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Anderson-Holstein model in two flavors of the noncrossing approximation
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The dynamical interplay between electron-electron interactions and electron-phonon coupling is investigated
within the Anderson-Holstein model, a minimal model for open quantum systems that embody these effects. The
influence of phonons on spectral and transport properties is explored in equilibrium, for nonequilibrium steady
state and for transient dynamics after a quench. Both the particle-hole symmetric and the more generic particle-
hole asymmetric cases are studied. The treatment is based on two complementary noncrossing approximations,
the first of which is constructed around the weak-coupling limit and the second around the polaron limit. In
general, the two methods disagree in nontrivial ways, indicating that more reliable approaches to the problem are
needed. The frameworks used here can form the starting point for numerically exact methods based on bold-line
continuous-time quantum Monte Carlo algorithms capable of treating open systems simultaneously coupled to
multiple fermionic and bosonic baths.
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I. INTRODUCTION

The interaction between electrons and phonons plays an
essential role in condensed matter physics: It is for example
the fundamental factor responsible for the resistivity of
conduction electrons in crystals at relatively high temperatures
and the onset of superconductivity at low temperatures [1].
In nonequilibrium molecular electronics experiments [2–4],
electron-phonon interactions are ever present and have major
implications [5,6] which can be exploited in the design of
phononic devices [7,8]. In addition, the interplay between
electron-electron interactions (responsible for Coulomb block-
ade and the Kondo effect) and electron-phonon scattering leads
to novel and subtle behaviors [9,10]. For example, conductance
side peaks replicating the Kondo resonance [9,11,12] and
negative differential resistance at voltages corresponding to the
vibrational energy of the molecule [13] have been observed.
In a broader sense, explicating the role played by electron-
phonon interactions in strongly correlated materials remains
a fertile area of research, where recent interest has focused,
for example, on the role played by phonons in fulleride [14],
cuprate [15], and pnictide superconductors [16,17] and the
control of superconductivity and metal-insulator transitions in
correlated materials via strong laser fields [18–22].

A standard model that simultaneously describes both elec-
tronic interactions and electron-phonon coupling in nanoscale
devices is the Anderson-Holstein model [23–25]. This model
consists of a single interacting site (sometimes called the dot
or impurity) coupled to a noninteracting electron reservoir
(or reservoirs) and to a set of localized phonon modes. The
Anderson-Holstein model can be considered a minimal de-
scription of the essential aspects of a correlated electron system
interacting with phonon excitations and has been used to
describe vibrational effects in molecular electronics [25–28].
Furthermore, within the framework of dynamical mean-field
theory (DMFT) [29], the characterization of a strongly
correlated material with active phonon degrees of freedom
may be effectively reduced to the Anderson-Holstein model
and its variants [27,30,31].

Despite the importance of the Anderson-Holstein model,
there is surprisingly little known about its real-time dynamical

properties outside of simple limits where perturbation argu-
ments can be made. The case of zero on-site electron-electron
interactions can describe some phenomena associated with the
electron-phonon interaction,including nonequilibrium tran-
sient dynamics, inelastic transport, and phonon-induced side
peaks [32–36]. This limit has been widely considered in
the literature; despite its simplicity, it is nontrivial to solve,
especially out of equilibrium. A variety of techniques have
been used to analyze this model, including perturbation theory
in the electron-phonon coupling [37], a semi-classical treat-
ment [38], and master-equation approaches [37,39–43]. Semi-
analytical approximations within nonequilibrium Keldysh
Green’s functions (NEGF) [44–50], the equation-of-motion
(EOM) approach [51–54], an interpolative ansatz [55], and a
recent dressed tunneling approximation [34] have been applied
to the model in various limits. Numerically exact methods have
also been applied, including real-time quantum Monte Carlo
(QMC) [35,36,56,57], iterative path integral schemes [58–60]
and the multilayer multiconfiguration time-dependent Hartree
(ML-MCTDH) method [61,62].

Treatment of the combined effect of electron-electron and
electron-phonon interactions is simplest when the on-site
Coulomb repulsion is effectively infinite (U → ∞). In this
limit, some methods used to treat the noninteracting case
can be adopted and generalized, including certain Monte
Carlo approaches [28,63], the equation-of-motion technique
[64–67], a decoupling scheme for NEGF [68], and the
slave-boson technique [69,70]. Studies of the infinite-U
Anderson-Holstein model predict nontrivial effects, such as the
appearance of Kondo replicas above and below the chemical
potential and negative differential resistance associated with
the destruction of the Kondo resonance [13,28]. However it
remains unclear if these predictions are valid outside of linear
response from equilibrium, and in general neither the U = 0
nor U → ∞ limits describe the bulk of interesting cases of
experimental relevance.

Only a handful of approaches are capable of calculating
properties of a generic Anderson-Holstein model outside of
the idealized limits discussed above. Approximate methods,
such as the master equation approach, can accurately de-
scribe transport phenomena at high temperatures and large

2469-9950/2016/93(17)/174309(15) 174309-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.174309


CHEN, COHEN, MILLIS, AND REICHMAN PHYSICAL REVIEW B 93, 174309 (2016)

voltages [71]. The ML-MCTDH method is numerically exact
but has difficulty converging for strong electron-phonon
coupling or far from equilibrium [72,73]. The numerical
renormalization group (NRG) can also be extended to include
electron-phonon interactions but remains difficult to apply out
of equilibrium and is generally reliable only for the low energy
properties of the system [25,26,32,74–77]. The auxiliary-
field QMC method has been used to calculate the den-
sity of states under the influence of the phonons in imag-
inary time [78], but application to dynamics involves an
uncontrolled analytical continuation which is problematic at
certain parameters [79], and the Matsubara formulation is
only valid for equilibrium and linear response properties.
Real time QMC provides an alternative numerically exact
approach which has the ability to describe transient dynamics
and nonequilibrium transport properties over a wide range
of parameters [30,56,80–82]. In combination with reduced
dynamics techniques [83,84] it can sometimes be used to
obtain results over very long timescales [85]. However, real
time QMC is generically plagued by a dynamical sign problem
which limits the accessible timescales. Although not the direct
focus of this paper, we note that the approaches described here
can provide a foundation to allow for an amelioration of the
sign problem in QMC simulations [79,86].

The self-consistent resummation of particular classes of
interaction terms may allow for an extension of the domain
of validity provided by bare perturbation theory. A promi-
nent example is provided by the noncrossing approxima-
tion (NCA) [87,88]. The NCA is a semianalytical method
based on the resummation to all orders of a specific subset
of diagrams (those that do not cross temporally on the
Keldysh contour) associated with the hybridization between
the impurity and the noninteracting leads. It provides a
computationally inexpensive approach for solving generic
impurity models out of equilibrium [89]. NCA is exact in
the atomic limit and works best in the limit of infinite U and
finite ε. The approximation does not fully capture low energy
properties and does not correctly reproduce the noninteracting
limit. But despite the quantitative inaccuracies, the NCA
qualitatively predicts the emergence and some properties of
the Kondo resonance and is generally accurate for high-energy
features. While the NCA as a “stand alone” approximation
may quantitatively fail, higher order approximations (e.g.,
one-crossing approximation) based on the same principles
have been used [90,91], and recent numerically exact QMC
approaches have been formulated that sample corrections to
the NCA in a numerically exact way [79,86,92–94].

The NCA has been extended to include the electron-phonon
coupling, via the slave-boson technique [69,70], in nonequi-
librium DMFT studies [30,31] and within a pseudoparticle
picture [95]. A first goal of our paper is to clearly formulate two
complementary NCA-like approximations in the full many-
body basis of the impurity, in a form suitable for studying the
nonequilibrium behavior of the Anderson-Holstein model, and
to compare and contrast the predictions of these distinct self-
consistent procedures. A second goal is to clearly delineate
the diagrammatic rules associated with each self-consistent
resummation on the Keldysh contour so that future exact
QMC schemes which sample remaining diagrams may be
explicitly formulated. The outline of this paper is as follows.

