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Broad-angle negative reflection and focusing of elastic waves from a plate edge

Istvan A. Veres,1 Clemens Grünsteidl,1 David M. Stobbe,2 and Todd W. Murray2

1Research Center for Non-destructive Testing GMBH (RECENDT), Altenberger Strasse 69, 4040 Linz, Austria
2Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA

(Received 28 January 2016; revised manuscript received 18 March 2016; published 4 May 2016)

Guided elastic waves in plates, or Lamb waves, generally undergo reflection and mode conversion upon
encountering a free edge. In the case where a backward-propagating Lamb wave is mode-converted to a forward-
propagating wave or vice versa, the mode-converted wave is reflected on the same side of the surface normal
as the incident wave. In this paper, we study such negative reflection and show that this effect can be achieved
over a broad angular range at a simple plate edge. We demonstrate, through both numerical and experimental
approaches, that a plate edge can act as a lens and focus a mode-converted Lamb wave field. Furthermore,
we show that as the wave vectors of the incident and mode-converted Lamb waves approach each other, the
mode-converted field nearly retraces the incident field. We propose that broad-angle negative reflection may find
application in the nondestructive testing of structures supporting guided waves and in the development of new
acoustic devices including resonators, lenses, and filters.
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I. INTRODUCTION

In both the optics and acoustics communities, there has
been significant interest in developing new approaches for
manipulating wave fields using backward-propagating waves.
Backward wave propagation can be defined as that in which
the direction of the group velocity is opposite to that of the
phase velocity, and thus the wave crests and troughs appear to
propagate against the direction of energy flow. The existence
of such exotic behavior was first deliberated by Lamb in
the early 20th century [1]. Designer materials that incorpo-
rate subwavelength resonant structures (optical and acoustic
metamaterials) or wavelength-scale periodicity (photonic and
phononic crystals) can support backward waves, and a variety
of nonintuitive physical effects such as negative refraction
and subwavelength focusing have been demonstrated [2–13].
It is also well known that optical and acoustic waveguides
support backward wave propagation [14–18]. Elastic waves
propagating in plates, cylinders, rods, and supported layers,
for example, all show backward wave propagation over some
region of frequency and wave number space [15–19].

While the existence of backward waves in basic elastic
structures is well known, it is only recently that related
phenomena have been used to characterize materials and
manipulate guided wave fields. Zero-group-velocity (ZGV)
resonances in thin plates and cylinders, for example, occur
at specific points within the dispersion relation where the
group velocity goes to zero while the phase velocity remains
finite [15]. The physical origin of these resonances is the
interference between forward- and backward-propagating
waves with the same wave number. Sharp resonances are
observed at ZGV frequencies, and these have been used
for the measurement of material properties and dimensions,
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defect detection, and adhesion testing [20–24]. In the case
of Lamb waves in plates, it was also demonstrated that
mode conversion between backward-propagating and forward-
propagating waves (or vice versa) at a step change in thickness
leads to negative refraction, a process in which the refracted
ray leaves the interface at an angle that is on the opposite side
of the interface normal to that predicted by the usual Snell’s
law [25,26]. A Lamb wave lens was designed by incorporating
a simple thickness trough in an otherwise homogeneous plate.
Forward-propagating waves emitted from the source position
were mode converted to backward-propagating waves at the
first trough interface, and underwent negative refraction and
focusing within the lens. Upon encountering the second trough
interface, the waves were mode converted back to forward-
propagating waves and again underwent negative refraction
and focusing on the distal side of the lens. Effective mode
conversion was observed over a broad range of incident angles,
producing a lens with a high numerical aperture.

