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CNRS, Université Pierre et Marie Curie-Sorbonne Universités,
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We study the entanglement spectrum in the many-body localizing and thermalizing phases of one- and two-
dimensional Hamiltonian systems and periodically driven “Floquet” systems. We focus on the level statistics of the
entanglement spectrum as obtained through numerical diagonalization, finding structure beyond that revealed by
more limited measures such as entanglement entropy. In the thermalizing phase the entanglement spectrum obeys
level statistics governed by an appropriate random matrix ensemble. For Hamiltonian systems this can be viewed
as evidence in favor of a strong version of the eigenstate thermalization hypothesis (ETH). Similar results are also
obtained for Floquet systems, where they constitute a result “beyond ETH” and show that the corrections to ETH
governing the Floquet entanglement spectrum have statistical properties governed by a random matrix ensemble.
The particular random matrix ensemble governing the Floquet entanglement spectrum depends on the symmetries
of the Floquet drive and therefore can depend on the choice of origin of time. In the many-body localized phase
the entanglement spectrum is also found to show level repulsion, following a semi-Poisson distribution (in
contrast to the energy spectrum, which follows a Poisson distribution). This semi-Poisson distribution is found to
come mainly from states at high entanglement energies. The observed level repulsion occurs only for interacting
localized phases. We also demonstrate that equivalent results can be obtained by calculating with a single typical
eigenstate or by averaging over a microcanonical energy window, a surprising result in the localized phase. This
discovery of new structure in the pattern of entanglement of localized and thermalizing phases may open up new
lines of attack on many-body localization, thermalization, and the localization transition.
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I. INTRODUCTION

Recent advances in the synthesis and control of well-
isolated quantum systems and the increasing importance of
such systems as building blocks for new quantum technologies
have triggered an explosion of interest in the statistical
mechanics of closed many-body quantum systems. Particular
interest has centered on the question of whether (and how)
isolated many-body quantum systems go to thermal equilib-
rium and on the validity of the ergodic hypothesis. It appears
that two generic behaviors are possible for isolated quantum
systems, depending on system details. Either systems can
thermalize, with local observables approaching equilibrium
expectation values and the ergodic hypothesis being satisfied,
or they can localize, displaying nonergodic behavior and
failing to reach thermal equilibrium even at infinite times
[1]. Thermalizing systems have been largely studied through
the lens of the eigenstate thermalization hypothesis (ETH)
[2–4], which explains how equilibrium statistical mechanics
can continue to hold in an isolated quantum system. The
ETH is violated by many-body localized systems, which
exhibit a wealth of nonequilibrium phenomena, including an
emergent integrability [5,6], exotic quantum phases with no
analog in equilibrium [7–12], a nonlocal response to local
perturbations [13], and unusual scaling of response functions

[14]. An understanding is rapidly emerging of when systems
can [15–20] or cannot [21–24] be localized, but our under-
standing of the localized and delocalized phases themselves,
as well as the transition between them, remains a work in
progress.

Ideas from quantum information have played a central
role in the developing understanding of localization and
thermalization. Particularly fruitful has been the notion of
quantum entanglement, as characterized by entanglement en-
tropy. Many-body eigenstates of thermalizing systems exhibit
an entanglement entropy that scales with the volume of the
subregion being considered, while many-body eigenstates
of many-body localized systems display a boundary law
scaling (with possible logarithmic corrections). The study of
entanglement entropy and its dynamics has played a crucial
role in the elucidation of the properties of the localized and
thermal phases. Indeed, studies of entanglement entropy [25]
provided the first clues as to the emergent integrability of
the localized phase and have also been used to constrain
the properties of the localization transition [26]. However,
entanglement entropy captures only a small part of the full
entanglement structure of a system. Much greater information
is contained in the entanglement spectrum [27], from which
the entanglement entropy may be extracted and much besides.
However, studies of the localizing and thermalizing phase
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have yet to exploit the wealth of information contained in
the entanglement spectrum.

In this work, we track the evolution of the entanglement
spectrum across the many-body localization-delocalization
transition and use it to extract new insights into the many-body
localizing and thermalizing phases. We unlock the information
contained in the entanglement spectrum by applying ideas
from random matrix theory, which provides a powerful
mechanism for understanding thermalization, complementary
to the ETH. In particular, we apply diagnostics from random
matrix theory to the level statistics of entanglement spectra.
Previous investigations of level statistics [19] focused on the
energy spectrum. While a recent work [28] did examine the
entanglement spectrum, it focused mostly on the density-of-
states distribution and on the thermal phase of Hamiltonian
systems. We focus instead on the level statistics and examine
both the thermal and the many-body localized phase in both
Hamiltonian and Floquet systems. The structure revealed
includes remnants of criticality in the entanglement structure
deep in the localized phase and features beyond ETH in the
entanglement structure of thermal states.