In Sec. II we introduce the Anderson-Holstein model and
provide the needed formalism. In Sec. III, two distinct types
of NCA-like approximation are described. In Sec. IV, we
present and compare results for transient dynamics, steady
state spectral function, and differential conductance for a
generic Anderson-Holstein model in the Kondo regime. A
summary and conclusion are presented in Sec. V.

II. COUPLING EXPANSION FOR
ANDERSON-HOLSTEIN MODEL

A. Model and definitions

We consider a single spin-degenerate impurity or quantum
dot level with a linear coupling to a phonon bath and to a pair
of metallic leads which will be referred to as “left” (L) and
“right” (R). This model is described by the nonequilibrium
Anderson-Holstein Hamiltonian [25–27]

H = Hd + Hb + Vb +
∑

�∈L,R

(H� + V�). (1)

The electronic part of the dot Hamiltonian Hd is

Hd =
∑

σ=↑,↓
εσnσ + Un↑n↓, (2)

where εσ denotes the energy of singly-occupied states and U is
the Coulomb interaction. The operators d†

σ creates an electron
of spin σ on the dot and the occupation nσ = d†

σ dσ .
The local phonon bath Hamiltonian is

Hb =
∑

q

ωqb
†
qbq . (3)

Here the b
†
q are phonon creation operators, and ωq is the

frequency associated with a phonon mode q. We will typically
assume that the phonons are initially in equilibrium, such that
the occupation of the phonon modes is given by the Bose-
Einstein distribution 〈b†qbq〉 = 1

eβd ωq −1
, βd being the inverse

temperature of the phonon bath. The electron-phonon coupling
Hamiltonian Vb is

Vb =
∑

q

λq(b†q + bq)(nd − δ), (4)

where nd = ∑
σ nσ is the total electronic occupation of the dot

and λq the coupling strength between the dot and phonon mode
q. The parameter δ is of no physical significance, in the sense
that it may be absorbed into a redefinition of the zero point of
the oscillator coordinate. However, it is convenient to set δ = 1,
so that ε = 0 describes the particle-hole symmetric dot, and
we will primarily consider this case. We will also investigate
the case δ = 0, which provide a more convenient description
of a molecular junction in which polaron formation is linked
to the presence of extra electrons on the dot. In either case,
the electron-phonon coupling is characterized by a spectral

density J (ω) ≡ π
2

∑
q

λ2
q

ωq
δ(ω − ωq).

The left and right lead Hamiltonians are

H� =
∑
k∈�

∑
σ

εkc
†
kσ ckσ , (5)
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with � ∈ {L,R} and the index k denoting a level within a
lead. We assume the leads to be noninteracting, such that
they are fully described by the dispersion relation εk and the
creation operators c

†
kσ . The leads are taken to each be initially

isolated and at an equilibrium state with density matrix ρ�, and
their thermodynamic properties characterized by an inverse
temperature β� and a chemical potential μ�. The initial density
of states is then described by a Fermi-Dirac distribution,
〈c†kσ ckσ 〉 = f�(εk) = 1

eβ� (εk−μ�)+1
. The hybridization V� between

the dot and lead electrons is described by the dot-lead coupling
Hamiltonian

V� =
∑
k∈�

∑
σ

[tkdσ c
†
kσ + t∗k d†

σ ckσ ], (6)

where tk enumerates the coupling strength between the dot
and level k of lead �. We define a coupling density ��(ω) =
2π

∑
k∈� |tk|2δ(ω − εk), which fully characterizes the tk within

this model.
In steady state the dynamical response of a system is

characterized by its spectral function

A(ω) = i

2π
Tr{Gr (ω) − Ga(ω)}, (7)

which may be considered a probe of the density of electron
and hole excitations as a function of energy. To calculate
the spectral function at frequency ω′, we use the auxiliary
current method [79,93] by appending two auxiliary leads to
the model, H → H + HA + VA, where HA = ∑

k∈A εka
†
kak

and VA = ∑
k∈A

∑
σ [tkdσ a

†
k + t∗k d†

σ ak]. These auxiliary leads
are coupled to the dot at the single frequency ω′ with a spectral
density �ω′

A (ω) = ηδ(ω − ω′). One lead is kept fully occupied,
such that fA1(ω) = 1; the other lead is kept empty, such that
fA0(ω) = 0. We can calculate the auxiliary spectral function
A(ω; t) at any finite time by the following relation:

A(ω; t) = lim
η→0

− 2h

eπη

[
Iω
A1(t) − Iω

A0(t)
]
. (8)

Here, Iω
A0(t) and Iω

A1(t) are the currents flowing out of lead
A0 and A1, respectively, at time t . At long times, the auxiliary
spectral function approaches the steady state spectral function,
Eq. (7). While at finite times the auxiliary spectral function
does not conform to the standard definition of a spectral
function in terms of a Fourier transform of a correlation
function, it retains the appealing physical interpretation as a
measure of the single-particle excitation density in energies,
and could in principle be accessed experimentally by way of
three-lead experiments [79,93,96,97].

We shall also be interested in the differential conductance,

G(V ) = d

dV
(IL − IR), (9)

which is directly accessible in transport experiments. Here,
V = μL − μR is the bias voltage between the two leads. The
current I�(t) out of lead � is given by I�(t) = 〈I�(t)〉, where
the current operator for a given lead,

I� = Ṅ� = i
∑
k∈�

(tkc
†
kσ dσ − t∗k ckσ d†

σ ), (10)

describes the rate at which carriers flow out of that lead. The
differential conductance is often interpreted as an estimator

for the equilibrium spectral function of the model. However,
this interpretation is only valid if the spectral function is
independent of the bias voltage. In practice, the two quantities
may be qualitatively different [93].

B. Coupling expansion: General formalism

We now formulate a double expansion in the electron-
phonon and dot-lead couplings. A brief review will be provided
here for completeness; we refer readers interested in a more
detailed technical outline of the formalism and algorithm
elsewhere [79]. We begin by recasting the Hamiltonian as H =
H0 + V . H0 describes the isolated dot and bath subsystems,
while V = Vb + ∑

� V� describes the coupling Hamiltonian.
The expectation value of an operatorO at time t can be writ-

ten in the form 〈O(t)〉 = 〈eiHtOe−iH t 〉 = 〈U †(t)OI (t)U (t)〉,
where U (t) = eiH0t e−iH t and OI (t) = eiH0tOe−iH0t . The sub-
script I denotes an operator in the interaction picture. We
also define thermal averaging by way of the notation 〈O〉 ≡
Tr{ρO}, with the averaging performed with respect to the
uncorrelated initial density matrix formed by the product of
subsystem density matrices: ρ = ρd ⊗ ∏

� ρ� ⊗ ρb. Thus the
dynamics that appear in the following are not in equilibrium
and illustrate the approach to equilibrium in the appropriate
limits. Other than in some very special cases, a finite system
coupled to an infinite thermal bath which is allowed to evolve
in time is generally found to reproduce the steady state results
at long times. Moreover, this is often the only rigorous way
to construct the correct nonequilibrium steady state in open
quantum systems. Initial correlations allow the system to be
thermalized at time zero. Within DMFT [27,30,31,91,98], one
deals with an infinite interacting system which is not coupled
to a bath, and the role of the initial correlations therefore
becomes more important. They are needed to model an initially
thermalized system, which might be thought of as a system that
had been weakly coupled to a bath and allowed to relax before
the beginning of the calculation.

