
around the stable state is assumed. On the precession trajectory,
the spin torque has a component antiparallel to the damping
torque when mz � 0 and has a component parallel to the
damping torque when mz � 0, for a positive current. The spin
torque supplies energy to the free layer in the former case but
dissipates energy from the free layer in the latter case. Note
that the trajectory slightly shifts to the positive direction due
to the magnetic field having the positive z component, i.e.,
the trajectory is not symmetric with respect to the xy plane.
Then, the work done by spin torque during the precession
becomes finite and positive. The spin torque overcomes the
damping torque when the current density becomes larger than
jc. When the current direction is reversed, the work done by
spin torque becomes negative, and thus, the spin torque cannot
overcome the damping. As a result, the sign of jc is positive.
However, as emphasized above, a periodic precession around
the easy axis assumed in the derivation of jc is not excited
in the present case. Instead, we focused on the magnetization
dynamics from md± to md. The work done by spin torque
during [md−,md] becomes positive when the current has
the positive sign. Similarly, the work during [md+,md] is
positive when the current sign is negative. Therefore, both
the positive and negative currents can destabilize the stable
state by compensating the damping torque. Note also that
the magnetization crosses the constant energy curve of Esaddle

during a time shorter than a precession period around the
x axis. Therefore, an in-plane self-oscillation on a constant
energy curve of Emin � E � Esaddle around the x axis cannot
be excited in the present case.

C. Applicability of the present theory

There are two characteristic current scales, jc and jth±,
related to the magnetization dynamics, as discussed above.
These two currents are defined from different mechanisms of
the instability of the stable state. The instability condition of a
precession around the stable state gives jc. On the other hand,
jth± was derived by the condition that the energy gain by the
spin torque during a time shorter than the precession period
becomes larger than the energy barrier between the stable state
and the saddle point. The initial state is destabilized when the
current magnitude becomes larger than min[jc,jth±]. For the
present parameters, jth± is smaller than jc, and therefore, jth±

determines the instability threshold. The condition that jth±
works well to estimate the instability of the stable state can be
expressed as

jth±
jc

< 1. (21)

This is another important equation in this paper, guaranteeing
the validity of our approach. Whether Eq. (21) is satisfied
or not depends on the material parameters, as well as the
applied field magnitude and angle. If Eq. (21) is unsatisfied, jc

determines the instability threshold, the magnetization moves
to the out-of-plane region after the magnetization precesses
around the in-plane axis.

Note that the first term on the right hand side of Eq. (17)
is proportional to the damping constant α, while the second
term is independent of α. On the other hand, Eq. (9) is
proportional to α. Therefore, Eq. (21) is not satisfied when
α becomes sufficiently small. When Eq. (21) is unsatisfied,
jc determines the instability of the stable state. Then, we can
discuss the minimum value of α guaranteeing the applicability
of Eq. (21) [37]. The value α which falls off from the
condition in Eq. (21) for the parameters used in Fig. 2 is
α < 1.7×10−4. This value of α is at least one to two orders of
magnitude smaller than the experimentally reported values for
conventional ferromagnets used in spin-torque oscillator, such
as CoFeB [22,23]. Therefore, we consider that jth± determines
the instability of the stable state for typical experiments.

D. In the presence of the angular dependence of the spin torque

When the applied field points to the in-plane direction,
θH = 90◦, the stable state corresponds to θ0 = 90◦, and the
critical current density in Eq. (9) diverges. This is because
the work done by spin torque during the precession around
the stable state becomes zero. Therefore, Eq. (21) is always
satisfied for θH = 90◦.