Negative reflection of guided elastic waves is an intriguing
phenomenon in which a reflected wave is directed on the same
side of the surface normal as the incident wave [27]. Negative
reflection at an interface is expected to occur when a backward
wave is mode converted to a forward wave upon reflection from
an interface (and vice versa). Negative reflection of Lamb
waves was demonstrated by Germano et al. by sending a
forward-propagating wave to the free edge of a homogeneous,
isotropic, steel plate and observing that the reflected field
fell on the same side of the surface normal as the incident
wave, and the result was confirmed at two different angles
of incidence [27]. In this paper, we further explore negative
reflection at the free edge of a plate and show that efficient
negative reflection can be achieved over a broad angular range
at a simple plate edge. We demonstrate focusing of a Lamb
wave field upon reflection from a plate edge and show that
near the zero-group-velocity point, where the magnitudes of
the wave vectors of forward- and backward-propagating waves
are similar, the reflected field nearly retraces the incident field.
The plate edge acts similarly to a phase-conjugate mirror [28].
Negative reflection could have important implications in the
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FIG. 1. (a) Dispersion curve for symmetric Lamb waves in the vicinity of the ZGV point for a 1.0-mm-thick aluminum plate. (b) Mode
conversion of an incident S2b mode at a free edge leads to negative reflection of the S0 and S1 modes. θI is the angle of incidence and θR is the
angle of reflection. (c) The mode shapes of the incident S2b and the reflected S1 modes near the ZGV point at a frequency of 2.85 MHz.

nondestructive testing of structures supporting guided waves,
and in the development of new acoustic devices.

II. NEGATIVE REFLECTION

Here we consider negative reflection in a homogeneous,
isotropic aluminum plate with a 1.0 mm thickness and
longitudinal and transverse wave velocities of 6.31 mm/μs
and 3.11 mm/μs, respectively. Lamb wave propagation in
the plate is described by the Rayleigh-Lamb equation, which
provides a relationship between the frequency and wave
vector of the supported modes [29]. At a given frequency,
a finite number of propagating modes exist, along with
nonpropagating (evanescent) modes. Furthermore, the modes
are classified as symmetric or antisymmetric depending on the
symmetry of the displacement field produced with respect to
the mid-plane of the plate. For our purposes, it is sufficient to
consider the dispersion curve over the small frequency range
shown in Fig. 1(a). Here, only the real, symmetric modes are
plotted over positive k values, thus limiting the modes to the
S0, S1, and S2b. The phase velocity can be found by dividing
the ordinate by the abscissa, while the group velocity is given
by the slope. At the intersection of the S2b and S1 modes, the
group velocity vanishes. The mode labeled S2b has a negative
group velocity while the other two modes have a positive group
velocity; all modes have a positive phase velocity. Note that
the dispersion curve is symmetric about k = 0 such that for
k < 0 the S2b mode has a positive group velocity while the S0

and S1 modes have a negative group velocity; all modes have
a negative phase velocity in this case.

Now consider the situation shown in Fig. 1(b), where an S2b

Lamb wave is generated at some point in the plate and impinges
upon a free edge. Considering that the wave propagates
from the source to the edge, it has a positive group velocity
and negative phase velocity, or negative k. The traction-free
boundary condition can be satisfied only if the tangential
component of the wave vector is conserved. Thus the angle of
reflection (θR) is given by θR = sin−1[(kI /kR) sin(θI )], where
ki and kR are the wave vectors of the incident and reflected
waves and θI is the angle of incidence. It follows that if

a backward-propagating Lamb mode converts to a forward-
propagating mode at a free edge, the angle of reflection must
be negative. Also, in the limiting case that the magnitude of the
wave vectors of the incident and reflected waves are equal, then
the reflected wave will retrace the incident wave and propagate
back to the source.

Lamb wave mode conversion at a free edge for both
normal [30–32] and oblique [33–35] incidence has received
considerable attention in the literature. Considering a normally
incident plane wave and referring back to Fig. 1(b), the
boundary condition that must be satisfied is that the normal
(σxx) and shear (σxz) traction on the edge surface must vanish.
These stresses, in turn, are the sum of the stresses produced by
the incident and reflected waves. In general, it is not possible
for the boundary condition to be satisfied by a single Lamb
mode, because the shear stress switches sign upon reflection
while the normal stress does not [30]. Summing the incident
and reflected waves at the boundary can therefore not satisfy
the boundary condition, regardless of the phase of the reflected
wave. In general, one must consider the relative contributions
of all propagating and nonpropagating modes at a particular
frequency that will sum to satisfy the boundary condition
at a given angle of incidence. Forward and backward Lamb
waves near the ZGV point, however, show a somewhat unique
behavior. In this region of the dispersion curve, it has been
shown that a normally incident S2b wave is mode converted
upon reflection from a free edge to a forward-propagating
S1 mode with a reflection coefficient near unity [33]. The
opposite effect is also predicted for a normally incident S1