We now describe the details of a Dyson expansion for the
reduced propagator on the Keldysh contour. We can expand
U (t) in a Dyson series

U (t) =
∞∑

n=0

(−i)n
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn

×VI (t1)VI (t2) · · ·VI (tn), (11)

such that the propagator can be expressed as e−iH t =
e−iH0tU (t). We adopt the many-body atomic states of the
isolated dot, {|α〉} = {|00〉 ≡ |0〉,|↑〉 ≡ |1〉,|↓〉 ≡ |2〉,|↑↓〉 ≡
|3〉}, as a basis, and define the reduced propagator matrix
element Gαβ(t) ≡ 〈α|TrB{ρe−iH t }|β〉. The trace is taken over
the lead and phonon degrees of freedom: TrB ≡ Tr�Trb. The
remaining quantity is reduced to the dimensionality of the
(many-body) dot subspace. We also define the unperturbed
reduced propagator G

(0)
αβ(t) ≡ 〈α|TrB{ρe−iH0t }|β〉. G

(0)
αβ is di-

agonal for the model treated here, and takes the form G
(0)
αβ(t) =

�(t)δαβe−iEαt . The state energy Eα is evaluated from the
isolated dot Hamiltonian. The factor �(t) = TrB{ρe−i(H0−Hd )t }
is related to fluctuations in the noninteracting baths and is
independent of the dot state. It is exactly canceled when
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FIG. 1. (a) The elements of the unperturbed propagator G(0)
αα (left

column, thin lines) and of the NCA propagator Gαα (right column,
bold lines). The upper line represents spin up occupation and the
lower line spin down occupation. The dotted line signifies that the
spin level is unoccupied, while a solid line marks it as occupied. (b)
An example of a diagram included in the reduced propagator G00.
Electronic hybridization lines are shown as wiggly lines and phonon
interaction lines as gluon lines. (c) An example of a diagram on the
Keldysh contour with interbranch lines and a special hybridization
line ending at the final time, corresponding to a contribution to the
current.

considering any quantity defined on the two branch Keldysh
contour and can therefore be safely ignored.

The full, or perturbed, reduced propagator Gαβ(t) is also
diagonal. Contributions to it from the coupling Hamiltonian
are nonzero only when the creation and annihilation operators
occur in pairs, such that only even orders must be accounted
for:

Gαα(t) = G(0)
αα(t) −

∫ t

0
dt1

∫ t1

0
dt2

×〈α|TrB{ρe−iH0tVI (t1)VI (t2)}|α〉 + · · · . (12)

This series can be represented as a summation of diagrams
in which the coupling Hamiltonian appears an even number
of times. An example diagram is shown Fig. 1: In (a), the
representation of G(0)

αα (thin lines) and Gαα (bold lines) in terms
of pairs of solid and dashed lines is shown. In (b) a diagram
is shown which contains Fermion hybridizations, denoted by
wiggly lines which change the dot population, and phonon
interactions, denoted by wavy lines with loops which do not
change the population (and may appear only within certain dot
states, as detailed below).

The reduced propagator satisfies a causal Dyson equation
of the form

Gαα(t) = G(0)
αα(t) +

∫ t

0
dt1

∫ t1

0
dt2

×G(0)
αα(t − t1)�αα(t1,t2)Gαα(t2), (13)

where all nontrivial aspects of the problem are contained in the
(proper) self energy �αα(t1,t2). Solving the Dyson equation
self-consistently is in itself an inexpensive computation if
the self energy is known. Within the hybridization expansion
for the phonon-free version of the model, the simplest
approximation to the self energy includes only a single pair of

coupling Hamiltonians:

�2BA
αα (t1 − t2) = −〈α|Trb{ρV e−iH0(t1−t2)V }|α〉

=
∑

β

G
(0)
ββ(t1 − t2) × �β

αα(t1 − t2), (14)

where the hybridization function is defined as

�β
αα(t1 − t2) ≡ −〈α|Trb{ρVI (t1)|β〉〈β|VI (t2)}|α〉. (15)

This is known as the second-order Born approximation (2BA).
The noncrossing approximation (NCA), also known as the
self-consistent Born approximation (SCBA), takes the same
form, but inserts the full propagator G into the self energy:

�NCA
αα (t1 − t2) =

∑
β

Gββ(t1 − t2) × �β
αα(t1 − t2). (16)

With this self energy, we can obtain an approximate propagator
containing an infinite, but partial, subset of the diagrams
contributing to the reduced propagator, namely all diagrams
in which hybridization lines do not cross each other. In the
following section, two ways of generalizing this idea to the
full Anderson-Holstein model will be described.

So far, in order to simplify the discussion, we have limited
our attention to a reduced propagator living on a single branch
of the Keldysh contour. To calculate a physical observable,
we must consider a two-branch Keldysh contour with the
observable operator O placed at the final time t , and take
into account diagrams with lines crossing between the two
branches. To this end, we define a vertex function of the
observable O, with the two time variables t and t ′ placed
on opposite branches of the contour. With t ′ → t , this object
yields the physical expectation value of observable O(t). In
particular, the current out of the lead � can be obtained from
I�(t) = 〈I�(t)〉, where the current operator

I� = Ṅ� = i
∑
k∈�

(tkc
†
kσ dσ − t∗k ckσ d†

σ ) (17)

and the c and d operators are understood to be at the tip of the
Keldysh contour.

Because I� is composed of the same operators appearing in
the dot-bath hybridization Hamiltonian, within the coupling
expansion the current can be obtained by summing over
diagrams which have a special hybridization line placing the
current operator at the final time of the Keldysh contour. An
example of such a diagram is given in Fig. 1(c).

III. TWO TYPES OF NCA FOR
ELECTRON-PHONON COUPLING

In this section we lay out the construction of NCA-like
approximations in two limits: First, a bare NCA based on self-
consistently resummed second order perturbation theory for
the electron-phonon and dot-lead and electron-phonon Hamil-
tonians. Second, a dressed NCA in which the Hamiltonian is
modified by a Lang-Firsov transformation so that the coupling
Hamiltonian becomes a phonon-dressed dot-lead coupling,
and includes noncrossing diagrams composed of phonon-
dressed hybridization lines [27,30]. Both approximations can
be extended to higher orders, or used as the preliminary step
within a numerically exact bold-line QMC algorithm. We
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initially formulate these two types of NCA for the symmetric
Anderson-Holstein model in the following two subsections,
then discuss the asymmetric case.

A. Weak coupling perturbation theory

The bare NCA approximation is specified by the following
equations

G−1 = G−1
0 − �� − �b, (18)

with G, G0, and � matrices (diagonal, in the cases of interest
here) in the Hilbert space of the decoupled dot, and the lead
(�) and phonon (b) self energies � given by

��
αα(t1,t2) =

∑
β

Gββ(t1,t2) × �β
αα(t1,t2) (19)

�b
αα(t1,t2) = Gαα(t1,t2) × �αα(t1,t2) (20)

with the lead hybridization function

�β
αα(t1,t2)

=
∑

σ

〈α|dσ |β〉〈β|d†
σ |α〉

∑
k∈�

|tk|2Tr�[ρ�c
†
kσ (t1)ckσ (t2)]

+
∑

σ

〈α|d†
σ |β〉〈β|dσ |α〉

∑
k∈�

|tk|2Tr�[ρ�ckσ (t1)c†kσ (t2)].

(21)

We also define the lesser and greater hybridization functions
�

<,>
� (τ1,τ2) = ∑

k∈� |tk|2Tr�[ρc
†
kσ (τ1)ckσ (τ2)] for each lead �

and times τ1, τ2 on the Keldysh contour. �>
� is used when

τ1 precedes τ2, and �<
� is used otherwise. The dot-lead

hybridization function for each lead can be expressed in terms
of the coupling densities ��(ω) and the initial occupation of
that lead:

�>
� (t1,t2) = i

∫ ∞

−∞

dω

π
e−iω(t1−t2)��(ω)[1 − f�(ω − μ�)],

(22)

�<
� (t1,t2) = −i

∫ ∞

−∞

dω

π
e−iω(t1−t2)��(ω)f�(ω − μ�). (23)

We similarly define the phonon hybridization function

�αα(t1,t2) = 〈α|(nd (t1) − δ)(nd (t2) − δ)|α〉
×

∑
q

λ2
qTrb[ρb(b†q(t1)+bq (t1))(b†q(t2)+bq(t2))].