The divergence of jc appears at a different field angle when
the angular dependence of the spin torque is taken into account,
although this term is neglected in the above calculation, for
simplicity. In this case, Eq. (2) is replaced by

Hs = �ηj

2e(1 + λm · p)Md
. (22)

Then, the critical current density becomes

jc = 2αeMd

�ηP (θ0)

[
Happl cos(θH−θ0)−4πM

cos2 θ0+ cos 2θ0

2

]
,

(23)

where P (θ0) is given by

P (θ0) = cos θ0

1 + λ cos θ0
+ λ sin2 θ0

2(1 + λ cos θ0)2
, (24)

see Appendix A. The divergence of the critical current density,
Eq. (23), occurs at the angle θ0 satisfying P (θ0) = 0. In
particular, when θH = 90◦, Eqs. (23) becomes

jc(θH = 90◦) = 4αeMd

�ηλ
(Happl + 2πM). (25)
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On the other hand, Eq. (17) is generalized for finite λ as

jth± = 2αeMd

�η

∫ md

md±
dt[H2 − (m · H)2]∫ md

md±
dt[p · H − (m · p)(m · H)]/(1 + λm · p)

+ 2ed

γ �η

Esaddle − Emin∫ md

md±
dt[p · H − (m · p)(m · H)]/(1 + λm · p)

.

(26)

Equation (26) for θH = 90◦ is

jth±(θH = 90◦) = ∓2eMd

�η
4πM

N
D±

, (27)

where N and D± are

N = 4λ2[2α(3 − 2h)(1 − h)
√

h(1 − h) + 3h]

×
√

1 − 4λ2h(1 − h) (28)

D± = 3{
√

1 − 4λ2h(1 − h)[π ∓ 4λ
√

h(1 − h)]

−2[1 − 2λ2(1 − h)] cos−1[±2λ
√

h(1 − h)]}, (29)

see Appendix B. In the presence of a finite λ, |jth+| �= |jth−|
even for θH = 90◦. Eq. (27) reproduces Eq. (20) in the limit
of λ → 0. The currents, jc and jth±, in Eq. (21) should be
replaced by Eqs. (23) and (26) in the presence of the angular
dependence of the spin torque.

E. Validity of Eq. (17) and condition to excite
out-of-plane self-oscillation

In this section, we confirm the validity of Eq. (17) for a
wide range of θH by comparing with the numerical simulation
of the LLG equation. Before the comparison, we briefly
discuss the definition of the threshold current density estimated
from the numerical simulation. We emphasize that jth± just
determines the instability of the stable state and does not
guarantee the existence of the out-of-plane self-oscillation.
The out-of-plane self-oscillation is excited when a condition,

j (E)

jth±
> 1, (30)

is satisfied [39], where the range of E is Esaddle < E � Emax±.
Note that the reason why the out-of-plane self-oscillations
appear in Figs. 2(b) and 2(d) is that there exists a certain E

satisfying Eq. (30). On the other hand, when Eq. (30) is not
satisfied for any value of E, the magnetization moves to the
point close to −(+)ez for a positive (negative) current above
jth± because the spin-torque magnitude becomes sufficiently
strong, and the magnetization eventually becomes parallel
or antiparallel to the magnetization of the pinned layer,
p = +ez. Figure 4 shows an example of such dynamics,
where θH = 20◦ and the current density is close to the
threshold value, −27.3×106A/cm2, for this θH . As shown,
the magnetization finally becomes almost parallel to the z

axis. Such magnetization dynamics was observed experimen-
tally [14]. The threshold current density evaluated from the
numerical simulation should be defined as the current density
above which the magnetization shows a stable out-of-plane
self-oscillation or the magnetization moves to the points close
to ±ez. The detail of the method numerically defining the
threshold current density is summarized in Appendix D.

We study the validity of Eq. (17) by comparing with the
threshold current estimated by numerically solving Eq. (1)
for several values of θH and Happl. The threshold current
density estimated from the numerical simulation of the LLG
equation is shown by dots in Fig. 5(a), where the magnetic
field angle θH varies in the range of 0 < θH � 90◦ while
the magnitude Happl is fixed to 650 Oe. We also shows the
value of jth± evaluated from Eq. (17) by solid lines. We
find a good agreement between the numerical and theoretical
results, supporting the validity of Eq. (17). The comparison
between the numerically evaluated instability threshold and
the analytical formula, Eq. (20), for several values of the
field magnitude Happl is shown in Fig. 5(b), where the field
angle is fixed to θH = 90◦. The theoretical formula agrees
with the numerical result when Happl/(4πM) � 1, while
the numerical result becomes different with the theoretical
formula for relatively large magnetic field. This is because the
derivation of the theoretical formula, Eq. (17), assumes that
Happl/(4πM) � 1, as mentioned below Eq. (16). The current
magnitude above which the difference between the theoretical
and numerical results appears is on the order of 108 A/cm2,
which is one to two orders of magnitude larger than the
current magnitude used in typical experiments [14,18,21,24].
Therefore, we consider that the present formula works well to
analyze experiments for wide range of the applied field angle
and magnitude.