mode, which mode converts with exceptional efficiency to a
backward-propagating S2b mode [33]. In order to understand
why this is the case, we can consider the stress mode shapes
shown in Fig. 1(c) at a frequency of 2.85 MHz, with the mode
shape of the reflected S1 wave shown with a π phase shift with
respect to the incident S2b. It is clear that the stress fields are
very nearly opposite such that the sum of the stresses at the
free edge can satisfy the boundary condition. It is important to
emphasize that this behavior is not often observed, and stems
from the fact that the mode shapes of the S1 and S2b modes near
the ZGV point are very similar but the (slow) group velocities
for the modes are in opposite directions.
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FIG. 2. (a) Simulated out-of-plane surface displacements of the plate in the presence of a free edge at x = 25 mm (top, y > 0) and in the
absence of a free edge (bottom, y < 0) for f = 2.859 MHz at t = 100 μs. (b)–(d) Reflected wave fields from the free edge at (b) f = 2.889 MHz
and t = 150 μs, (c) f = 2.859 MHz and t = 150 μs, and (d) f = 2.848 MHz and t = 250 μs. The later time in (d) accounts for the slow group
velocity in the close vicinity of the ZGV point.

III. NUMERICAL SIMULATION

Negative reflection from a plate edge was simulated with
the finite-element time-domain method using a commercial
software package (PZFLEX, Weidlinger Associates, Mountain
View, CA). We consider an aluminum substrate with a surface
extending over 115 × 180 mm2 and a thickness of 1.0 mm.
Only one-quarter of the plate is modeled by employing
symmetric boundary conditions at the edge of the plate
(y = 0 mm in Fig. 2) and at the plate bottom (z = 0.5 mm).
The symmetric boundary condition at the bottom of the plate
suppresses the generation of antisymmetric modes, but a
simulation with a full-thickness plate showed that these modes
have negligible contribution to the generated and reflected
wave fields. We consider the response of the plate to a laser
source, with the surface forcing function represented by a
simplified distributed dipole model consisting of a radially
directed in-plane force with a spatial distribution given by
f (r) = re−r2/2d2

, where d = 1.51 mm, giving a full width at
half maximum of 3.55 mm. The forcing function is sinusoidal
in time. The sample is modeled on an orthogonal grid with
element dimensions of 47 × 45 × 45 μm3 (x,y,z). The source
is located 25 mm from the plate edge at the origin of the
coordinate system.

Figure 2(a) shows two out-of-plane displacement fields
calculated over the plate surface at a frequency of 2.859 MHz
[f2 in Fig. 1(a)] and a time of 100 μs. The top part of the image
(y > 0 mm) shows the displacement field with the free edge at
x = 25 mm. The bottom image (y < 0 mm) shows the incident
displacement field in the absence of a free edge, where the
plate was extended and terminated with absorbing boundary
conditions. In both cases, the dominant mode seen propagating
out from the source position is the S2b mode, with a wavelength
of 5.0 mm. The reason for this is that the excitation spot size
is larger than the wavelengths of the S0 and S1 modes and
therefore does not couple well into these modes. The additional
higher spatial frequency structure observed when the free edge
is present is the result of reflection and mode conversion
at the interface. In order to observe the reflected field more
clearly, we calculated the displacement fields with a free edge
and the incident field without an edge at three frequencies