(24)

This is analogous (but not identical) to the pseudoparticle
NCA approximation of Ref. [95]. Since the the electron-
phonon coupling Vb does not modify the electronic state
of the dot, one can write 〈α|(nd (t1) − δ)(nd (t2) − δ)|α〉 =
(n(α)

d − δ)
2
. We also define the bath correlation function,

Bq(t1,t2) = Trb[ρb(b†q(t1) + bq(t1))(b†q(t2) + bq(t2))]. It can be
expressed in terms of the frequency ωq and the in-
verse temperature β of the local phonon modes, Bq(t) =
coth(βωq/2) cos (ωqt) − i sin (ωqt), if we consider a bath
initially composed of free harmonic phonon modes. Thus,

FIG. 2. The electron hybridization diagrams included in the bare
NCA self energy, where the wiggly lines denote electronic dot-lead
hybridization lines. The pairs of straight lines represent the dot’s
electronic state, with the two lines standing for the two possible
spins: A solid line represents an occupied spin level, whereas dashed
lines stand for empty spin levels.

it is possible to recast the phonon hybridization function as

�αα(t1 − t2) = (n(α)
d − δ)

2 × �b(t1 − t2), where

�b(t1 − t2) =
∑

q

λ2
qBq(t1 − t2). (25)

Just as the electronic hybridization function is described by
��(ω), the phonon bath is usually characterized by its spectral
density, J (ω) = π

2

∑
q (λ2

q/ωq)δ(ω − ωq). In particular,

�b(t1 − t2) = 2

π

∫
dωJ (ω)ωBω(t1 − t2). (26)

Figures 2 and 3 illustrate the diagrams included in the self
energy of the bare NCA approach (for the symmetric case δ =
1). The wiggly lines in Fig. 2 denote the dot-lead hybridization
�β

αα(t1 − t2), while the phonon lines of Fig. 3 symbolize the
phonon coupling �αα(t1 − t2). The computation of the Green’s
function from the Dyson equation using this approximate
self energy embodies a self-consistent perturbative expansion
including the lowest order skeleton diagrams in both the dot-
lead hybridization and electron-phonon coupling. We expect
this bare NCA approach to be more applicable in the regime
where both λ and � are small. Additionally, the Green’s
function resulting from the bare NCA does not contain certain
multiphonon excitations, related to crossing diagrams, which
might be expected to affect the dot electron if the phonon
relaxation is slow. This implies that the bare NCA is more
accurate in the limit of the fast phonon bath.

FIG. 3. The phonon interaction diagrams for the bare NCA self
energy in the symmetric case δ = 1. The curly lines denote phonon
interaction lines, and straight lines are as in Fig. 2.
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B. Strong coupling perturbation theory

In this section, we present a version of the noncrossing
approximation more suitable to strong coupling between the
dot and the phonon bath to the propagator formulation. This
approach, which we will refer to as the dressed NCA, has
previously been employed within a standard Green’s function
formulation in Refs. [27,30].

We begin by performing the unitary Lang-Firsov transfor-

mation H̃ = SHS−1 with S = e
λ

ω0
(b†−b)nd , which eliminates

the explicit electron-phonon coupling in the Hamiltonian. We
set the unperturbed Hamiltonian to be H0 = Hd + Hb + Vb.
After the transformation, this becomes

H̃0 = ε̃d ñd + Ũ ñ↑ñ↓, (27)

Ṽ� =
∑
k∈�

∑
σ

[tkd̃σ c
†
kσ + t∗k d̃†

σ ckσ ]. (28)

In the above expressions, the bare dot energy ε and the
Coulomb interaction strength U are replaced by the renor-
malized quantities

ε̃ = ε + (2δ − 1)λ2/ω0, (29)

Ũ = U − 2λ2/ω0. (30)

Also, the dot electron creation and annihilation operators
become

d̃σ = e− λ
ωo

(b†−b)dσ , (31)

d̃†
σ = e

λ
ωo

(b†−b)d†
σ . (32)

All pairs of hybridization events are therefore connected by an
infinite set of phonon hybridization lines generated by these
exponential phonon displacement operators.

Within the dressed NCA approximation for the self energy,
we consider only the dressed phonon lines appearing along
the noncrossing fermionic hybridization lines, as illustrated in
Fig. 4. With this assumption, the effect of the electron-phonon
interaction is simply to reweigh each fermionic hybridization
line with a phonon-dependent factor, such that the NCA self
energy takes the form

�̃�
αα(t1 − t2) = w(t1 − t2)

∑
β

�β
αα(t1 − t2)G(0)

ββ(t1 − t2). (33)

The phonon weight w(t1 − t2) is given by

w(t) = exp

{
−

∑
q

(
λq

ωq

)2

[(1 − cos ωqt)

×coth(βωq/2) + i sin ωqt]

}
. (34)

In terms of the bath spectral density J (ω), this can be written
as

w(t) = exp{−Q2(t) − iQ1(t)}, (35)

G
G

FIG. 4. (a) The diagrams representing the different matrix el-
ements of the dressed NCA self energy. The wiggly double lines
denote electron hybridization lines dressed by phonon interactions.
(b) An example of a bare NCA diagram of the lowest order is not
included in the dressed NCA diagrams.

where

Q1(t) = 2

π

∫
dω

J (ω)

ω
sin ωt, (36)

Q2(t) = 2

π

∫
dω

J (ω)

ω
(1 − cos ωt) coth(βω/2). (37)

The dressed NCA self energy includes many phonon
interactions not included in the bare NCA. The self energy
diagrams composed of the transformed dot operators d̃σ and
d̃†

σ can be expanded in terms of the bare dot operators and
effectively contain all the hybridization diagram within the
wiggly double lines. Also, the polaron shift of U and ε

is explicitly included within the dressed NCA but not the
bare NCA. One might expect it to be a more appropriate
approximation in the polaron limit. On the other hand, it
also misses some contributions that are included in the bare
NCA [see Fig. 4(b)] and overemphasizes others, and at weak
coupling to the phonons it might be expected to be less
accurate. The two approximations are therefore somewhat
complementary, if in a nonrigorous sense; it is reasonable to
assume that conclusions supported by both may be robust to
the nature of the approximations, while conclusions supported
by only one are suspect and should be investigated further.

C. NCA for asymmetric model

We now briefly discuss the structure of the noncrossing ap-
proximation for the case of an asymmetric Anderson-Holstein
model in which the counter term is not included [i.e., δ = 0
in Eq. (4)]. The phonon can then only be created or destroyed
in the single electron state or the doubly occupied state, not
in the empty state. Such a model might be considered a more
physically realistic description of a quantum junction, where
one is interested in vibrational states coupled to electrons.

In the bare NCA calculation, the phonon coupling lines only
connect points with occupied electron states. The interaction
diagrams for the bare NCA self energy therefore no longer
have the symmetric structure of Fig. 4, but rather include a
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FIG. 5. The phonon interaction diagrams for asymmetrical model.

different number of phonon inclusions for each of the matrix
elements. This is illustrated in Fig. 5.

For the dressed NCA, the same Lang-Firsov transforma-
tion is performed to eliminate the explicit electron-phonon
coupling. The dressed coupling Hamiltonian then remains the
same as in the symmetric case. However, the renormalized
energy becomes

ε̃ = ε − λ2

ω0
, (38)

while the renormalized interaction remains the same as
Eq. (30).

With this coupling, ε = 0 does not correspond to a particle-
hole symmetric point. In the absence of dot-lead coupling, the
charge transfer bands are centered around ω+ = U

2 + λ2

ω0
and

ω− = −U
2 + 3 λ2

ω0
.

IV. RESULTS

We now discuss the application of the two NCA approaches
described above to the Anderson-Holstein impurity model,
focusing on a case where the dot has degenerate spin levels
(ε↑ = ε↓ = εd ) and obeys particle-hole symmetry (εd = −U

2 )
in the absence of phonons. The leads are assumed to be flat with
a soft cutoff: ��(ω) = ��

(1+eν(ω−�c ))(1+e−ν(ω+�c )) , where �c = 10
and ν = 10. We consider only symmetrical couplings to the left
and right leads, �L = �R = 0.5�, and apply the bias voltage
V symmetrically such that the chemical potentials are given
by μL = −μR = 0.5V .