mx
10-1

mz 0

1

-1

mz

mx

0

1

-1
-1

1
0

1

-1

0
my

θH=20°, j = -27.3 (MA/cm2)

time (ns)
0 20 40 60 80 100

-1

0

1

mx

my

mz

FIG. 4. The trajectories of the magnetization dynamics on the unit spheres and the time evolutions of the magnetization components for
θH = 20◦ and j = −27.3×106 A/cm2.
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(Happl = 650 Oe) and (b) the magnitude Happl (θH = 90◦).

We notice that j (E) is an increasing function of E for the
out-of-plane self-oscillation when λ = 0, as in the zero field
case [12,17]. Then, there is a certain E satisfying Eq. (30) if

ju±
jth±

> 1, (31)

is satisfied, where ju± are Eq. (13) at the unstable states, E =
Emax±,

ju± ≡ lim
E→Emax±

j (E). (32)

The dependences of jth± and ju± on the field angle θH and
the magnitude Happl are also shown in Figs. 5(a) and 5(b),
respectively. It is shown that ju± is almost independent of
θH and Happl, while jth± increases with increasing these
parameters. For example, we find that ju±/jth± > 1 for
θH < 20◦. This result indicates that the out-of-plane self-
oscillation can be excited for θH < 20◦ for the present
parameters. This finding is consistent with the numerical
results shown in Figs. 2 and 4, supporting the validity of
our argument. We notice that the linearized LLG equation is
useful to estimate limE→Emax± j (E) by replacing (θ0,ϕ0) with
the zenith angle corresponding to the maximum point; see
Eq. (A15). In particular, when θH = 90◦, the unstable states lo-
cate at mu+ = (−Happl/(4πM),0,

√
1 − [Happl/(4πM)]2) and

mu− = (−Happl/(4πM),0, − √
1 − [Happl/(4πM)]2). Then,

we find that (see also Appendix B)

ju±(θH = 90◦) = ∓ 2αeMd

�η
√

1 − h2
4πM

(
1 − h2

2

)
. (33)

This equation indicates that ju±(θH = 90◦) � ∓ [2αeMd/

(�η)]4πM for h � 1, i.e., ju± is almost independent of Happl,
which is consistent with the result shown in Fig. 5(b).

IV. CONCLUSION

In conclusion, we studied the theoretical conditions to
excite the self-oscillation in a spin-torque oscillator consisting
of an in-plane magnetized free layer and a perpendicularly
magnetized pinned layer in the presence of an external
magnetic field pointing in an arbitrary direction. The numerical

simulation in Fig. 2 showed that the initial stable state is
destabilized by current density much smaller than the critical
current density estimated from the linearized LLG equation,
Eq. (9). The fact implies that the linearized LLG equation is
no longer applicable to evaluate the instability threshold in
the present system. Then, we derived the theoretical formula
of the threshold current density, Eq. (17), by focusing on
the transition of the magnetization from the stable state
to the out-of-plane precession during a time shorter than
a precession period around the stable state. The derived
formula consists of two parts, where one is proportional
to the damping constant α, while the other is independent
of α but proportional to the energy barrier Esaddle − Emin

for the transition. A good agreement between the numerical
simulation and our formula, Eq. (17), is obtained in Fig. 5,
indicating the validity of the formula. The condition that our
formula of the threshold current density works better than the
linear analysis to instability threshold is Eq. (21). We also
derived the theoretical condition, Eq. (30), to stabilize the
out-of-plane self-oscillation.
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APPENDIX A: DERIVATION OF LINEARIZED
LLG EQUATION

