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Kinetic narrowing of size distribution
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We present a model that reveals an interesting possibility for narrowing the size distribution of nanostructures
when the deterministic growth rate changes its sign from positive to negative at a certain stationary size.
Such a behavior occurs in self-catalyzed one-dimensional III-V nanowires and more generally whenever a
negative “adsorption-desorption” term in the growth rate is compensated by a positive “diffusion flux.” By
asymptotically solving the Fokker-Planck equation, we derive an explicit representation for the size distribution
that describes either Poissonian broadening or self-regulated narrowing depending on the parameters. We show
how the fluctuation-induced spreading of the size distribution can be completely suppressed in systems with size
self-stabilization. These results can be used for obtaining size-uniform ensembles of different nanostructures.
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I. INTRODUCTION

It is well documented that the size uniformity of nanostruc-
ture ensembles strongly enhances their physical properties and
is paramount for applications. For example, size homogeneity
is highly desired for photonic applications of semiconduc-
tor quantum dots [1] and nanowires [2]. Consequently, a
considerable effort has been made to narrow up the size
distribution (SD) of nanostructures by various means [3–21].
Unfortunately, theories of surface nucleation with a fixed
critical size [22,23] (hereafter referred to as regular growth)
or macroscopic nucleation with a time-dependent critical size
[24,25] show that the SDs usually tend to broaden due to the
random character of nucleation and fluctuation-induced effects
[25]. Suppression of this broadening has been demonstrated
for the Stranski-Krastanow GeSi and InGaAs quantum dots.
A complex interplay between the elastic stress relaxation,
time-dependent wetting layer thickness, surface or edge energy
constraints, elastic interactions through the substrate, and
shape transformations in quantum dot ensembles may result in
the kinetic narrowing of their SDs under appropriate growth
conditions [5–7,9–15]. Of course, one can use epitaxial growth
on prepatterned substrates in order to improve the size and
spatial uniformity, as in Ref. [8] in the case of Ge nanoislands
on Si(100). Despite many efforts, however, the quantum dot
arrays rarely achieve truly deltalike SD shapes. Other examples
include Au-catalyzed Ge nanowires whose length converges
to a certain one but only at a given moment of time [19]
or self-induced GaN nanowires with the length distribution
narrowing due to wire-to-wire reemission of gallium [21].

Here, we consider one important case of one-dimensional
nanostructures of a binary material where the axial growth rate
is determined by the vapor flux of one element and the radial
growth rate is given by the difference between the vapor plus
diffusion flux of the other element and the axial growth rate.
This growth picture is observed in vapor-liquid-solid (VLS)
growth of III-V nanowires catalyzed by liquid droplets of a
group III metal [25–30] and has recently been shown to yield a
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specific self-equilibration effect on the nanowire radii [31–33].
More generally, our model applies when a size-dependent
regular growth rate can be either positive for all sizes or change
its sign from positive to negative depending on the external
conditions. This is an inverted situation compared to standard
growth theories where the growth rate is positive for all sizes
in regular growth [22,23] or changes from negative to positive
at a critical size in nucleation theory [24,25]. Prior works
studied only individual nanowires [31,33] or the deterministic
first-order equation for the SD (neglecting kinetic fluctuations)
[32]. Consequently, our goal is to calculate explicitly the SD
based on the second-order Fokker-Planck equation and to show
how Poissonian broadening can be completely suppressed
and the desired size uniformity achieved by tuning the vapor
environment.

II. GOVERNING EQUATION AND ITS SOLUTION

Consider an ensemble of nanostructures described by the
rate equations for the discrete SD fr (τ ) over the size r at
time τ ,

dfr (τ )

dτ
= W+

r−1fr−1(τ ) + W−
r+1fr+1(τ ) − (W+

r + W−
r )fr (τ ).

(1)

For simplicity, the attachment and detachment rates W+
r

and W−
r are assumed independent of τ . The continuum

approximation to Eq. (1) at r � 1 has the form of the
Fokker-Planck equation

∂f (r,τ )

∂τ
= − ∂

∂r
[A(r)f (r,τ )] + 1

2

∂2

∂r2
[B(r)f (r,τ )]. (2)

The kinetic coefficients

A(r) = W+
r − W−

r , B(r) = W+
r + W−

r (3)

describe the deterministic growth rate and kinetic fluctuations,
respectively. Writing ∂2[Bf ]/∂r2 or ∂[B∂f/∂r]/∂r in Eq. (2)
is equivalent for small enough dB/dr [25].