The methods we have described are suitable for the
exploration of systems containing multiple electron and
phonon baths with complicated densities of states, but we
focus on a phonon bath with single mode, Hb = ω0b

†b.
The electron-phonon coupling Hamiltonian becomes Vb =
λ(b† + b)(nd − δ) and the strength is characterized by by the
parameter λ. We assume that all baths are initially at the same
inverse temperature β = 10/�.

To calculate the spectral function A(ω) by the double
probe scheme, we attach a pair of auxiliary leads to the
system and measure the corresponding auxiliary currents. The
spectral density of the auxiliary leads is a Gaussian delta
function �a(ω,ω′) = η

δa

√
π
e−[(ω−ω′)/δa ]2

where η = 10−4� and

δa = 10−2�. The dot is assumed to be initially empty, and the
coupling to the thermally equilibrated leads and phonon bath is
turned on at time t = 0. The auxiliary spectral function exhibits
some transient behavior, and approaches the physical steady
state spectral function at sufficiently long time, as discussed in
Ref. [79].

FIG. 6. (left panels) The time evolution of the spectral function
A(ω; t) within the bare NCA is shown for different phonon fre-
quencies. (right panels) Time dependence of cuts at ω = 0 (blue)
and ω = U/2 (green). The time scale 2π/ω0 related to the phonon
frequency is also plotted for comparison. A symmetric dot with
U = −2ε = 10� is considered at equilibrium V = 0. The phonon
coupling is set to λ = 1.5� and the counter term is symmetric (δ = 1).
The inverse temperature of all baths is β = 10/�.

A. Symmetric model

We first consider the system which includes the counter
term, δ = 1. For this case, the electron-phonon coupling does
not break particle-hole symmetry and the spectral function
remains symmetric.

1. Transient dynamics

The left panels of Figs. 6 and 7 show the transient
evolution of the spectral function A(ω; t). The corresponding
right panels display single frequency cuts through this data,
highlighting the time evolution of the central peak (ω = 0)
and the charge transfer (CT) peak (ω/U = 0.5). We observe
an overshooting of the spectral function at short time due
to the instantaneous coupling between the dot and the leads.
The bare NCA results (Fig. 6) exhibit oscillatory behavior
in the amplitude of the central peak. We observe that this
is composed of a slower oscillation with a period of 2π/ω0,
which is associated with the phonon frequency, and a rapid
oscillation with a period of 2π/U , which comes from the
static energetics of the system. However, in the dressed NCA
results (Fig. 7), oscillatory behavior consistent with the phonon
frequency is not apparent. The oscillatory behavior predicted
by the bare NCA is consistent with predictions made for
the Anderson-Holstein model in the spinless U = 0 [57] and
U = ∞ cases [69], where the local density of states at ω = 0
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FIG. 7. The same as Fig. 6 within the dressed NCA. A symmetric
dot with U = −2ε = 10� is considered at equilibrium V = 0.
The phonon coupling is symmetric with λ = 1.5� and the inverse
temperature of all baths is β = 10/�.

approaches the steady state in an oscillating manner with the
periodicity of the phonon mode. Here, the time evolution of
the entire frequency dependent auxiliary spectral function
additionally reveals the transient effect of electron-phonon
coupling on the charge transfer peaks.

At long times, the bare NCA exhibits a strong suppression
of the CT peaks when the phonon frequency is small. However,
this suppression of the CT peaks is not nearly as evident
in the dressed NCA results. Conversely, the dressed NCA
shows a strong enhancement of the central peak at low phonon
frequencies, which is not present in the bare NCA results.

2. Equilibrium steady state spectral function

We next explore the equilibrium spectral function A(ω) of
the system in the limit of long times, where the system has
reached its steady or equilibrium state. We consider two types
of cuts through the parameter space: The first is the dependence
on the phonon frequency ω0 at constant dot-phonon coupling
strength λ, and the second is the λ dependence at constant
ω0. Here, too, the bare and dressed NCA predict qualitatively
different behaviors.

In Fig. 8, A(ω) is shown for a range of phonon frequencies
at intermediate electron-phonon coupling λ = 1.5. Within bare
NCA, shown in panel (a), a set of features at ω = ±nω0 with
n ∈ {1,2,3} is visible at low frequencies. These features, cor-
responding to Kondo replicas or sidebands [25,32–34,36,77],
appear as a sequence of positive peaks at ω = ±(2n + 1)ω0

and negative peaks at ω = ±2nω0, and are related to in-
terference effects. In the literature, the Anderson-Holstein

(a)

(b)

(c)
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FIG. 8. The ω0 dependence of the spectral function A(ω) is
calculated by (a) bare NCA and (b) dressed NCA for a symmetric dot
at equilibrium V = 0 with U = −2ε = 10�. The phonon coupling
is λ = 1.5� and the counter term is symmetric (δ = 1). All baths at
the same inverse temperature β = 10/�. The dashed lines indicate
the renormalized charge transfer peak at ω± = ±(ε + λ2

ω0
). The ω0

dependence of the central peak at ω = 0 is plotted in (c).

impurity model is mostly assumed to be spinless (U = 0),
and one observes multiple positive side bands due to a
resonance with the phonon. For a generic Anderson-Holstein
model, negative peaks have previously been predicted in the
T ∼ 0 regime by perturbation theory but are not exhibited
within numerical renormalization group calculation [25,77].
However, our calculation shows both positive and negative
side peaks exist at a finite temperature for generic Anderson-
Holstein model. In the high-frequency regime, the Kondo
replicas die out and the CT peaks appear. The CT peaks are
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suppressed by coupling to a low frequency phonon mode,
which implies that phonon-induced tunneling dominates the
single particle excitation spectrum in this regime.

Replicalike features can also be observed at ω = ±ω0 in
the dressed NCA, which is plotted in Fig. 8(b). However,
these side peaks are substantially weaker than those observed
in the bare NCA calculation. In the dressed NCA the CT peaks
are shifted by the reorganization energy, such that their central
frequencies are located at ω± = ±(ε + λ2

ω0
) (as illustrated by

the dashed line). A significant enhancement in A(ω) occurs
when the two renormalized CT peaks cross each other. In
the low frequency regime ω0 � λ2

|ε| , the two CT peaks merge
and form a wide central peak which is clearly unrelated to
the Kondo effect. The Kondo peak only develops in the high
frequency regime, and in general it is strongly suppressed for
a wide range of parameters.

The ω0 dependence of the central peak A(ω = 0) exhibits
consistent behavior for the two flavors of NCA only at high
frequencies [Fig. 8(c)]. At low frequencies, both approxima-
tions exhibit enhancement of the central peak, but the context
and perhaps the mechanism of the enhancement is different
between the two cases. In the bare NCA, the amplitude of the
Kondo peak is enhanced as ω0 decreases because the replicas
of the Kondo peak merge when the phonon quasistates become
nearly degenerate as ω0 decreases. In the dressed NCA, on the
other hand, the enhancement is maximal where the two CT
peaks merge at ω∗

0 = λ2/ε. The contrast with the bare case is
even more notable when one considers that in the bare NCA the
CT peaks are almost entirely suppressed at low frequencies.

In Fig. 9 we repeat the previous analysis in a different plane
of the parameter space, by taking a cut at a constant (low)
phonon frequency ω0 and a range of λ values. In the bare NCA
[Fig. 9(a)], the CT peaks are suppressed as λ increases. One
can observe a set of ridgelike features developing along with a
strong enhancement of the central Kondo peak. In the large λ

regime, the developed side peaks shifted linearly with λ with
a spacing of approximately ω0 between peaks in frequency.
These features resemble Kondo replicas [25,32,34,36,77], but
a closer inspection reveals behavior more complicated than
simply side peaks generated at the phonon frequency |ω| =
nω0. A sharp Kondo peak is only apparent before the crossing
point of the ridges. It is significantly enhanced at the crossing
point and is either completely suppressed or split beyond this
point.

