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Interaction-stabilized steady states in the driven O(N) model
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We study periodically driven bosonic scalar field theories in the infinite N limit. It is well known that the free
theory can undergo parametric resonance under monochromatic modulation of the mass term and thereby absorb
energy indefinitely. Interactions in the infinite N limit terminate this increase for any choice of the UV cutoff
and driving frequency. The steady state has nontrivial correlations and is synchronized with the drive. The O(N )
model at infinite N provides the first example of a clean interacting quantum system that does not heat to infinite
temperature at any drive frequency.
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I. INTRODUCTION

Experiments in cold atomic systems have generated much
interest in the dynamics of periodically driven many-body
Hamiltonians [1,2]. Energy is not conserved in such systems;
instead by the Bloch-Floquet theorem, the eigenstates have the
form

|ψ(t)〉 = e−iεt |φ(t)〉, (1)

where ε is a quasienergy defined modulo the fundamental drive
frequency, and |φ(t)〉 has the same periodicity as the drive [3].
There are two intimately related questions in such a system: (i)
is there a late-time steady state with nontrivial correlations and
finite energy density, and (ii) is such a late-time steady state
synchronized with the drive [4]? Already for a single two-level
system, the answers to these two questions are nontrivial as the
system can coherently Rabi flip-flop at a different frequency
from that of the drive.

At the next level of complexity are integrable many-
body systems such as periodically driven noninteracting
fermions [5–8]. The dynamics is governed by an effective
quadratic Floquet Hamiltonian; thus the stationary state
coincides with an appropriate periodic generalized Gibbs
ensemble [9]. There has been much theoretical progress
classifying the topological structure of Floquet bands [10–12]
and experimental progress studying such states in cold atomic
systems [13] and topological insulators [14,15].

The nature of the steady state in driven interacting systems
is less clear. Standard linear response theory suggests that any
finite frequency drive heats the system to infinite temperature.
That is, the local reduced density matrix approaches the
identity. References [16–18] argue for this scenario in generic
ergodic systems with locally bounded Hilbert spaces. These
findings are in contradiction with Refs. [19–21] that claim
that certain spin models do not heat to infinite temperature
when the drive frequency is above a finite threshold. For
strongly disordered spin systems whose time independent
Hamiltonian is many-body localized, several recent studies
find the same threshold behavior [22–24]. For systems with
locally unbounded Hilbert spaces, even less is known. One
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recent study of the many-body Kapitza pendulum finds
threshold behavior [25]; we compare their results to ours later.

In this article we approach this problem using the large N

expansion for interacting bosonic systems. The O(N ) model
at infinite N is a canonical model for symmetry breaking
in statistical mechanics [26]. Its equilibrium properties are
exactly soluble and capture the correct topology of phase
diagrams in various dimensions. It is also a canonical model for
the unitary dynamics of interacting theories and a workhorse
of many fields including cosmology and condensed matter
[27–36]. The Floquet dynamics in the infinite N limit is the
focus of this work. We comment on 1/N corrections towards
the end, but reserve a full-blown treatment for the future.

We begin in Sec. II by reviewing the response of the
Gaussian model under periodic driving of the bare mass in the
paramagnetic phase, previously studied in Refs. [37,38]. In
this theory, the energy density grows exponentially in time via
the parametric resonance of selected momentum modes [39].
Incorporating the effect of interactions at N = ∞ removes this
divergence for any fixed cutoff and drive frequency (Sec. III).
The long-time steady state synchronizes with the drive, but
depends on initial conditions because of the integrability of
the theory. In Sec. IV we turn to the symmetry-broken phase.
Again, interactions prevent indefinite heating, although the
time averaged magnetization decays to zero. Oddly, the late
time magnetization can oscillate at half the frequency of the
drive; we argue that this is an artifact of the infinite N limit. The
O(N ) model at infinite N is the first example of a many-body
system that fails to heat to infinite temperature for any periodic
drive.