In this Appendix, we show the detail of the derivation of
Eq. (7). For generality, we consider a ferromagnet having
uniaxial anisotropies along the x, y, and z axes with an external
magnetic field applied in an arbitrary direction. The magnetic
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field is given by

H =
⎛
⎝Happl sin θH cos ϕH − 4πMÑxmx

Happl sin θH sin ϕH − 4πMÑymy

Happl cos θH − 4πMÑzmz

⎞
⎠. (A1)

The generalized demagnetization coefficient Ñi (i = x,y,z)
is defined as 4πMÑi = 4πMNi − HKi , where 4πMNi is
the shape anisotropy (demagnetization) field with Nx + Ny +
Nz = 1, while HKi is the crystalline or interface anisotropy
field. The energy density E = −M

∫
dm · H is

E

M
= −Happl[sin θH sin θ cos(ϕH − ϕ) + cos θH cos θ ]

+ 2πMÑx sin2 θ cos2 ϕ + 2πMÑy sin2 θ sin2 ϕ

+ 2πMÑz cos2 θ. (A2)

The system in the main text corresponds to the case of Ñx =
Ñy = 0, Ñz = 1, and ϕH = 0.

Since we are interested in a small oscillation of the
magnetization around the stable state, the zenith and azimuth
angles corresponding to the stable state should be identified.
The stable state is determined by the conditions that ∂E/∂θ =
∂E/∂ϕ = 0, which are explicitly given by

Happl[sin θH cos θ cos(ϕH − ϕ) − cos θH sin θ ]

− 4πMÑx sin θ cos θ cos2 ϕ − 4πMÑy sin θ cos θ sin2 ϕ

+ 4πMÑz sin θ cos θ = 0, (A3)

Happl sin θH sin θ sin(ϕH−ϕ)

+4πMÑx sin2 θ sin ϕ cos ϕ−4πMÑy sin2 θ sin ϕ cos ϕ=0.

(A4)

Let us denote the zenith and azimuth angles satisfying
Eqs. (A3) and (A4) as (θ0,ϕ0). As mentioned in the main text,
we introduce the XYZ coordinate where the Z axis is parallel
to the stable state (θ0,ϕ0). The rotation to the xyz coordinate
to the XYZ coordinate is described by the rotation matrix

R =
⎛
⎝cos θ0 0 − sin θ0

0 1 0
sin θ0 0 cos θ0

⎞
⎠

⎛
⎝ cos ϕ0 sin ϕ0 0

− sin ϕ0 cos ϕ0 0
0 0 1

⎞
⎠.

(A5)

The relations between the components of m in the xyz and
XYZ coordinates are mx = mX cos θ0 cos ϕ0 − mY sin ϕ0 +
mZ sin θ0 cos ϕ0, my = mX cos θ0 sin ϕ0 + mY cos ϕ0 + mZ

sin θ0 sin ϕ0, mz = −mX sin θ0 + mZ cos θ0. Also, the
magnetic field in the XYZ coordinate is

H =
⎛
⎝ HXXmX + HXY mY

HYXmX + HYY mY

HZXmX + HZY mY + HZZ

⎞
⎠, (A6)

where

HXX = − 4πMÑx cos2 θ0 cos2 ϕ0 − 4πMÑy cos2 θ0 sin2 ϕ0

− 4πMÑz sin2 θ0, (A7)

HXY = HYX = −4πM(Ñy − Ñx) cos θ0 sin ϕ0 cos ϕ0, (A8)

HYY = −4πMÑx sin2 ϕ0 − 4πMÑy cos2 ϕ0, (A9)

HZX = −4πMÑx sin θ0 cos θ0 cos2 ϕ0

−4πMÑy sin θ0 cos θ0 sin2 ϕ0

+4πMÑz sin θ0 cos θ0, (A10)

HZY = −4πM(Ñy − Ñx) sin θ0 sin ϕ0 cos ϕ0, (A11)

HZZ = appl[sin θH sin θ0 cos(ϕH − ϕ0) + cos θH cos θ0]

− 4πMÑx sin2 θ0 cos2 ϕ0 − 4πMÑy sin2 θ0 sin2 ϕ0

− 4πMÑz cos2 θ0. (A12)

Similarly, the magnetization of the pinned layer p =
(px,py,pz) = (sin θp cos ϕp, sin θp sin ϕp, cos θp) in the xyz

coordinate transforms in the XYZ coordinate to

p ≡
⎛
⎝pX

pY

pZ

⎞
⎠ =

⎛
⎝sin θp cos θ0 cos(ϕp − ϕ0) − cos θp sin θ0

sin θp sin(ϕp − ϕ0)
sin θp sin θ0 cos(ϕp − ϕ0) + cos θp cos θ0

⎞
⎠.