No Kondo replicas are observed within the dressed NCA
[Fig. 9(b)]. The CT peaks are again renormalized and appear
centered at ω± ≈ ±(ε + λ2

ω0
) as illustrated by the dashed lines.

The crossing at λ∗ = √
εω0 leads to a strong enhancement

near ω = 0. The Kondo peak is only observable for λ < λ∗
and is widened beyond the point where it can be distinguished
from the CT bands before the crossing point is reached. This
widening effect is not observed in the bare NCA. Past the
crossing point, no central feature is visible, in agreement with
the bare NCA.

While the striking nonmonotonic enhancement of the ω = 0
spectral function is predicted by both approximations, it occurs
at a different value of λ in each case [see Fig. 9(c)]. The peak
in the dressed NCA occurs precisely at the value of λ for which
the effective, dressed Ũ change sign. In this regard, the result is
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FIG. 9. The λ dependence of the spectral function A(ω) as
calculated within the (a) bare NCA and (b) dressed NCA for a
symmetric dot with U = −2ε = 10� at equilibrium V = 0. The
phonon coupling is ω0 = 1.0� and the counter term is symmetric
(δ = 1). All baths at the same inverse temperature β = 10/�.
The dashed lines indicate the renormalized charge transfer peak at
ω± = ±(ε + λ2

ω0
). The λ dependence of the central peak at ω = 0 is

plotted in (c).

reminiscent of the NRG prediction of Hewson and Meyer [25],
where the negative-Ũ Anderson-Holstein model flows to the
U = 0 behavior. Within the bare NCA, the peak value of
A(ω = 0) occurs for a slightly larger value of λ. Here, the self-
consistency of the perturbation theory presumably captures,
in an approximate manner, the terms leading to negative-Ũ
behavior as well. Lastly, it should be mentioned that this
nonmonotonic behavior is consistent with the prediction of
Ref. [26]. We return to this point later in the paper.
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3. Nonequilibrium steady state spectral function

We now consider a nonequilibrium system driven by a bias
voltage V = 2�. The ω0 dependence of A(ω) is plotted in
Fig. 10. The voltage splitting of Kondo peak [93,99] can be ob-
served in both approximations. The central Kondo peak splits
into two peaks at ω = ±V/2 independently of the phonon
frequency. Kondo replicas are not clearly distinguishable, since
the splitting smears out the associated features. However, a set
of linearly dependent signatures remains visible.

B. Asymmetric model

In the following subsection, we consider an Anderson-
Holstein model without a counter term, i.e., δ = 0 in Eq. (4).
While the isolated dot Hamiltonian is still assumed to remain
particle-hole symmetric, the electron-phonon coupling breaks
the particle-hole symmetry of the system and results in an
asymmetric spectral function. The two NCA formulations we
employ take this asymmetry into account in different ways, as
pointed out in Sec. III C. In addition to the spectral function,
we study the effects of the symmetry breaking on transport
properties. This is of particular interest, because under a
symmetrically applied bias the differential conductance is a
symmetric function of frequency even without particle-hole

FIG. 10. The ω0 dependence of the spectral function A(ω) for
a symmetric dot with U = −2ε = 10� under a nonequilibrium
symmetrically applied bias voltage V = 2� within the (a) bare NCA
and (b) dressed NCA. The phonon coupling is λ = 1.5� and the
counter term is symmetric (δ = 1). All baths at the same inverse
temperature β = 10/�.

symmetry. Additionally, one may not be able to observe
the replicas directly in a transport experiment, due to the
nonequilibrium shifting or suppression of the Kondo peak,
which would also affect the replicas. We show that an indirect
experimental signal of the replica effect may remain.

1. Transient dynamics

Within the bare NCA, the CT peaks and Kondo peak
oscillate at the phonon frequency ω0, but the oscillations
are manifested in different ways (Fig. 11, left panels). In
particular, the CT peaks oscillate in frequency, while the
Kondo peak oscillates in amplitude. At short times and in
the adiabatic limit, the CT peak oscillations can be explained
by oscillating energy levels [ε̃σ = εσ + 2λ

ω0
sin(ω0t + φ0)] with

some unknown initial phase. This is illustrated by the black
dashed lines in the left panels of Fig. 11. All these features are
washed out in the dressed NCA (Fig. 12).

2. Steady state spectral function

To explore the effects of phonons on the equilibrium
spectral function, we once again plot first the ω0 dependence at
constant λ, and then the λ dependence at constant ω0. Within
the bare NCA, the Kondo replica features can clearly be seen in

FIG. 11. (left panels) The time evolution of the spectral func-
tion A(ω; t) within the bare NCA is shown for different phonon
frequencies. The frequency oscillations of the CT peaks along with an
illustration of the expected energy oscillations in the adiabatic limit
(dash lines) are also exhibited. (right panels) Time dependence of cuts
at ω = 0 (blue) and ω = U/2 (green). The time scale 2π/ω0 related
to the phonon frequency is also plotted for comparison. The dot is
symmetric with U = −2ε = 10� at equilibrium V = 0. The phonon
coupling is λ = 1.5� and the counter term is asymmetric (δ = 0).
The inverse temperature of all baths is β = 10/�.
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FIG. 12. The same as Fig. 11 within the dressed NCA. The
dot is symmetric with U = −2ε = 10� at equilibrium V = 0. The
phonon coupling is asymmetric (δ = 0) with λ = 1.5� and the inverse
temperature is β = 10/�.

Fig. 13(a), but harder to distinguish in the cuts. They are mixed
with a variety of other effect including the low-frequency
smearing of the Kondo resonance and the suppression of the
positive CT peak. The replica effect and the above-mentioned
CT suppression are both stronger at positive frequencies. At
small phonon frequencies, the Kondo resonance merges with
the negative CT peak.

At the intermediate phonon frequency ω0 = |εσ − U |
where the replicas are aligned with the CT peaks, a non-
monotonic enhancement of the central peak is evident, and is
especially strong at large λ. This can be seen more clearly
in the cut shown in Fig. 15(c). We believe this is due to
a phonon-assisted process which is similar to the Kondo
spin-flip process, and which becomes possible for electrons
with energies closed to the chemical potential [26,100]. The
effects described here are largely washed out in the dressed
NCA.

We continue to investigate the λ dependence at constant
ω0. Here, we plot the results for both approximations at
a relatively large ω0 (Fig. 14). The bare NCA [panel (a)]
shows a suppression of the charge transfer bands and a
widening of the Kondo peak. The dressed NCA [panel (b)]
shows an asymmetric shift of the CT peaks to approximately
ω+ = U

2 + λ2

ω0
and ω− = −U

2 + 3 λ2

ω0
, as might be expected

in the antiadiabatic limit. Some deviation from this occurs,
especially for the positive CT band. More interestingly, as the

CT peak merges with the Kondo peak at λ =
√

Uω0
6 , a strong

enhancement occurs. This enhancement is not observed in the
bare NCA.

FIG. 13. The ω0 dependence of the spectral function A(ω) for
a dot in equilibrium as calculated within the (a) bare NCA and (b)
dressed NCA. The electron-phonon coupling is asymmetric (δ = 0)
and the coupling strength is λ = 1.5�. The dot is symmetric with U =
−2ε = 10�. All baths at the same inverse temperature β = 10/�.