II. GAUSSIAN MODEL

Consider the free O(N ) model in d dimensions with a
sinusoidally varying bare mass. The Hamiltonian is

H0(t) =
N∑

i=1

∫ � ddk

(2π )d

(
|�i(�k)|2

2
+ [|�k|2 + r(t)]

|�i(�k)|2
2

)
,

r(t) = r0 − r1 cos(γ t), (2)
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where �i(�k) and �j (�k) satisfy the canonical commutation
relations:

[�i(�k),�j ( �k′)] = i(2π )dδ(�k − �k′)δij . (3)

The component index i runs from 1 to N , the ultraviolet cut is
given by � in momentum space, the bare mass is r(t), and d

is the spatial dimension. We suppress the index i as the initial
states are O(N ) symmetric. In equilibrium in the absence of
drive (r1 = 0), the model is paramagnetic for r0 � 0 at all
temperatures and ill defined for r0 < 0.

In the bulk of the article we analyze the response under a
monochromatic drive at a single frequency γ . As the Gaussian
theory is a linear system, the response to a polychromatic
drive follows by superposition. The interacting O(N ) model
is however not a linear system. We address generic periodic
drives in this model at the end of Sec. III.

In the Gaussian model, the equations of motion for �(�k,t),
�(�k,t) are linear. We expand these operators in a fixed basis of
creation and annihilation operators, e.g., �(�k,t) = f�k(t)a�k +
f ∗

−�k(t)a†
−�k . This defines the complex mode functions f�k(t). The

commutation relation between �(�k,t) and �(�k,t) imposes the
following constraint:

Im[f�k(t)ḟ ∗
�k (t)] = 1/2 ∀�k. (4)

The mode functions satisfy the equations of motion:(
d2

dt2
+ |�k|2 + r0 − r1 cos(γ t)

)
f�k = 0. (5)

At each momentum �k, this is the well-known equation of
motion of a parametrically driven two-dimensional harmonic
oscillator (as f�k is complex). The transformation t → 2t/γ ,
f�k → √

2/γ f�k makes time and the mode function dimension-
less and brings Eq. (5) to the canonical form(

d2

dt2
+ Ek − 2g cos(2t)

)
f�k = 0, (6)

Ek = 4(|�k|2 + r0)

γ 2
, g = 2r1

γ 2
. (7)

This differential equation is the Mathieu equation [40]. The
frequency of the drive is two in dimensionless units.

The Mathieu equation is a familiar beast in band theory; it
is the Schrödinger equation of a one-dimensional particle in
a cosine potential. This identification provides a dictionary
between the mode functions f�k(t) and the Bloch wave
functions of the Schrödinger equation:

t → Spatial coordinate,

f�k(t) → Wave function, (8)

Ek → Energy of the wave function.

A number of properties of the Mathieu spectrum (Fig. 1) follow
directly from this mapping:

(1) By the Bloch theorem, the spectrum of the particle is
labeled by a quasimomentum q ∈ (−1,1] and a band index
m = 1,2 . . . with eigenfunctions ψ(x) = e−iqxφm(x), where
φm(x) = φm(x + π ).

(2) When the amplitude of the drive g is zero, the spectrum
is degenerate at the center and the edges of the Brillioun zone.

E
ne

rg
y

E0

EΛ

E0 + u Φ2
i

q q

FIG. 1. Left: The energy spectrum of a 1d particle in a cosine
potential vs quasimomentum q. The shaded region is the mode
range. If the mode range includes band gap(s), the Gaussian model is
unstable. Right: The effective Mathieu spectrum of the driven O(N )
paramagnet at late times. The entire mode range is shifted by the
constant uF [〈�2

i 〉](0) so that the mode range lies within a single
band of the spectrum.

Any g �= 0 opens a gap at these degenerate points; the mth gap
can be perturbatively estimated to be gm/[(m/2)!]2 for large
m. The gaps decrease faster than exponentially in m.