Since both W+
r and W−

r are positive, the B(r) term is always
positive while the deterministic growth rate dr/dτ = A(r)
can be of either sign. The A(r) term is positive for all r in
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FIG. 1. Chart schematizing possible growth scenarios with the
stationary size (attractive point rs = 50), regular growth, and the
critical size (repulsive point rc = 50).

regular growth [22,23], while in nucleation theory it changes
from negative to positive at the critical size rc (generally, this
rc is time dependent) [24,25]. In the latter case, the system
is unstable—large nuclei with r > rc will grow and smaller
nuclei with r < rc decay. This gives rise to phase separation
via nucleation and the growth of stable supercritical nuclei.
For the Stranski-Krastanow quantum dots [4–14] or, more
generally, three-dimensional islands on a lattice mismatching
substrate [25,34], the growth of large enough islands can be
suppressed by several factors, including the hut-to-dome shape
transformation in GeSi systems or strain-induced barriers
for the adatom attachment. In this case, the Gibbs energy
for island formation reaches its maximum at a critical size
and a minimum at a certain stationary size rs , leading to a
self-limiting growth from rc to rs [11,34].

Later on in this paper, we consider a simplified situation
where the deterministic growth rate can be tuned from positive
for all r , as in regular growth, to changing its sign from positive
to negative at the stationary size rs . Examples of such self-
stabilized growth will be given in the next section. Clearly,
nanostructures are expected to grow infinitely when A(r) is
positive and converge to the stationary size when A(r) changes
its sign at rs in such a way that smaller nanostructures swell
and larger nanostructures shrink to rs at τ → ∞. The three
possible scenarios are illustrated in Fig. 1. Our aim is to find
explicitly the SD shapes in the infinite versus self-stabilized
growth and to show quantitatively how the SDs broaden or
narrow up depending on the sign of A(r).

According to Refs. [35–37], the SD treatment is consider-
ably simplified by rearranging Eq. (2) in terms of the “invariant
size” ρ defined as

dρ

dr
= 1

A(r)
, ρ(r = 0) = 0. (4)

The ρ variable starts from zero at r = 0 and tends to infinity at
r → ∞ in regular growth [provided that A(r) does not increase
faster than r for large r] or at r → rs in self-stabilized growth.
Introducing the SD g(ρ,τ ) by the definition

g(ρ,τ ) = |A(r)|f (r,τ ), (5)

Eq. (2) modifies to

∂g(ρ,τ )

∂τ
= −∂g(ρ,τ )

∂ρ
+ 1

2

∂2

∂ρ2
[F (ρ)g(ρ,τ )], (6)

with

F (ρ) = B(r)

A2(r)
= W+

r + W−
r

(W+
r − W−

r )
2 . (7)

The negative sign of the regular growth rate in Eq. (6) for A(r)
of either sign is ensured by the absolute value of A(r) taken
in Eq. (5), while the fluctuation term F (ρ) is insensitive to the
sign of A(r). It is easy to see that the mean value of ρ evolves
in time according to d〈ρ〉/dτ = 1 and hence

〈ρ〉 = ρ0 + τ. (8)

Neglecting the dispersion of the SD in the term with the
second derivative in Eq. (6), we can write approximately

∂g

∂〈ρ〉 = −∂g

∂ρ
+ F (〈ρ〉)

2

∂2g

∂ρ2
. (9)

This equation has the Gaussian solution [35–37]

g(ρ,〈ρ〉) = 1√
2πψ(〈ρ〉) exp

[
− (ρ − 〈ρ〉)2

2ψ(〈ρ〉)
]
. (10)

Here, the variance ψ(〈ρ〉) is obtained as a solution to the
equation

dψ

d〈ρ〉 = F (〈ρ〉), ψ(〈ρ〉 = ρ0) = ψ0. (11)

Of course, this result applies only if the initial SD at τ = 0
can be presented in the form given by Eq. (10) with a certain
mean size ρ0 and variance ψ0.