This work is structured as follows. We begin by inves-
tigating the entanglement structure across the many-body
localization transition in Hamiltonian systems (i.e., systems
with a conserved energy). Performing numerical exact diago-
nalization on a spin- 1

2 Heisenberg chain in external field (the
canonical model for studies of the transition), we find that in
the thermal phase, the entanglement spectrum exhibits level
statistics that match the predictions of random matrix theory
and are governed by the same random matrix ensemble as the
energy spectrum. This may be viewed as evidence in support
of a particularly strong version of the ETH [29], insofar as the
usual formulation of the ETH predicts that the entanglement
spectrum of a small subregion should obey the same level
statistics as the energy spectrum [30], but we observe this to
be true even for subregions that are half the size of the system.
The level statistics of the entanglement spectrum are found to
be independent of the choice of eigenstate.

Next we consider the entanglement spectrum in the lo-
calized phase. We discover that in the localized phase the
entanglement spectrum differs substantially from the energy
spectrum and fits to a semi-Poisson form that is generally con-
sidered indicative of criticality [31]. This “critical” structure
in the entanglement spectrum (and, in particular, the existence
of entanglement level repulsion even deep in the localized
phase, where the energy spectrum shows no level repulsion)
constitutes an unexpected property of the localized phase. The
statistical properties of the entanglement spectrum appear to be
a universal feature that varies only slowly from one eigenstate
to the next, such that microcanonical averages of level statistics
parameters give equivalent results to calculations with single
eigenstates, even though there is no ETH-given reason for this
to be true in the localized phase.

A detailed analysis of the entanglement spectrum reveals
that these signatures of criticality in the entanglement structure
are restricted to states at high entanglement energies, with the
region of the entanglement spectrum at low entanglement en-
ergy showing no signs of entanglement level repulsion. Since
entanglement entropy and Renyi entropies are dominated
by low entanglement energies, the residual criticality in the

entanglement structure is likely invisible to these entropy mea-
sures and could only have been revealed by an investigation of
the full entanglement spectrum, explaining why this structure
has never before been observed. We develop a picture whereby
at the critical point the entire entanglement spectrum is critical,
but as the system moves into the localized phase the low en-
tanglement energies become noncritical, erasing all signatures
of criticality in standard diagnostics such as entanglement
entropy. However, the high entanglement energy region of the
spectrum “sticks” at criticality, such that the entanglement
structure of eigenstates continues to contain a memory of
criticality, albeit one inaccessible to entropy measures.

We conjecture an explanation for the residual criticality
of the entanglement structure deep in the localized phase as
being due to many-body resonances. This explanation predicts
that the observed residual criticality is a consequence of
the interacting nature of the many-body localized phase and
would be absent in the noninteracting Anderson insulator.
A numerical investigation of XXZ spin chains provides
strong numerical support for this scenario, uncovering an
unsuspected distinction between the entanglement structure
of single-particle and many-body localized eigenstates.

We note that semi-Poisson statistics are a known diagnostic
of pseudointegrability [32,33], and our results suggest that
while the entanglement Hamiltonian of a noninteracting
Anderson insulator will be integrable, the entanglement
Hamiltonian of a many-body localized system will be only
pseudointegrable (i.e., not chaotic but also not integrable). This
observation may open new lines of attack on the many-body
localized phase.

The investigation in the first part of the paper worked
with the “canonical” model of a one-dimensional spin chain.
Next, we study the evolution of the entanglement spectrum
across the many-body localization-delocalization transition
in a two-dimensional model of a transverse field Ising spin
chain. Again, we observe that the level splittings in the thermal
phase follow predictions of random matrix theory. Since this
two-dimensional model can thermalize even in the absence of
disorder (whereas the canonical one-dimensional models are
integrable in the absence of disorder), we can confirm that
the observed level statistics of the entanglement spectrum are
purely a property of thermalizing states and do not depend
on the presence or absence of disorder. Upon turning on
disorder (in the form of random magnetic fields) and driving
the system across the localization transition, we find that the
entanglement spectrum evolves in precisely the same way
as in one-dimensional systems, displaying semi-Poisson level
statistics and residual criticality deep into the localized phase.
This provides strong numerical evidence that the entanglement
structure of higher dimensional many-body localized phases
is analogous to one-dimensional localized phases. We believe
this is the first systematic study of the entanglement structure
across the many-body localization transition in d > 1.