(3) The bandwidth of the mth band is 2m − 1 at large m.
This is exact at g = 0 and holds for g �= 0 at large m because
the mth gap is much smaller than the bandwidth 2m − 1.

Using the mapping in Eq. (8), the k modes in the Gaussian
theory sample energies from E0 = 4r0/γ

2 to E� = 4(r0 +
�2)/γ 2 in the Mathieu spectrum (shaded region in Fig. 1). We
call the range of energies between E0 and E� as the “mode
range.” If the mode range lies within a Mathieu band, then by
(1) above, each mode function is a superposition of the two
solutions at ±qk and is oscillatory in time:

f�k(t) = αke
−iqk tφm

�k (t) + βke
iqktφm

�k (t)∗, (9)

where αk,βk are complex numbers determined by the initial
conditions and Eq. (4). The energy density and other spatially
local observables involve integrals over the mode functions
in k space. As the magnitude of each mode function is
bounded in Eq. (9), all such observables remain bounded as
t → ∞. Furthermore, it is straightforward to show that local
observables oscillate in synchrony with the drive as t → ∞.
For example, 〈�2

i (t)〉 is given by

〈
�2

i (t)
〉 =

∫ � ddk

(2π )d
δk

∣∣φm
�k (t)

∣∣2 + 2Re
[
e−2iqk tχm

�k (t)
]
,

where δk and χm
�k (t) are related to the parameters in Eq. (9).

The second term decays as 1/td/2 as t → ∞, while the first
term has the same period T = π as the drive. Thus, 〈�2

i (t)〉 =
〈�2

i (t + π )〉 as t → ∞.
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FIG. 2. The dynamical phase diagram of the driven Gaussian
theory at fixed g/γ 2. Unshaded/shaded regions are stable/unstable.
The band gaps in the Mathieu spectrum determine the phase
boundaries.

The phase diagram is sketched in Fig. 2. The simplest
stable phase lies at small �2/γ 2,r0/γ

2; here the drive
frequency γ is much greater than any other energy scale
in the system. However, the additional stable phases are
nontrivial consequences of the band structure of the Mathieu
equation.

When the mode range intersects the Mathieu band gaps, the
corresponding mode functions increase exponentially in time,
exhibiting parametric resonance. Consequently, the energy
density (and other local observables) also grow exponentially
in time and the system heats indefinitely. The heating time scale
is given by the inverse of the largest band gap intersecting with
the mode range. It is important to note that at any fixed bare
mass and drive parameters, the theory is always unstable for
sufficiently large cutoff � as the mode range increases with �.

It is sometimes useful to think of the evolution over a
period T = 2π/γ as being generated by an effective Floquet
Hamiltonian HF :

U (T ) = e−iHF T , (10)

where U (T ) is the evolution operator for a period [3,41]. As
the theory is quadratic, HF can be chosen to be quadratic in
the field operators. In the stable regime, the mode spectrum
of HF is non-negative and the eigenmodes are normalizable.
By expanding any initial state in this eigenbasis, it is easily
seen that the late time response is stable and periodic. In
the unstable regime, on the other hand, the mode spectrum
includes negative energies and corresponding unnormalizable
eigenmodes. This is what allows the system to absorb energy
indefinitely. For more details, see Ref. [38].

We end with three comments. First, the physics discussed
above applies to any spatial dimension d � 1. Second, in the
phase diagram in Fig. 2, the stable region persists to some
r0/γ

2 < 0. Thus, the driven Gaussian theory can be stable even
when the equilibrium theory is not. Finally, “energy density”
when unqualified refers to either the instantaneous energy
density or the energy density with respect to the time-averaged
Hamiltonian. Both diverge when the system heats up to infinite
temperature.