III. PARTICULAR MODEL

Figure 2 shows a binary III-V nanowire with a liquid droplet
on top, grown by the VLS method [38]. The catalyst droplet
can be either gold or a group III metal, but in many cases of
gold-assisted growth the liquid alloy has a high concentration
of group III atoms [25]. On the other hand, the concentration
of highly volatile group V atoms in the droplet is always very
low. Whenever the alloy is group III rich, the VLS axial growth
rate dl/dt is group V limited and often simply given by the
group V vapor flux v5 [26,39,40]. Thus, the mean nanowire
length gives a linear measure of time t and we can define our τ

as τ = v5t = 〈l〉. Furthermore, if we neglect a specific effect
of nucleation antibunching [41–45] on the length distribution
of nanowires, the latter is given by [44]

f (l,〈l〉) = 1√
2π〈l〉 exp

[
− (l − 〈l〉)2

2〈l〉
]
. (12)

As shown in Ref. [46], this Poissonian broadening is the
best case regarding the length uniformity—when nanowires
grow by surface diffusion, the length distribution is much
broader.

The droplet seated on the nanowire top is a nonstationary
reservoir of group III atoms. Therefore, the random variable
of interest is the dimensionless radius of the droplet base r ,
which defines the time-dependent (or 〈l〉-dependent) radius of
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FIG. 2. Binary III-V nanowires growing from a group III rich
alloy droplet (e.g., GaAs nanowire growing from Ga droplet with a
low concentration of As) with the vapor fluxes v3, v5 and the effective
diffusion length of the group III adatoms λ3; l and r are the nanowire
length and top radius in the units of lattice spacing. The elongation
rate v5 is determined by the vapor flux on a nondiffusive group V
element and equals the group III sink from the droplet. At a low
group III influx v3, the diffusion flux of the group III adatoms from
the nanowire sidewalls compensates a negative III/V influx imbalance
and leads to self-stabilized radial growth to the stationary radius of
the nanowire top rs , regardless of the initial droplet size r0, as in (a).
Increasing v3 yields the transition to regular radial growth where the
nanowire top radius increases all the way, as in (b).

the nanowire top. The droplet size increases when the group
III atom is brought from a vapor or by surface diffusion and
decreases when the group III atom crystallizes into a III-V
pair at the liquid-solid interface under the droplet. Assuming
a stationary group V concentration inside the droplet [39], the
crystallization rate equals the group V vapor flux v5. The radial
growth rate at the nanowire top is given by [32]

dr

d〈l〉 = ε

(
v3

v5
+ α3

v3

v5

λ3

r
− 1

)
, (13)

showing that the nanowire top radius changes with the mean
length over the ensemble of nanowires. Here, ε � 1 is a time-
independent shape constant (under the assumption of a fixed
droplet shape), v3 is the vapor flux of the group III element,
α3 is a geometrical factor, and λ3 is the diffusion length of
the group III adatoms on the nanowire side facets [25,47], as
illustrated in Fig. 2. The kinetic coefficients in Eqs. (1) and (2)
are defined as

W+
r = ε

(
v3

v5
+ α3

v3

v5

λ3

r

)
, W−

r = ε, (14)

A(r) = a + b

r
, B(r) = c + b

r
, (15)

with a = ε[(v3/v5) − 1], b = εα3(v3/v5)λ3, and
c = ε[(v3/v5) + 1]. The b and c values are always positive,
while a is positive at v3 > v5 and negative at v3 < v5.
The radial growth is infinite when a > 0 and stabilizes to
rs = −b/a when a < 0.

Thus, the transition from infinite to self-stabilized radial
growth is regulated simply by the V/III flux ratio [31–33]. For
a given ν5 and λ3, self-stabilized radial growth to rs occurs
at lower v3 [Fig. 2(a)] while at higher v3 the nanowire top
radius will continue increasing [Fig. 2(b)]. Without vapor-solid
growth at the nanowire sidewalls, this transition will also lead
to the shape transformation from straight nanowires with a
tapered bottom to reverse tapered nanowires all the way, as
illustrated in Fig. 2. If the nanowires are able to maintain a
cylindrical shape by step flow on their sidewalls [48,49], we
will observe straight nanowires whose radius either becomes
homogeneous regardless of the initial droplet SD [32] or swell
in the course of growth [30,31].