(A13)

Now we consider a small oscillation of the magnetization
around the stable state. Using the approximations mZ � 1 and
|mX|,|mY | � 1, the LLG equation is linearized as

1

γ

d

dt

(
mX

mY

)

+
(−HYX − HspZ + αHX HY − αHXY

−HX − αHYX HXY − HspZ + αHY

)(
mX

mY

)

= −Hs

(
pX

pY

)
, (A14)

where HX = HZZ − HXX and HY = HZZ − HYY . The terms
proportional to αHs are neglected because these terms are on
the order of α2. The condition that the trace of the coefficient
matrix is zero gives

jc = 2αeMd

�ηpZ

(
HX + HY

2

)
. (A15)

Substituting Ñx = Ñy = 0, Ñz = 1, ϕH = 0, and θp = 0,
Eq. (A15) reproduces Eq. (9). On the other hand, in
the case of the in-plane magnetized system considered in
Ref. [26], i.e., 4πMÑx = −HK, Ñy = 0, Ñz = 1, θH = 90◦,
ϕH = 0, θp = 90◦, and ϕp = 0, we find that HXX = −4πM ,
HYY = 0, and HZZ = Happl + HK, where HK is the in-plane
anisotropy. Then, the critical current density becomes jc =
[2αeMd/(�η)](Happl + HK + 2πM), which is consistent with
the result in Ref. [26].

The angular dependence of the spin torque, characterized
by the factor 1/(1 + λm · p), can be taken into account as
follows. As mentioned in the main text, Hs in this case is given
by Eq. (22). In this case, Eq. (2) is replaced by Eq. (22). The
factor 1/(1 + λm · p) is linearized as

1

1 + λm · p
= 1

1 + λmZpZ

1

1 + λ(mXpX+mY pY )
1+λmZpZ

� 1

1 + λpZ

[
1 − λ(mXpX + mY pY )

1 + λpZ

]
. (A16)
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We introduce the following notations,

H (0)
s = �ηj

2e(1 + λpZ)Md
, (A17)


 = λ

1 + λpZ

. (A18)

Then, Eq. (A14) becomes

1

γ

d

dt

(
mX

mY

)
+ M

(
mX

mY

)
= −H (0)

s

(
pX

pY

)
, (A19)

where the components of the 2×2 matrix M are

M1,1 = −HYX − H (0)
s

(
pZ + 
p2

X

) + αHX, (A20)

M1,2 = HY − H (0)
s 
pXpY − αHXY , (A21)

M2,1 = −HX − H (0)
s 
pXpY − αHYX, (A22)

M2,2 = HXY − H (0)
s

(
pZ + 
p2

Y

) + αHY . (A23)

Then, the critical current determined by the condition
Tr[M] = 0 is

jc = 2αe(1 + λpZ)Md

�η[pZ + 
(1−p2
Z )

2 ]

(
HX + HY

2

)
. (A24)

Equation (23) is obtained from Eq. (A24) by substituting
Ñx = Ñy = 0, Ñz = 1, ϕH = 0, and θp = 0,

APPENDIX B: DERIVATIONS OF EQS. (27) AND (33)

Let us show the derivation of Eq. (33). As mentioned in
the main text, ju± can be obtained from the linearized LLG
equation. Here, we show that ju± can also be obtained as
ju± = limE→Emax± j (E). This method provides an example of
the calculation of Eq. (13).