III. DRIVEN PARAMAGNET

We now turn to the interacting O(N ) model with a
sinusoidally varying bare mass. The Hamiltonian reads

H (t) = H0(t) + λ

4N

N∑
i=1

∫
ddx [�i(�x)]4. (11)

At infinite N , [�i(�x)�i(�x)]/N acts like a classical time-
dependent field and can be replaced by its expectation value.
In the absence of the drive in equilibrium (r1 = 0), the model
is paramagnetic for all r0 > rc and spontaneously breaks the
O(N ) symmetry for r0 < rc. The value of rc is determined
by d: in d = 1, rc = −∞, while in d � 2, rc is negative and
finite. Furthermore, the symmetry-broken phase extends to
finite temperatures for d � 3. In this section we focus on the
coherently driven paramagnet.

Expanding in a fixed basis of creation/annihilation opera-
tors as before, we obtain the equations of motion:(

d2

dt2
+ |�k|2 + r(t) + λ

∫ � ddk

(2π )d
|f�k(t)|2

)
f�k(t) = 0 (12)

assuming that f�k(t) is the same for every component and using
the relation (no summation on i)

〈
�2

i (t)
〉 =

∫
ddk

(2π )d
|f�k(t)|2. (13)

As the system is spatially homogenous, 〈�2
i 〉 only depends on

t . For more details about the derivation, see Ref. [34]. As a
consequence of the quartic term, Eq. (12) is nonlinear in the
mode functions. Rewriting in dimensionless units:(

d2

dt2
+ Ek − 2g cos(2t) + u

∫ � ddk

(2π )d
|f�k(t)|2

)
f�k(t) = 0,

(14)

where u ≡ 8λ/γ 3 and Ek,g are defined in Eq. (7).
Observe that u = 0 corresponds to the driven Gaussian

model. When the Gaussian model exhibits stable behavior, it
is clear that a small u merely dresses the steady state. The main
result is that the stability persists at all parameters (even when
the Gaussian model is unstable). The energy density always
plateaus to a finite value at late times and the wave function has
nontrivial correlations that can be described within an effective
Gaussian model. Below we present the intuition underlying
this stability and numerical results that support this claim. We
then construct explicit Floquet solutions to Eq. (14) at low
drive frequency within the WKB approximation.

The quartic term acts as a self-consistent correction to the
energy Ek in Eq. (14). Define the instantaneous energy:

Ek(t) = Ek + u
〈
�2

i (t)
〉
. (15)

This identifies an instantaneous mode range. Suppose that
at t = 0 the mode range includes band gaps in the Mathieu
spectrum [left panel of Fig. 1 with the mode range between
E0(0) and E�(0)]. Then, the associated mode functions grow
exponentially in time, and by Eq. (13), so does 〈�2

i (t)〉. Finally,
this implies the mode range itself drifts up with time. As the
bandwidth of each Mathieu band is proportional to its index,
at large enough E0(t) the mode range lies within a single
band (right panel of Fig. 1). We expect that all the mode
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functions then become oscillatory, the time averaged value of
〈�2

i (t)〉 plateaus, and the system stops heating. Furthermore,
just as in the Gaussian model, we expect that all observables
synchronize with the drive.

A more refined version of the above argument corrects the
drive at late times. At late times, 〈�2

i (t)〉 is in synchrony with
the drive:

〈
�2

i (t)
〉 ∼

∞∑
ω=0

F
[〈
�2

i

〉]
(ω)e2iωt , (16)

where F [〈�2
i 〉](ω) denotes the Fourier amplitude at frequency

ω. The mode functions thus satisfy a generalized Mathieu
equation with parameters

Ēk = Ek + uF
[〈
�2

i

〉]
(0), ḡ = g − uF

[〈
�2

i

〉]
(2). (17)

The higher harmonics in 〈�2
i (t)〉 can be ignored as their

amplitudes are small as compared to ḡ. We expect that the
mode range lies within a single band of the Mathieu spectrum
with the parameters in Eq. (17).

The arguments above, while appealing, are not decisive.
At short times, they assume that Eq. (14) can be treated as
an effective Mathieu equation even though 〈�2

i (t)〉 increases
exponentially in time. At long times, they ignore the higher
harmonics in the effective drive. We therefore turn to numerical
simulations of Eq. (14) to confirm this picture.