More generally, the model A(r) = a + b/rα applies when
the growth rate of a nanoparticle contains a sign alternating
size-independent term (adsorption-desorption term or chemi-
cal reaction) and a positive size-dependent term (diffusion).
The simplest system of this kind would be a nanoparticle
growing on a substrate from the vapor flux which is smaller
than the desorption rate, and a positive diffusion-induced term.
Three-dimensional nanoislands in lattice-mismatched material
systems such as the Stranski-Krastanow semiconductor quan-
tum dots [4–15] will also exhibit self-equilibration provided
that the growth rate of large islands is suppressed and that
this effect does not lead to secondary nucleation [11,34]. Such
regimes are anticipated when rs � rc and, on the other hand,
the critical size rc remains large enough to disable nucleation
from the wetting layer or the adatom sea at a later growth stage.
In what follows, the SD treatment is presented in terms of the
radius distributions of self-catalyzed III-V nanowires, but the
results can easily be reformulated for other material systems
exhibiting the size self-equilibration as described above.

Following the general procedure, integration of Eq. (4) with
A(r) given by Eq. (15) readily yields

ρ = r

a
− b

a2
ln z(r), z(r) = 1 + ar

b
. (16)

Equation (8) shows that

〈ρ〉 = ρ0 + 〈l〉, (17)

where we can use Eq. (16) for ρ0 at r = r0. From Eqs. (7) and
(15) we get

F (r) = c + b/r

(a + b/r)2 . (18)

According to Eq. (11), the variance of the Gaussian SD
in terms of the ρ variable should be obtained from the
equation dψ/d〈l〉 = F (〈l〉), with ψ(〈l〉 = 0) = ψ0. We now
introduce the r∗ variable by definition dr∗/d〈l〉 = a + b/r∗
with r∗(〈l〉 = 0) = 0, which is equivalent to

〈l〉 = r∗
a

− b

a2
ln z(r∗). (19)

Using dψ/d〈l〉 = (a + b/r∗)dψ/dr∗, we arrive at

dψ

dr∗
= c + b/r∗

(a + b/r∗)3 , ψ(r∗ = 0) = ψ0. (20)
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Integration of this gives

ψ(r∗) = ψ0 + 1

a4

[
acr∗ − b(3c − a) ln z(r∗)

− b(3c−2a)

(
1

z(r∗)
−1

)
+ b(c−a)

2

(
1

z2(r∗)
−1

)]
.

(21)

Combining Eqs. (5), (10), (16), (17), and (19) yields our final
result for the SD in the form

f (r,r∗) = r

b|z(r)|
1√

2πψ(r∗)
exp

[
−y2(r,r∗)

2ψ(r∗)

]
, (22)

with

y(r,r∗) = r − r0 − r∗
a

− b

a2
ln

[
z(r)

z(r0)z(r∗)

]
. (23)

This y can be presented equivalently as

y = r − rm

a
− b

a2
ln

[
z(r)

z(rm)

]
. (24)

Here, rm is the most representative radius in the distribution
which equals r0 at 〈l〉 = 0:

〈l〉 = rm − r0

a
− ln

[
z(rm)

z(r0)

]
. (25)

As mentioned earlier, our solution is valid only when the
initial SD can be approximated by Eqs. (21)–(23) with r∗ = 0.
In self-stabilized regime, this requires r0 to be much smaller or
greater than rs . Otherwise, the solution given by Eqs. (19) and
(21)–(23) with r0 = 0 and ψ0 = 0 define the Green’s function
which should be convoluted with the initial condition f0(r0) to
find the time evolution of the SD.