shown on Fig. 1(a) as f1−f3. At each frequency, the incident
field was subtracted from the field with the free edge, leaving
only displacement components associated with the reflected
field. The results for the three frequencies are shown in
Figs. 2(b)–2(d). Interestingly, there is very little evidence of
a reflected and diverging S2b mode but rather strong mode
conversion into the forward-propagating S1 mode. Negative
reflection and associated focusing are observed, with the focal
volume translating back toward the source as the frequency is
decreased towards the ZGV point and the magnitudes of the
wave vectors for the S1 and S2b modes approach each other.
Broad-angle negative reflection is particularly evident at the
lowest frequency, where the reflected wave field focuses just
behind the source position. Negative reflection and focusing of
the S0 mode can also be seen at the extreme left of the images
along y = 0 mm. This effect is not as pronounced as with the S1

mode due to the large difference in k vectors and less efficient
mode conversion. Finally, we note that the simulations were
run to allow sufficient time for the reflected S1 wave field to
fully develop through the focal volume. Due to the low group
velocity, the S1 wave field did not fully develop over the entire
simulated region, leading to the weaker field after the focus
seen in the plots.

Further insight into negative reflection can be obtained by
examining the field in Fourier space. For each simulation
frequency, the time trace from each spatial position across
the plate was collected. The last 100 μs of each temporal wave
form was then Fourier transformed and the complex value
of the fast Fourier transform (FFT) at the excitation frequency
determined. This array was processed using a two-dimensional
(spatial) Fourier transform, yielding the magnitude plots
shown in Figs. 3(a)–3(c). The lowest spatial frequency ring
in these plots (|k| between 1.0 and 1.4 mm−1) corresponds
to the S2b mode which propagates at all angles from the
source. The S1 mode, with the next higher spatial frequency
(|k| between 1.8 and 2.2 mm−1) exists over a more narrow
angular range corresponding to the possible angles of negative
reflection. Given that the largest possible angle of incidence
is 90◦, the largest possible angle of reflection is given by
θm = sin−1(ki/kR). For the S1 mode, this gives a θm of 28.3◦,
40.1◦, and 47.3◦ for f1, f2, and f3, respectively. These angles
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FIG. 3. Fourier domain representation of the wave fields at the frequencies of (a) 2.889 MHz, (b) 2.859 MHz, and (c) 2.848 MHz. The
inner ring with the lowest spatial frequency corresponds to the excited S2b mode, and the outer circular segments represent the reflected S0 and
S1 modes. The green and magenta lines show the maximum possible angles of reflection for the S0 and S1 modes, respectively. (d) Intensity
plot of the reflected field for the lowest frequency (f = 2.848 MHz) showing the focusing of the acoustic energy just beyond the excitation
point at x = 0 mm.

are shown as the magenta lines on the plot. Note that within
the computational model the maximum angle of incidence is
75◦, thus further constraining the angular range of reflection.
The increase in the angular range of reflection with reduction
in frequency towards the ZGV point is clearly observed, as
is the uniformity in the magnitude as a function of angle.
Using the same argument for the S0 mode, θm is 10.8◦, 13.4◦,
and 14.6◦ for f1, f2, and f3, respectively. Again, we see
general agreement in the magnitude plots, with the green
line indicating the maximum angle of reflection. Figure 3(d)
shows an intensity plot of the reflected field at a frequency of
2.848 MHz. Here, the last 100 μs of the displacement signal at
each spatial location was Fourier transformed to determine the
magnitude at the excitation frequency, and this was squared to
yield the intensity plot. The energy of the negatively reflected
S1 is concentrated within the focal volume, producing a focal
spot with a lateral full width at half maximum of 3.7 mm.