A. Numerics

Consider the d = 1 O(N ) model in its paramagnetic ground
state at t = 0. At time t = 0, we turn on the drive and propagate
the equations of motion Eq. (14) forward in time using the
standard ordinary differential equation solver in SciPy. With
the parameters chosen in Fig. 3, the mode range at t = 0
includes the first band gap. The modes near the center of the
band gap are the most unstable in the Gaussian model; they
grow exponentially with a time scale that is approximately 4π

times the inverse band gap. The time scale for the growth of
〈�2

i (t)〉 is half that of the mode functions [as 〈�2
i (t)〉 is set

by the square of the mode functions]. When g � 1, the band
gap is approximately 2g, which sets the time scale for growth
of 〈�2

i (t)〉 to be approximately τ = π/g. This exponential
growth continues until the mode range completely fits into a
single band [42]. The width of the mode range is 1, while the
bandwidth of the second Mathieu band is approximately 3; thus
we expect 〈�2

i (t)〉 to stop growing when Ē0 is approximately
the energy at the bottom of the second band of the effective
spectrum for the parameters in Eq. (17). We can estimate the
time to saturation ts using the following relation:〈

�2
i (ts)

〉 = 〈
�2

i (0)
〉
ets/τ . (18)

In Fig. 3 we plot 〈�2
i (t)〉 vs the dimensionless time t at

early (top) and late (middle) times. With g = 0.3, τ/π ≈ 3.3.
Armed with Eq. (18) and the initial and final values of 〈�2

i (t)〉
from Fig. 3, we obtain ts/π ≈ 7.5, in good agreement with the
top panel in Fig. 3. After this time, 〈�2

i (t)〉 stops growing
and oscillates about a mean value for the next thousand
periods (middle panel). To connect to the effective Mathieu
spectrum, we plot the Fourier spectrum (bottom panel). We
see that (i) 〈�2

i (t)〉 is synchronized with the drive [Eq. (16)],
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]

FIG. 3. Top and middle panels: 〈�2
i (t)〉 vs t/π at early and late

times when the paramagnetic ground state is driven starting at t = 0.
Bottom panel: Fourier spectrum of 〈�2

i (t)〉 over a thousand periods of
the drive. Parameters: d = 1, r0 = 0.1, u = 1, � = 1, g = 0.3, and
system size L = 100. The energy density shows similar behavior.

(ii) the harmonics at frequencies above two are suppressed,
and (iii) the value of Ē0 extracted from the figure coincides
with the value of the lowest energy in the second band of the
effective Mathieu spectrum. That is, in the right panel of Fig. 1,
the energy at the bottom of the mode range coincides with the
energy at the bottom of the second band. This is because the
second band is able to accommodate the entire mode range;
in general, Ē0 coincides with the energy at the bottom of
the band of smallest width that can accommodate the entire
mode range. We also checked that the energy density (not
shown) is finite and synchronized with the drive as t → ∞.
Thus, the numerical simulations confirm the effective Mathieu
picture and provide evidence for a steady state stabilized by
interactions in the driven O(N ) model.

B. Approximate Floquet solutions

We construct explicit normalizable solutions of Eq. (14)
as the drive frequency γ approaches zero within the WKB
approximation [43]. Physically, the system is most susceptible
to indefinite heating at low drive frequency; the construction
of normalizable Floquet states in this limit is strong evidence
that the model exhibits stable behavior at any drive parameters.

Following the structure in Ref. [43], we rearrange Eq. (14)
as(

γ 3

4

d2

dt2
+ γ [|�k|2 + r0 − r1 cos(2t)] + 2λ

〈
�2

i (t)
〉)

f�k(t) = 0.