Note that the maximum energies located at m � ±ez,
Emax+ = Emax−, are identical for θH = 90◦, and the corre-
sponding energy density is Emax = (4πM2/2)(1 + h2). Then,
let us investigate limE→Emax j (E). Equation (13) can be
rewritten as

j (E) = 2αeMd

�η

Nα

Ns
, (B1)

where Ns and Nα are, respectively, given by

Ns = γ

∫
dt[p · H − (m · p)(m · H)]

= − 1

h

∫
dmz

my

[
mz + (

hmx − m2
z

)
mz

]

=
∫

dmz

m3
z − 2(1 − ε)mz√(
a − m2

z

)(
m2

z − b
) , (B2)

Nα = γ

∫
dt[H2 − (m · H)2]

= (4πM)2γ

∫
dt

[
h2 + m2

z − (
hmx − m2

z

)2]

= −2πM

∫
dmz

m4
z − 4(1 − ε)m2

z + 4(ε2 − h2)√(
a − m2

z

)(
m2

z − b
) . (B3)
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FIG. 6. The examples of the out-of-plane precession trajectories
(constant energy curves), where the arrows indicate the precession
directions. The constant energy curves cross the xz plane at mz =
±√

a, ± √
b.

Here, we use the relation dmz/dt = γHapplmy obtained from
the LLG equation on a constant energy curve, dm/dt =
−γ m×H, with θH = 90◦ [38]. The integral ranges of these
integrals are discussed below. Equations (11) and (12) relate to
Eqs. (B2) and (B3) via Ws = 2MHsNs and Wα = −2αMNα ,
where the numerical factor 2 appears by restricting the integral
regions for my > 0, according to the symmetry [38]. The
parameters a and b are given by

a = 2(ε − h2 + h
√

1 + h2 − 2ε), (B4)

b = 2(ε − h2 − h
√

1 + h2 − 2ε), (B5)

where ε = E/(4πM2) is the normalized energy density. The
physical meanings of a and b are as follows. Figure 6 shows the
examples of the out-of-plane precession trajectories (constant
energy curves) in the regions of mz > 0 and mz < 0. The
precession directions are indicated by the arrows. The constant
energies curves cross the xz plane at the points mz = ±√

a, ±√
b. When we focus on the out-of-plane precession for mz > 0,

the integral ranges of Eqs. (B2) and (B3) are
√

b � mz � √
a.

On the other hand, for the out-of-plane precession for mz < 0,
the integral range is −√

a � mz � −√
b. Below, we calculate

Eqs. (B2) and (B3) for mz < 0. For mz > 0, the sign of Ns is
changed.

We notice that Eqs. (B2) and (B3) are expressed as Ns =
I3 − 2(1 − ε)I1 and Nα = −2πM[I4 − 4(1 − ε)I2 + 4(ε2 −
h2)I0], respectively, where In (n = 0,1,2,3,4) is

In =
∫ −√

b

−√
a

dz
zn√

(a − z2)(z2 − b)

=
∫ 1

0
ds

(−√
a
√

1 − k2s2)n√
a
√

(1 − s2)(1 − k2s2)
. (B6)

The modulus k is

k =
√

1 − b

a
. (B7)

The following formulas are useful to calculate Ns and Nα;

I0 = 1√
a

∫ 1

0

ds√
(1 − s2)(1 − k2s2)

= 1√
a

K(k), (B8)

I1 = −
∫ 1

0

ds√
1 − s2

= −π

2
, (B9)
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I2 = √
a

∫ 1

0
ds

√
1 − k2s2

1 − s2
= √

aE(k), (B10)

I3 = −a

∫ 1

0
ds

1 − k2s2

√
1 − s2

= −πa

2

(
1 − k2

2

)
, (B11)

I4 = a3/2
∫ 1

0
ds

√
(1 − k2s2)3

1 − s2
= −a3/2

3
[(1 − k2)K(k) − 2(2 − k2)E(k)], (B12)

where K(k) and E(k) are the first and second kinds of complete elliptic integral. Substituting these formulas into Eqs. (B2)
and (B3), Eq. (B1) becomes

j (E) = −16αeM2d

3�η

[−a2(1 − k2) + 12(ε2 − h2)]K(k) + 2a[a(2 − k2) − 6(1 − ε)]E(k)√
a[4(1 − ε) − a(2 − k2)]

. (B13)

In the limit of E → Emax (ε → (1 + h2)/2), Eq. (B13) gives
ju− in Eq. (33). By changing the integral range, as mentioned
above, ju+ is also obtained.