In the final section of the paper, we track the evolution of
the entanglement spectrum across the many-body localization
transition in periodically driven “Floquet” systems. Floquet
systems, due to the lack of energy conservation constraints,
provide a particularly interesting playground for investigating
questions of localization and thermalization, as well as provid-
ing a potential new universality class for the transition. We find
that the entanglement spectrum in the Floquet localized phase
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universally obeys semi-Poisson statistics and displays residual
criticality, much as in Hamiltonian systems. However, we find
more unexpected features in the entanglement spectrum of the
Floquet thermalizing phase.

The level statistics of the spectrum of Floquet eigenphases
(the Floquet analog of the energy spectrum) have previously
been studied, e.g., in [34–39], where it was found that in the
thermalizing phase Floquet eigenphase spectra obey predic-
tions of random matrix theory, albeit potentially governed by
a different ensemble to the instantaneous Hamiltonian [38].
However, unlike in Hamiltonian systems, the entanglement
spectrum is unrelated to the eigenphase spectrum by ETH.
This is because ETH relates the entanglement Hamiltonian to
βH , where H is the actual Hamiltonian, but Floquet systems
thermalize to infinite temperatures β = 0, such that ETH
is totally nonpredictive where the entanglement spectrum is
concerned. Indeed, the entanglement spectrum is dominated
by corrections to ETH, and thus provides a powerful probe of
thermalization beyond ETH.

We find that the entanglement spectrum in the Floquet
thermal phase continues to exhibit level statistics characteristic
of random matrix theory, indicating that random matrix theory
is a more powerful tool for the study of thermalization than
ETH alone. However, the random matrix ensemble governing
the entanglement spectrum of a Floquet system may not be the
same as the random matrix ensemble governing the spectrum
of Floquet eigenphases. Moreover, the entanglement spectrum
of Floquet systems is sensitive to symmetries of the entire
Floquet drive, and the governing random matrix ensemble can
depend on the choice of the origin of time. This indicates
that the entanglement structure of the Floquet “Bloch” states
changes over the period of the drive, such that the entanglement
spectrum depends on when in the drive period we choose to
probe the system. We discuss how one may deduce the random
matrix ensemble that will govern the entanglement spectrum
of a Floquet thermalizing system.

In conclusion, our numerical investigation reveals new and
hitherto unsuspected entanglement structure in both the local-
ized and the thermalizing phases. This structure is invisible
to entropy measures and is revealed only by applying ideas
from random matrix theory to the level statistics of the full
entanglement spectrum. Key (and universal) properties include
a residual criticality in the entanglement structure deep in the
localized phase, which is absent in the Anderson insulator,
the lack of dependence of the results on dimensionality,
the equivalence of microcanonical averages of entanglement
level statistics parameters to single eigenstate calculations
even in the localized phase, and the continuing applicability
of random matrix theory to the entanglement spectrum of
Floquet thermalizing systems (albeit in a “gauge dependent
manner” that is sensitive to the origin of time), even when
such applicability is not guaranteed by ETH.

II. ENERGY SPECTRUM STATISTICS IN A
ONE-DIMENSIONAL SPIN CHAIN

A. The model

Before we present our results on entanglement spectrum
statistics, we first review the statistics of the energy levels.
For more detail, one can consult an earlier study [38] of the

localization-delocalization transition, which contains similar
results. We begin our investigation by considering the canon-
ical model for numerical studies of many-body localization
and thermalization: a one-dimensional system of N spins- 1

2 .
We choose to work with the Heisenberg Hamiltonian with a
random anisotropic field and periodic boundary conditions

H ({hα}) =
∑

α=x,y,z

{
J

N∑
i=1

[
Sα

i Sα
i+1

] + hα

N∑
i=1

cα,iS
α
i

}
, (1)

where Sα
i = 1

2σα
i and σα is a Pauli matrix. The coefficients

cα,i are uncorrelated and chosen according to a uniform
distribution within the interval [−1,1]. The amplitude of the
random field is set through the hα . In the following, we
set J = 1. Unlike the canonical model widely used in the
literature [19], we do not assume that the random field is
necessarily uniaxial. Relaxing this assumption allows us to
access a wider range of regimes. If we take hz = h, this
corresponds to the canonical model with uniaxial random
field [19], which displays a many-body localized (MBL) phase
(with Poisson energy level statistics) for large h � 3.5, and a
thermalizing phase with Gaussian orthogonal ensemble (GOE)
level statistics (in a sector with fixed total Sz) for small h

[19]. Note that the level statistics are GOE even though the
time-reversal symmetry is broken by the field because of the
presence of a disguised antiunitary symmetry, made up of time
reversal and a rotation by π of all spins about the x axis, which
leaves the Hamiltonian unchanged.