(19)
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Note that we are still working in dimensionless units. To
leading order in γ in the WKB series, the mode functions
are independent of �k and are given by

f�k(t) ∼ 1√
2
√

8λ
〈
�2

i (t)
〉 exp

[
±i

∫ t √
8λ

〈
�2

i (t ′)
〉
dt ′

]
,

where 〈�2
i (t)〉 is determined by the self-consistency condition

in Eq. (13):

〈
�2

i (t)
〉 ∼ K

�2d/3

λ1/3
. (20)

K is a dimension dependent constant. To next order in γ , the
mode functions depend on �k and 〈�2

i (t)〉 is corrected by a
γ cos(2t) term. This expansion is systematic; we may go to as
high an order in γ as we desire and construct asymptotically
accurate oscillatory solutions to Eq. (14).

C. Comments

We end with a few comments.
First, the arguments in the last section apply to any d. Next,

the ratio of the UV scale to the drive frequency is an important
dimensionless quantity as it sets the width of the mode range in
Fig. 1 [width = 4(�/γ )2]. If �/γ � 1, then the entire mode
range fits in the lowest band and the response is oscillatory.
Consequently, the average energy absorbed from the drive in a
period is zero, as we expect for a system driven at a frequency
much larger than its intrinsic one. In the other limit when
�/γ � 1, the mode range encompasses many band gaps and
the system absorbs energy until the entire mode range fits into
a single band of the effective Mathieu spectrum. Nevertheless,
the heating always stops at late times, so that the driven O(N )
model reaches a steady state with nontrivial correlations at any
�/γ .

Third, the effective Mathieu picture can be generalized to
the case of a polychromatic periodic drive with fundamental
frequency γ . This is because the higher harmonics at fre-
quencies ±mγ , m � 2 do not change the qualitative picture
of bands in Fig. 1. As in the monochromatic case, the mode
range drifts up in time until it lies within a single band of
the effective Mathieu equation. Thus, the driven O(N ) model
reaches an interaction-stabilized synchronized steady state for
any periodic drive.

Finally, the late time steady state is not described by a
single temperature. This is already true when a parameter
in the O(N ) Hamiltonian is quenched abruptly, as shown
in Ref. [34]. Instead, the late time state is described by an
emergent generalized Gibbs ensemble (GGE) associated with
an effective Gaussian theory. The GGE is emergent as new
conservation laws appear at late times; for more details, see
Ref. [34]. The import of these observations for the periodically
driven O(N ) model is that there is an effective periodically
driven Gaussian theory describing the steady state at late times.
Following the work of Ref. [9], we therefore expect that the
steady state is described by an emergent periodic generalized
Gibbs ensemble (PGGE). The conserved quantities that feature
in the PGGE are the mode occupations of the effective
Gaussian model with parameters in Eq. (17). Let n�k(t) denote

the mode occupation of the oscillator at momentum �k. At
late times, n�k(t) commutes with the unitary evolution operator
U (t) and is periodic with the same period as the drive. As
these quantities are conserved only at late times, the PGGE is
emergent.

IV. DRIVEN FERROMAGNET

Like the driven paramagnet, the driven ferromagnet does
not heat to infinite temperature at any drive parameters. Rather,
it reaches a stable paramagnetic steady state in any d � 2.
Unlike the driven paramagnet however, the time period of the
observables at late time can be double that of the drive. We
believe that this lack of synchrony is a consequence of the
infinite N limit, as we discuss below.

Let us be more precise. For r0 < rc in d � 2, the O(N )
symmetry is spontaneously broken in equilibrium. Let the
symmetry be broken along the 1 direction in order parameter
space so that 〈�1(�x)〉 is the nonzero uniform magnetization.
The remaining (N − 1) directions in order parameter space
are soft and support Goldstone modes. The system is in the
ground state at t = 0 when the mass drive is switched on.