IV. EXPERIMENTAL SETUP

A basic schematic of the experimental setup is shown in
Fig. 4(a). An electroabsorption modulated laser operating at a
wavelength of 1550 nm was used for Lamb wave excitation.
The output of the laser was sent to a 1.0 W erbium-doped
fiber amplifier, through a collimator and lens, and to the back
surface of the sample. The FWHM of the excitation laser spot
on the sample surface was 2.06 mm. The laser output was
modulated sinusoidally at the desired frequency using a signal
generator. Lamb waves were detected on the opposite surface
of the sample using a stabilized Michelson interferometer. The
output from the interferometer was fed into an radio frequency
lock-in amplifier. The reference signal for the lock in was
derived from the signal generator driving the excitation laser
using a power splitter. The lock-in time constant was 300 ms
with a roll-off of 18 dB per octave. The excitation laser optics
and sample were mounted on a dual-axis motorized translation

FIG. 4. (a) Schematic of the experimental setup used to excite and detect narrow-bandwidth Lamb waves and (b) the dimensions of the
aluminum sample used for the measurements with the excitation point marked by the red dot.
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to isolate the S1 mode. Negative reflection and focusing of the field are apparent. (d) Band-pass-filtered data (k = 9.2−9.6 mm−1) to isolate
the S0 mode. Negative reflection leads to a concentration of the field along y = 0 mm for x < −20 mm.

stage, allowing for the detection point to be scanned over the
sample surface. The excitation point was placed approximately
7.0 mm from the plate edge and the detection point was
scanned over a 50 × 26 mm2 area with a step size in both
dimensions of 0.20 mm. Data were collected at excitation
frequencies of 5.000, 5.025, and 5.050 MHz. The sample was
an aluminum plate with the dimensions indicated in Fig. 4(b).
The ZGV resonance frequency of the plate was measured,
by scanning the excitation laser frequency with the source
and detector on epicenter, to be 4.980 MHz. The thickness of
the sample was 578 μm. The edge of the plate was polished
to obtain a 90◦ angle with the plate surface. In addition,
edges of the plate away from the free edge of interest were
covered with adhesive tape to dampen spurious Lamb wave
reflections.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Figure 5(a) shows the in-phase component of the raw data
obtained from the lock-in amplifier at a frequency of 5.05 MHz.
The source is located at the origin of the coordinate system
and the free edge is at x = 7.0 mm, just beyond the scanned
region. As in the simulation data, the dominant Lamb wave
mode generated is the S2b mode which has a wavelength of
3.6 mm. There is no apparent interference pattern associated
with a reflected S2b in the raw data. The individual modes

can be isolated using a two dimensional spatial frequency
filter. Figure 5(b) shows the data low-pass filtered at a spatial
frequency of |k| = 3.4 mm−1 isolating only the S2b mode.
Figure 5(c) shows the raw data band-pass filtered between
spatial frequencies of |k| = 3.4 mm−1 and |k| = 4.0 mm−1

which isolates the S1 mode. Negative reflection of this mode
is clearly evident in the experimental data. The phase fronts
associated with the S1 generated through mode conversion
at the edge converge to a cigar-shaped focal area centered
near x = −8 mm. Figure 5(d) shows the raw data band-pass
filtered between spatial frequencies of |k| = 9.2 mm−1 and
|k| = 9.6 mm−1 which isolates the S0 mode. As also seen in the
simulations, negative reflection leads to a broad concentration
of this mode along the y = 0 mm axis, particularly for x <

−20 mm.
In order to investigate focusing of the reflected field, the

in-phase and quadrature components of the experimental data
taken at all three frequencies were band-pass filtered around
the spatial frequency of the S1 mode. The band-pass filters
were applied between spatial frequencies of 3.4−4.0 mm−1,
3.3−4.0 mm−1, and 3.1−4.0 mm−1 for excitation frequencies
of 5.050 MHz, 5.025 MHz, and 5.000 MHz, respectively.
The magnitude squared of the normal surface displacement
was then calculated and is shown in Figs. 6(a)–6(c). At
all frequencies, the focusing associated with the negative
reflection is apparent, with the focus shifting toward the
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negative reflection with mode conversion for 5.000 and 5.050 MHz.