Equation (27) is obtained in a similar manner. Equa-
tions (B2) and (B3) can be used to evaluate the integrals in
Eq. (26). Note that the integral range to derive Eq. (33) is
over an out-of-plane precession trajectory, while the range
in Eq. (26) is [md±,md]. We notice that a and b in Eqs. (B2)
and (B3) are 4h(1 − h) and b = 0 on the constant energy curve
including the saddle point because Esaddle = MHappl (ε = h).
Then, Eqs. (B2) and (B3) for jth± are given by

N ±
s = ∓

∫
dmz

m2
z − 2(1 − h)

(1 + λmz)
√

4h(1 − h) − m2
z

, (B14)

N ±
α = ±2πM

∫
dmz

[m2
z − 4(1 − h)]mz√
4h(1 − h) − m2

z

. (B15)

The integral range is [2
√

h(1 − h),0] for jth+ and

[−2h
√

h(1 − h),0] for jth−. We notice that N ±
s =

∓[J ′
2 − 2(1 − h)J ′

0]0
±2

√
h(1−h)

and N ±
α = ±2πM[J3 − 4(1 −

h)J1]0
±√

2h(1−h)
, where

Jn =
∫

dz
zn

√
a − z2

, (B16)

J ′
n =

∫
dz

zn

(1 + λz)
√

a − z2
. (B17)

Moreover, these integrals satisfy J ′
2 = (J ′

0 − J0)/λ2 + (J1/λ).
Then, using the following formulas, Eq. (27) is obtained;

J0 =
∫

dz√
a − z2

= sin−1

(
z√
a

)
, (B18)

J1 =
∫

dz
z√

a − z2
= −

√
a − z2, (B19)

J3 =
∫

dz
z3

√
a − z2

= −
√

a − z2(2a + z2)

3
, (B20)

J ′
0 =

∫
dz

(1 + λz)
√

a − z2

= 1√
1 − λ2a

sin−1

[
z + λa√
a(1 + λz)

]
. (B21)

APPENDIX C: INSTABILITY CONDITION
IN TERMS OF MAGNETIC FIELD

In the main text, we derive the threshold current density as a
function of the magnetic field. In some experiments [18,21,24],
on the other hand, the instability threshold is investigated by
fixing the value of the applied current (voltage) and changing
the magnetic field magnitude. The threshold magnetic field
magnitude below which the self-oscillation is excited was
found experimentally [24], which indicates that the threshold
magnetic field is a decreasing function of θH (0 < θH � 90◦).
The theoretical formula of the threshold magnetic field, Hth,
is, in principle, obtained by rewriting the instability threshold
condition, Eq. (17), in terms of the magnetic field. For example,
when θH = 90◦ and Happl/(4πM) � 1, Eq. (20) is rewritten
as

Hth(θH = 90◦)

� 4πM

(
�η|j |

16eM2d
− α

√
�η|j |

4eM2d
+ 4α2 + 2α2

)
. (C1)

Although it is difficult to derive analytical formula of the
threshold magnetic field for an arbitrary value of θH because
the right hand side of Eq. (17) is a complex function of
the magnetic field, the experimental result [24] indicates that
Hth(θH ) sin θH � Hth(θH = 90◦).

APPENDIX D: DEFINITION OF THE THRESHOLD
CURRENT DENSITY IN NUMERICAL SIMULATION

We solve the LLG equation numerically from t = 0 to
t = 20 ns by using the fourth-order Runge-Kutta method. The
time step is �t = 10 fs. The threshold current density in the
numerical simulation is defined as a minimum current den-
sity satisfying |mx(t = 20ns) − mx(t = 20ns − �t)| > 10−10

or |mz(t = 20ns)| > 0.9, where the former means that the
magnetization is in the oscillating state while the latter means
that the magnetization moves to the ±ez direction.
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