At infinite N , the equations of motion involve two clas-
sical fields: 〈�1(t)〉 and

∑N
i=2〈�2

i (t)〉/N . The new classical
field defines the magnetization M(t) ≡ 〈�1(t)〉/√N . Defining
mode functions for components 2, . . . ,N as before and going
to dimensionless units [t → 2t/γ , f�k → √

2/γ f�k , M(t) →√
2/γM(t)], the equations of motion are

(
d2

dt2
+ Ek − 2g cos(2t) + rf (t)

)
f�k(t) = 0, (21)(

d2

dt2
+ E0 − 2g cos(2t) + rf (t)

)
M(t) = 0, (22)

rf (t) ≡ u

∫ � ddk

(2π )d
|f�k(t)|2 + uM2(t), (23)

where Ek,g are defined in Eq. (7) and u ≡ 8λ/γ 3 as in the
previous section. The feedback term to the bare mass is denoted
by rf (t) and involves an extra classical field as compared to
Eq. (14). In the absence of the drive, E0 + rf (0) is the mass of
the Goldstone bosons and is equal to zero.

The intuitive argument for stability at late times is anal-
ogous to the one in Sec. III if we define the instantaneous
energy as Ek(t) ≡ Ek + rf (t). We begin by ignoring the time
dependence of the feedback term rf (t) so that Eq. (21) de-
scribes a driven Gaussian model with the mode range between
E0(0) = E0 + rf (0) = 0 and E�(0) (Fig. 4 left panel). If the
mode range lies within the lowest band, then the Gaussian
solution is stable and the mode functions are oscillatory
(Sec. II). The time dependence of rf (t) only quantitatively
affects these solutions. If however the mode range includes
band gaps, then the Gaussian solution is unstable and rf (t)
increases in time until the mode range fits in a single band of
an effective Mathieu spectrum with parameters:

Ēk = Ek + F [rf ](0), ḡ = g − F [rf ](2). (24)

See the right panel of Fig. 4. Again, F [rf ](ω) denotes the
Fourier amplitude at frequency ω.
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FIG. 4. Left: The energy spectrum of the Mathieu equation
associated with the driven ferromagnet [Eq. (23)] neglecting the time
dependence of rf (t). The shaded region is the mode range extending
from E0(0) = 0 to E�(0). If the mode range includes band gap(s),
then the solution is unstable. Right: The effective Mathieu spectrum of
the driven ferromagnet at late times. Ē0 = E0 + F [rf ](0) coincides
with the bottom of an effective band and the entire mode range lies
within the same band.

A consequence of this argument is that Ē0 always coincides
with the bottom of an effective Mathieu band in the driven
ferromagnet (whether or not the Gaussian solution is unstable).
In contrast, steady states of the driven paramagnet allow for
E0(0) > 0 (and Ē0 > 0) if the entire mode range at t = 0 fits
in a single band. The difference stems from the tunability of
E0(0) in the paramagnetic case. Note however that in either
case, if the Gaussian approximation is unstable, then the mode
range drifts upward until it fits in a single band. At this point,
Ē0 always coincides with the bottom of that band.

The energy Ē0 corresponds to quasimomentum q = 1 (mod
2) if the band index is even or q = 0 (mod 2) if the index is odd
(see Fig. 4). In the first case, the time period of M(t) is twice the
period T = π of the drive, while in the latter case, it is the same
as the drive. This follows from the mapping in Eq. (8): M(t) is
the wave function at energy Ē0 so that M(t + T ) = e−iqπM(t),
where q is the quasimomentum corresponding to energy Ē0.
Which solution is obtained depends on the initial conditions; if
the smallest band that can accommodate the mode range is even
(odd), then the period of M(t) is 2T (T ). In the former case,
the response of the system is not periodic with the drive. As
the oscillations themselves are likely an artifact of the infinite
N approach, we do not expect this behavior at any finite N

(see Sec. V).
Finally, the time average of M(t) is zero at late times, as

it is the solution of a Mathieu equation. Thus the steady state
is paramagnetic. Interestingly, this is true in any dimension
d � 2, even when there is a finite temperature ordered phase
in equilibrium.