3. Steady state conductance

Despite the symmetry breaking of the spectral function,
the differential conductance G(V ) ≡ dI

dV
(V ) under a symmet-

rically applied bias (μL = −μR = V/2) remains a symmetric
function of frequency even without the counter term. The
replica effect and the nonmonotonic enhancement, as visible
in, e.g., Fig. 13, appears in the spectral function, which could
in principle be accessible in spectroscopic experiments. How-
ever, spectroscopic studies of single molecules in junctions
and mesoscopic quantum dots are difficult to perform, and
transport experiments are far more common. It is interesting to
consider whether these effects are observable in the differential
conductance as well as the spectral function; outside of
linear response these quantities may differ qualitatively [93].
Figure 15 shows the differential conductance as it varies
under the effect of the phonon frequency ω0 at two different
phonon coupling strengths λ. The nonmonotonic enhancement
remains clearly visible, while the side peaks are substantially
weaker than their counterparts in the spectral function. The
bare NCA therefore predicts that the nonmonotonicity could
be observed in transport experiments. Since it is related to
the side bands merging with the charge transfer bands, an
experimental observation of it could also be considered an
indirect confirmation of the replica effect. We note that the
dressed NCA also predicts a nonmonotonicity, but one which

174309-11



CHEN, COHEN, MILLIS, AND REICHMAN PHYSICAL REVIEW B 93, 174309 (2016)

FIG. 14. The λ dependence of the spectral function A(ω) as
calculated within the (a) bare NCA and the (b) dressed NCA for
an equilibrium symmetric dot with U = −2ε = 10�. The phonon
frequency is ω0/� = 2.5. The dashed lines indicate the center of
the CT peaks as estimated by the energy renormalization at the
antiadiabatic limit ω+

CT /� = −ε + λ2

ω0
and ω−

CT /� = ε + 3 λ2

ω0
. All

baths at the same inverse temperature β = 10/�.

does not appear related to the replica effect. It will take a more
sophisticated theoretical treatment to determine whether this
effect is real or an artifact of the two NCA approaches and to
understand more deeply the mechanism that lies behind it.

In Ref. [26], a nonmonotonic effective Kondo temperature
and zero-bias conductance has been predicted in the Anderson-
Holstein model via the consideration of two limiting cases. In
particular, for weak electron-phonon coupling 2λ2/ω0 � U ,
the low-energy excitations of the Anderson-Holstein model
can be approximated by an isotropic Kondo Hamiltonian
with the coupling to phonons leading to an increase in the
effective Kondo temperature. On the other hand, for strong
electron-phonon coupling 2λ2/ω0 � U , the low-energy exci-
tations can be approximated by an anisotropic Kondo Hamil-
tonian in which the effective Kondo temperature decreases
with increasing λ. This crossover behavior is observed in both
NCAs, though the implied maximum in the spectral function
occurs at a different λ [see also Fig. 9(c)]. Interestingly, when
examining the spectral function at all energies simultaneously,
a set of higher energy features which appear to be shifted
replicas of the maximum is also revealed.

(c)
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FIG. 15. The conductance G(V ) as calculated within the bare
NCA for different electron-phonon coupling (a)λ/� = 1 and
(b)λ/� = 2 with a symmetrically applied bias μL = μR = V . The
dot is also symmetric with U = −2ε = 10�. Panel (c) shows the ω0

dependence of the central peak at ω = 0. All baths at the same inverse
temperature β = 10/�.

V. CONCLUSIONS

In this paper we formulate and compare two distinct
noncrossing approximations for the study of the Anderson-
Holstein model. The first approximation, which we call the
bare NCA, is a self-consistent resummation based on a self
energy which contains the electron-phonon coupling and
hybridization with the leads to lowest order. Within the second
approximation, which we term the dressed NCA, a Lang-
Firsov transformation is first applied, and the resulting trans-
formed set of interactions are then included in a self-consistent,
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lowest order self energy. We focus on the predictions of both
approximations with regard to transient dynamics as well as the
nonequilibrium steady state behavior of the spectral function.
In general, it should be expected that any flavor of NCA
will be inaccurate for low-frequency properties. For example,
NCA predicts a broadened and suppressed Kondo resonance
when compared with exact numerics [79]. Due to the paucity
of exact and global information related to the dynamical
properties of the model, a detailed assessment of the success
and failure of the respective methods is not possible even for
higher frequency features. On the other hand, we believe it
is plausible to favor the bare NCA when the electron-phonon
coupling is weak, the dressed NCA when it is strong, and
both approaches when they produce consistent results in the
intermediate coupling regime. Since the two approximations
are based on disparate limits of the electron-phonon portion of
the problem, we focus on the intermediate coupling regime in
an attempt to assess the validity of the two approximations.

We find that several features appear to be robust within
both flavors of NCA. First, the Kondo peak is enhanced
in particular regimes, but is universally suppressed in the
large electron-phonon coupling regime. Second, low energy
tunneling occurs and charge transfer peaks are suppressed
when phonon frequency is small compared to other relevant
energy scales. Lastly, the voltage splitting of the Kondo peak
robustly occurs in the nonequilibrium regime. We expect these
features to be real and experimentally reproducible behaviors
in the Anderson-Holstein model.

Conversely, several striking dynamical properties appear
only within one type of NCA approximation. In particular,
the oscillatory transient behavior exhibited in Fig. 11 and
the replication of the Kondo peak is only observed within
the bare NCA, while polaronic shifts of the charge transfer
peaks occur only in the dressed NCA approximation. It is
important to note that these observations do not necessarily
imply that such behaviors are artifacts. In particular, since
the bare NCA is expected to capture accurately the weak
electron-phonon situation, it is plausible that the features
revealed in Figs. 9 and 11 are real properties of the model in this
regime. The dressed NCA may not predict this behavior due
to the fact that several low order diagrams associated with the
interplay between hybridization and electron-phonon coupling
are absent. On the other hand, polaronic effects may only be
captured within the dressed NCA, and thus strong coupling
shifts of the charge transfer peaks should be expected once the
coupling to phonons is sizable.

Perhaps the most important aspect of the work presented
here is that it lays the foundation for exact real-time QMC
approaches based on expansion around the NCA approxima-
tion. These “bold-line” approaches have been successful in the
treatment of the simpler Anderson model and have enabled the
simulation of relatively long real time information before the
dynamical sign problem becomes problematic. Convergence
of these approaches depends crucially on having a reasonably
accurate partial summation of diagrams from the outset. With
respect to the work presented here, we expect that the bare
and dressed NCA approximations should provide a good
starting point in the weak and strong electron-phonon coupling
regimes, respectively. In addition to validating or falsifying
the predictions made by the individual NCA approximations

of this paper, real-time QMC approaches that make use of the
bare and dressed NCA techniques should allow for the exact
simulation of the Anderson-Holstein model in regimes that are
currently inaccessible.
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APPENDIX: COMPARISON WITH DMFT-BASED
MONTE CARLO RESULTS

The top panel of Fig. 3 of Ref. [98] illustrates the behavior
of the spectral function of an Anderson-Holstein problem
computed via analytical continuation of exact imaginary-time
quantum Monte Carlo as a function of increasing electron-
phonon coupling and is analogous to our Fig. 9. While it is
difficult to make a direct comparison between these results
and the results presented in our paper due to the fact that
the previous results were obtained self-consistently in the
context of dynamical mean field theory, we have computed the
spectral function for the same model and parameters within
the NCA approaches outlined in this paper. In this sense,
the results of Fig. 16 represent a type of noniterated NCA
impurity solution in the DMFT context. The electron-phonon
coupling parameters used in Fig. 3 of Ref. [98] are sufficiently
large to render the bare NCA unstable. On the other hand, the
dressed NCA is in qualitative agreement with the analytically
continued results.

Quantitatively, the dressed NCA produces peaks in po-
sitions similar to those obtained by Monte Carlo for large
λ, but the ω = 0 and low frequency peaks are broadened
and suppressed when compared to those of the analytically
continued exact data. This broadening and suppression appears
to be a general feature of NCA [79]. While the behavior of the
gap closing feature can be observed in both the NCA and the
analytically continued Monte Carlo data, it is still unclear to
what degree the differences in the spectral functions are due to
the effects of analytical continuation and the self-consistency
of the DMFT calculation.
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FIG. 16. Left: Evolution of the spectral function across the
metal-insulator transition (gap closing) by increasing the phonon
coupling. Right: The spectral function A(ω) in the strong coupling
regime is calculated within the dressed NCA for a symmetric dot
with U = −2ε = 10� at equilibrium V = 0. The density of state is
of the semicircular form �(ω) = √

4t2 − ω2 with t = 1. The phonon
coupling is ω0 = 3.0� and the counter term is symmetric (δ = 1).
The baths are maintained at a temperature β� = 50.
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64, 155111 (2001).
[91] M. Eckstein and P. Werner, Phys. Rev. B 82, 115115 (2010).
[92] E. Gull, D. R. Reichman, and A. J. Millis, Phys. Rev. B 84,

085134 (2011).
[93] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Phys.