IV. RESULTS AND DISCUSSION

We first analyze the Poissonian case in the absence of
surface diffusion (b = 0) in which the nanostructures grow
infinitely when a > 0. Equations (21)–(24) are reduced to

f (r,〈r〉) = 1√
2π [D0 + (c/a)(〈r〉 − r0)]

× exp

[
− (r − 〈r〉)2

2[D0 + (c/a)(〈r〉 − r0)]

]
. (26)

Here, 〈r〉 = r0 + a〈l〉 is the mean radius and D0 = ψ0a
2 is

the variance of the Gaussian SD of droplets with the mean
radius r0. Therefore, the mean radius scales linearly with
the mean length and the variance scales linearly with the
mean radius with the prefactor c/a = (v3 + v5)/(v3 − v5).
Hence, the broadening of the SD becomes larger for a smaller
difference v3 − v5.

When surface diffusion is enabled (b > 0), the system
behavior is determined by the sign of a. Under group III
rich conditions (v3 > v5, a > 0), all droplets grow infinitely,
regardless of their initial sizes, as shown by the curves
in Fig. 3 for the model parameters a = 0.01 and b = 5.
However, the growth rates are different—Fig. 3 shows that
the nanostructures having a smaller initial radius of 60 grow
faster and that the rm(〈l〉) correlation is nonlinear, while the
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FIG. 3. The most representative radius in the SDs vs the mean
length in the regimes of infinite growth (a = 0.01, b = 5) and radius
self-stabilization to rs = 125 (a = −0.2, b = 25) for two different
initial conditions: r0 = 60 in both regimes (solid lines), r0 = 190 in
self-stabilized growth, and r0 = 150 in infinite growth (dashed lines).

nanostructures with r0 = 150 grow slower and the rm(〈l〉)
dependence becomes almost linear. Figure 4 shows how
the initially narrow SDs broaden with time, similarly to
Refs. [35,44,50].

Under group V rich conditions (v3 < v5, a < 0), the most
representative size in the SDs self-equilibrates to rs regardless
of the initial condition, as in Ref. [32]. The corresponding
curves in Fig. 3 at a = −0.2 and b = 25 show how small
nanostructures swell and large nanostructures shrink to reach
the stationary size. An analysis of Eqs. (19) and (21)–(23) in
a self-stabilized regime shows that r∗ always remains smaller
than rs and asymptotically tends to rs . The nanostructures
emerging from large droplets will never become smaller
than rs , while smaller nanostructures will never grow larger
than rs . In the asymptotic stage, the variance ψ tends to
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FIG. 4. Broadening of the SDs in the case of infinite growth for
r0 = 60, ψ0 = 2000 (solid lines) and r0 = 150, ψ0 = 9100 (dashed-
dotted lines); other parameters are the same as in Fig. 3.
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FIG. 5. Narrowing of the SDs in the case of self-stabilized growth
for r0 = 60, ψ0 = 1500 (solid lines) and r0 = 190, ψ0 = 13 000
(dashed-dotted lines); other parameters are the same as in Fig. 3.

infinity faster than y2 and hence the exponential term in
Eq. (22) tends to one. The limiting behavior of the SD in
thus determined by the preexponential factor which scales as
[πb(c − a)]−1/2r2

s (rs − r∗)/|rs − r|. This combination tends
to zero when r∗ → rs for almost all r except for a narrow

region of radii that are only slightly smaller or larger than rs

(depending on whether the initial size r0 was smaller or larger
than rs). At r → rs , the maximum of the SD is much larger than
one due to rs � 1. Therefore, the SD narrows up regardless of
the initial conditions to an asymmetric monodispersive shape,
as shown in Fig. 5 for the two initial SDs with r0 = 60,
ψ0 = 1500 and r0 = 190, ψ0 = 13 000.

In summary, we have developed a model that reveals
an interesting possibility for narrowing the SDs of different
nanostructures. The narrowing effect is observed when a sign
alternating growth rate changes from positive to negative as the
size increases. The model applies to self-catalyzed VLS III-V
nanowires and may also work for other systems. Within certain
approximations, the analytic SD has been obtained in the form
of a modified Gaussian distribution with a size-dependent
prefactor. This solution describes both Poissonian broadening
and kinetic narrowing of the SD depending on the growth
parameters. Overall, the obtained results can be used for setting
appropriate conditions that result in the kinetic narrowing of
the SDs in different material systems.
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