Numerics—Numerical simulations confirm the effective
picture discussed above. Consider the d = 2 O(N ) model in its
ferromagnetic ground state at t = 0. At time t = 0, we turn on
the drive. The parameters are chosen such that the initial mode
range includes the first band gap in the Mathieu spectrum.
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FIG. 5. Top and middle panels: M(t) vs number of periods t/π at
early and late times when the ordered ground state is driven starting
at t = 0. Bottom panel: Fourier spectrum of the time series between
t/π = 1200 and t/π = 1600. Parameters: d = 2, r0 = −0.4, u = 1,
� = 1, g = 0.1, and system size L = 100.

Figures 5 and 6 show M(t) and rf (t) in the time and
frequency domain. As expected, M(t) decays to zero and
rf (t) grows until Ē0 coincides with the bottom of the second
band. As the bottom of the second band corresponds to
quasimomentum q = ±1, the period of M(t) is 2T = 2π .
Consequently, F [M(t)] has spectral weight at the half the
drive frequency (q = ±1) in the bottom panel of Fig. 5.

The Fourier spectrum of rf (t) is also shown in the bottom
panel of Fig. 6. The dominant frequencies in the Fourier
spectrum of rf (t) are seen to be at ω = 0 and ω = ±3. Again,
the small spectral weight at ω = ±3 implies that the period of
rf (t) is twice the period of the drive. As rf (t) contributes to
the drive in Eq. (21), the effective Gaussian model at late times
is driven at frequency one (as opposed to the bare frequency
of two). The spectrum in the right panel of Fig. 4 thus has
minigaps at q = ±1/2, induced by the frequency one drive.
For stability, the mode range must not contain a minigap.

V. DISCUSSION

Intuitively, a Floquet system stops absorbing energy from
a monochromatic drive when a fraction of its modes saturate,
as in hole burning. This holds for fermions at the Gaussian
level, as the fermionic modes do not interact, irrespective
of whether the modes are spatially delocalized or localized.
For bosons however, individual modes can absorb energy
indefinitely by parametric resonance at the Gaussian level.
The reader might expect that going beyond the Gaussian level
in either case leads to indefinite heating, as interactions allow
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FIG. 6. Top and middle panels: rf (t) vs number of periods t/π

at early and late times for the same parameters as Fig. 5 is driven
starting at t = 0. Bottom panel: Fourier spectrum of the time series
between t/π = 1200 and t/π = 1600. The energy density shows a
similar behavior.

for the exchange of energy between modes. One way to cut
off this heating is with sufficient quenched disorder, so that
the modes that are nearby in energy are far away in space
and are unable to exchange energy and thermalize. In this
article we discussed a different mechanism to cut off the
heating, while still preserving enough symmetries to prevent
full ergodicity. The clean driven O(N ) model at infinite N

always has a finite energy density as t → ∞, irrespective
of the strength and fundamental frequency of the drive.

At finite N , on the other hand, the O(N ) model is believed
to thermalize. Previous work [44] argues that corrections

up to order 1/N2 are required to see true thermalization in
sudden quenches. This suggests that the driven O(N ) model
could indefinitely heat once corrections to this order are
included. However, the time scale for this heating would be
parametrically large in N , so that the steady state discussed
in this article would be observable up to this time. A detailed
study of this question will be presented in a future work.

Recently, Citro et al. [25] studied the thermalization of
another scalar field theory: the driven “many-body Kapitza
pendulum” or the driven sine-Gordon model in d = 1. They
find that for parameters corresponding to both equilibrium
phases—gapped and gapless—of the model, there is a critical
frequency of the drive, below which the system heats indef-
initely, but above which the heating stops. Their conclusions
stem from various approximate methods, of which one leads
to equations that resemble the infinite N equations studied
in this paper. Currently we do not understand the difference
between their results in the gapped/paramagnetic phase and
our results at low frequencies. We note that another of their
methods—the application of the perturbative renormalization
group to the Floquet Hamiltonian—is problematic as the
stability of the Floquet Hamiltonian depends on the sign of
the irrelevant terms. Understanding the precise connections
between their results and ours will significantly clarify the
steady state behavior of generic driven interacting bosonic
systems.
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