Rev. Lett. 112, 146802 (2014).
[94] G. Cohen, E. Gull, D. R. Reichman, and A. J. Millis, Phys.

Rev. Lett. 115, 266802 (2015).
[95] A. J. White and M. Galperin, Phys. Chem. Chem. Phys. 14,

13809 (2012).
[96] E. Lebanon and A. Schiller, Phys. Rev. B 65, 035308 (2001).
[97] Q. F. Sun and H. Guo, Phys. Rev. B 64, 153306 (2001).
[98] P. Werner and A. J. Millis, Phys. Rev. Lett. 104, 146401 (2010).
[99] Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 70,

2601 (1993).
[100] A. Hewson, The Kondo Problem to Heavy Fermions, Aca-

demic and Professional Books (Cambridge University Press,
Cambridge, UK, 1993).

174309-15

http://dx.doi.org/10.1103/PhysRevB.71.035333
http://dx.doi.org/10.1103/PhysRevB.71.035333
http://dx.doi.org/10.1103/PhysRevB.71.035333
http://dx.doi.org/10.1103/PhysRevB.71.035333
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevLett.94.206804
http://dx.doi.org/10.1103/PhysRevB.73.155306
http://dx.doi.org/10.1103/PhysRevB.73.155306
http://dx.doi.org/10.1103/PhysRevB.73.155306
http://dx.doi.org/10.1103/PhysRevB.73.155306
http://dx.doi.org/10.1103/PhysRevB.79.115140
http://dx.doi.org/10.1103/PhysRevB.79.115140
http://dx.doi.org/10.1103/PhysRevB.79.115140
http://dx.doi.org/10.1103/PhysRevB.79.115140
http://dx.doi.org/10.1103/PhysRevB.68.195318
http://dx.doi.org/10.1103/PhysRevB.68.195318
http://dx.doi.org/10.1103/PhysRevB.68.195318
http://dx.doi.org/10.1103/PhysRevB.68.195318
http://dx.doi.org/10.1016/j.physleta.2012.07.025
http://dx.doi.org/10.1016/j.physleta.2012.07.025
http://dx.doi.org/10.1016/j.physleta.2012.07.025
http://dx.doi.org/10.1016/j.physleta.2012.07.025
http://dx.doi.org/10.1103/PhysRevB.87.195136
http://dx.doi.org/10.1103/PhysRevB.87.195136
http://dx.doi.org/10.1103/PhysRevB.87.195136
http://dx.doi.org/10.1103/PhysRevB.87.195136
http://dx.doi.org/10.1103/PhysRevB.83.115414
http://dx.doi.org/10.1103/PhysRevB.83.115414
http://dx.doi.org/10.1103/PhysRevB.83.115414
http://dx.doi.org/10.1103/PhysRevB.83.115414
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.88.045137
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.89.205129
http://dx.doi.org/10.1103/PhysRevB.71.075320
http://dx.doi.org/10.1103/PhysRevB.71.075320
http://dx.doi.org/10.1103/PhysRevB.71.075320
http://dx.doi.org/10.1103/PhysRevB.71.075320
http://dx.doi.org/10.1103/PhysRevB.76.241403
http://dx.doi.org/10.1103/PhysRevB.76.241403
http://dx.doi.org/10.1103/PhysRevB.76.241403
http://dx.doi.org/10.1103/PhysRevB.76.241403
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1103/PhysRevB.87.075319
http://dx.doi.org/10.1088/1367-2630/16/2/023007
http://dx.doi.org/10.1088/1367-2630/16/2/023007
http://dx.doi.org/10.1088/1367-2630/16/2/023007
http://dx.doi.org/10.1088/1367-2630/16/2/023007
http://dx.doi.org/10.1103/PhysRevB.72.041301
http://dx.doi.org/10.1103/PhysRevB.72.041301
http://dx.doi.org/10.1103/PhysRevB.72.041301
http://dx.doi.org/10.1103/PhysRevB.72.041301
http://dx.doi.org/10.1103/PhysRevB.89.115139
http://dx.doi.org/10.1103/PhysRevB.89.115139
http://dx.doi.org/10.1103/PhysRevB.89.115139
http://dx.doi.org/10.1103/PhysRevB.89.115139
http://dx.doi.org/10.1103/PhysRevLett.76.1715
http://dx.doi.org/10.1103/PhysRevLett.76.1715
http://dx.doi.org/10.1103/PhysRevLett.76.1715
http://dx.doi.org/10.1103/PhysRevLett.76.1715
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/PhysRevB.79.153302
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/RevModPhys.83.349
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1103/PhysRevB.84.075150
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1088/1367-2630/15/7/073018
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.87.195108
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/PhysRevB.82.075109
http://dx.doi.org/10.1103/RevModPhys.59.845
http://dx.doi.org/10.1103/RevModPhys.59.845
http://dx.doi.org/10.1103/RevModPhys.59.845
http://dx.doi.org/10.1103/RevModPhys.59.845
http://dx.doi.org/10.1007/BF01311391
http://dx.doi.org/10.1007/BF01311391
http://dx.doi.org/10.1007/BF01311391
http://dx.doi.org/10.1007/BF01311391
http://dx.doi.org/10.1103/PhysRevB.49.11040
http://dx.doi.org/10.1103/PhysRevB.49.11040
http://dx.doi.org/10.1103/PhysRevB.49.11040
http://dx.doi.org/10.1103/PhysRevB.49.11040
http://dx.doi.org/10.1103/PhysRevB.64.155111
http://dx.doi.org/10.1103/PhysRevB.64.155111
http://dx.doi.org/10.1103/PhysRevB.64.155111
http://dx.doi.org/10.1103/PhysRevB.64.155111
http://dx.doi.org/10.1103/PhysRevB.82.115115
http://dx.doi.org/10.1103/PhysRevB.82.115115
http://dx.doi.org/10.1103/PhysRevB.82.115115
http://dx.doi.org/10.1103/PhysRevB.82.115115
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevB.84.085134
http://dx.doi.org/10.1103/PhysRevLett.112.146802
http://dx.doi.org/10.1103/PhysRevLett.112.146802
http://dx.doi.org/10.1103/PhysRevLett.112.146802
http://dx.doi.org/10.1103/PhysRevLett.112.146802
http://dx.doi.org/10.1103/PhysRevLett.115.266802
http://dx.doi.org/10.1103/PhysRevLett.115.266802
http://dx.doi.org/10.1103/PhysRevLett.115.266802
http://dx.doi.org/10.1103/PhysRevLett.115.266802
http://dx.doi.org/10.1039/c2cp41017f
http://dx.doi.org/10.1039/c2cp41017f
http://dx.doi.org/10.1039/c2cp41017f
http://dx.doi.org/10.1039/c2cp41017f
http://dx.doi.org/10.1103/PhysRevB.65.035308
http://dx.doi.org/10.1103/PhysRevB.65.035308
http://dx.doi.org/10.1103/PhysRevB.65.035308
http://dx.doi.org/10.1103/PhysRevB.65.035308
http://dx.doi.org/10.1103/PhysRevB.64.153306
http://dx.doi.org/10.1103/PhysRevB.64.153306
http://dx.doi.org/10.1103/PhysRevB.64.153306
http://dx.doi.org/10.1103/PhysRevB.64.153306
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.104.146401
http://dx.doi.org/10.1103/PhysRevLett.70.2601
http://dx.doi.org/10.1103/PhysRevLett.70.2601
http://dx.doi.org/10.1103/PhysRevLett.70.2601
http://dx.doi.org/10.1103/PhysRevLett.70.2601