excitation point as the magnitudes of the propagation vectors
k approach each other near the zero-group-velocity point.
Although one must take care to account for the differences in
plate geometry and source location, the experimental results
are in general agreement with the simulations. In all three
cases, some field distortion (beyond that which is seen in the
simulations) is observed, which may stem from reflections
from additional plate boundaries that were insufficiently
damped and small variations in plate thickness over the
measurement zone. Nevertheless, broad-angle negative reflec-
tion and focusing through mode conversion at a free edge
is clearly demonstrated. Figure 6(d) shows a ray diagram
which helps in understanding negative reflection with mode
conversion where the incident and reflected wave vectors are
not the same. Here, we consider the incident and reflected fields
at 5.00 and 5.05 MHz (the 5.05 MHz ray diagram is shift up
the y axis by 20 mm for ease of viewing). A source generating
the S2b mode is located at x = 0 mm and represented by the
black arrows. Mode conversion to the S1 mode is assumed
at a boundary located at x = 7.0 mm. The negative angle
of reflection is calculated, using the measured k values, for
each incident angle and the reflected rays are shown in the
figure. At a frequency of 5.05 MHz we see a convergence
of rays associated with a focus over a relatively broad range

between x = −12 mm and x = −5 mm and at 5.00 MHz the
focal region shifts toward the source position and is more
confined longitudinally to the area between x = −6 mm and
x = −2 mm. Comparing these simple ray diagrams to the
results shown in Figs. 6(a) and 6(c), we see excellent agreement
between the predicted and measured focal regions.

Finally, the angular range of negative reflection can be best
visualized using two-dimensional spatial Fourier transforms.
The raw experimental data at each frequency were transformed
and the resulting magnitude plots are shown in Figs. 7(a)–7(c).
As with the simulation data, the lowest spatial frequency ring,
with |k| ranging from 1.73 mm−1 (5.05 MHz) to 2.14 mm−1

(5.00 MHz), corresponds to the S2b mode emitted by the source
at all angles. The next higher spatial frequency feature, with
|k| values ranging from 3.64 mm−1 (5.05 MHz) to 3.30 mm−1

(5.00 MHz), corresponds to the S1 mode, and the highest
spatial frequency, with |k| values ranging from 9.41 mm−1

(5.05 MHz) to 9.25 mm−1 (5.00 MHz) corresponds to the S0

mode. Following the approach used in the simulation results,
one can calculate a maximum angle of reflection (θm) based
on the k values of the incident and reflected wave modes.
For the S1 mode, these angles are 28.4◦, 32.9◦, and 40.5◦
for frequencies of 5.05 MHz, 5.025 MHz, and 5.00 MHz,
respectively. For the S0 mode the angles lie between 10.6◦ and
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13.4◦ for the three frequencies. The angular range of negative
reflection falls close to that expected for both modes, and the
magnitude of the reflected S1 mode appears relatively uniform
within this range. In order to compare the experimental and
simulated spectra, the axes in the experimental spectra should
be multiplied by 0.578 to account for the smaller plate
thickness. Taking into account the scaling factor, we find
general agreement between simulation [see Figs. 3(a)–3(c)]
and experiment.

VI. CONCLUSIONS

Backward-propagating waves can be used to manipulate
wave fields in unusual and nonintuitive ways. Furthermore,
backward-propagating elastic waves exist in very simple finite
elastic structures such as rods and plates. Here we demonstrate
broad-angle negative reflection at the free edge of a plate
upon mode conversion between a backward- (S2b) and a
forward-(S1) propagating wave. Such mode conversion is quite
efficient near the zero-group-velocity point, due to the fact that
the mode shapes for a given wave vector are nearly identical for

the two modes in this region while the energy of the two modes
propagates in opposite directions. This allows a reflected S1

mode with a group velocity away from the edge to nearly
satisfy the edge boundary conditions for an incident S2b mode.
We also demonstrated through both simulation and experiment
that negative reflection leads to focusing of the S1 field in the
plate, and that the position of this focus can be controlled
through the excitation frequency. The focus approaches the
excitation position as the wave vectors of the S1 and S2b

modes come close together near the zero-group-velocity point.
Negative reflection of waves in elastic waveguides may find
application in the nondestructive characterization of these
structures. It may also serve usefully in the development of
new acoustic devices including lenses, resonators, and filters.
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