In this work we often find it convenient to work with a
system without fixed total Sz. We therefore consider a system
where two components of the field are nonzero (e.g., hx �= 0,
hz �= 0, hy = 0). Here too the level statistics are described
by GOE, for small fields when the system thermalizes. The
relevant antiunitary symmetry is now time reversal plus a
π rotation about the y axis (i.e., Sx → Sx , Sy → −Sy ,
Sz → Sz), which leaves the Hamiltonian unchanged [40,41].
Once all three fields are nonzero, however, there is no longer
any such antiunitary symmetry, and the level statistics in the
thermalizing phase are described by the Gaussian unitary
ensemble (GUE), and the many-body localization transition
is associated with a change in the level statistics from Poisson
to GUE, instead of Poisson to GOE as in the canonical model.

In a previous work [38] we found that for the model with
hx = hz = h, hy = 0, the transition from thermal to localized
energy level statistics occurs around h � 3 (i.e., hc

√
2 ≈ 4.2),

while when hx = hy = hz = h the transition is at h � 2.5 (i.e.,
hc

√
3 ≈ 4.3). Thus, a localized and thermalizing phase exists

in both the orthogonal class without Sz conservation and in
the unitary symmetry class, and there does not appear to be
any significant difference in the total disorder strength for the
phase transition.

B. Energy level statistics across the many-body
localization transition

In this work we are primarily interested in level statistics,
which are distributions of the level spacings,

s ≡ �

〈�〉 , � = λi+1 − λi, (2)
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(a) (b)

FIG. 1. Results from numerical exact diagonalization on the one-dimensional spin chain [Eq. (1)] showing density of states (a) and
level statistics (b) for a system of N = 14 spins for hx = hz = 0.25 and hy = 0 corresponding to GOE (blue dots) or hx = hz = hy = 0.25
corresponding to GUE (red dots). Even without any average over disorder, we clearly see the good agreement between energy level statistics
in the thermal phase and the predictions of random matrix theory for the appropriate ensemble (solid lines). The level statistics clearly differ
from the Poisson distribution (brown line). We also show in the left panel the region of the spectrum (shaded area) that we will consider for the
entanglement spectrum analysis (we average over the states in the middle third of the spectrum).

where λ are the eigenvalues of the Hamiltonian (for the
energy spectrum) or the logarithm of the eigenvalues of the
reduced density matrix (for the entanglement spectrum). In
Figs. 1(a) and 1(b) we give the density-of-states and the
energy level statistics for two systems, one in the orthogonal
symmetry class without Sz conservation (setting hx = hz = h

and hy = 0) and one in the unitary symmetry class (using
hx = hy = hz = h). We choose a value of h such that the
system is in the thermalized phase. A similar study was
performed in Ref. [38], but here we study larger sizes (N = 14
for Fig. 1). We also present data for a single realization of the
disorder. Thus, we do not perform any average over disorder.
Despite looking at a single system with a relatively small
number of spins, we clearly observe that the level statistics
follow predictions of random matrix theory for the appropriate
ensemble. The data incorporate the full energy spectrum
(not just the middle of the band) using the usual unfolding
procedure [40].

The energy spectrum of a typical sample deep in the
localized phase is summarized in Figs. 2(a) and 2(b), which
show the density-of-states and the level statistics when hx =
hz = 12 and either hy = 0 or hy = 12. We clearly observe that
the level spacing follows the Poisson distribution, irrespective
of whether the Hamiltonian is in the orthogonal or the unitary
symmetry class.

III. ENTANGLEMENT SPECTRUM IN
THE THERMALIZING PHASE

We now come to the main focus of this work: the study
of the entanglement spectrum. We begin by studying the
entanglement spectrum in the thermalizing phase. We discover
that the entanglement spectrum follows the predictions of
random matrix theory and is in the same symmetry class as
the energy spectrum. This can be viewed as evidence for a
particularly strong version of the ETH, as we shall discuss.

(a) (b)

FIG. 2. Density of states (a) and level statistics (b) for a system of N = 14 spins for hx = hz = 12 and hy = 0 corresponding to the
orthogonal class (red dots) or hx = hz = hy = 12 corresponding to the unitary class (blue dots). Even without any average over disorder, we
clearly see the good agreement with the Poisson distribution (brown line). We also show in the left panel the region of the spectrum (shaded
area) that we consider for the entanglement spectrum analysis (we average over the middle third of states).
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(a) (b)

FIG. 3. (a) Density of states for the entanglement spectrum in the thermalizing phase of [Eq. (1)] (with hx = hz = 0.25, hy = 0) and for a
variety of different system sizes. We work with the standard entanglement cut which cuts the system into two equal halves. Note that the density
of states has qualitatively the same behavior whether it is extracted from a single entanglement spectrum (N = 16,18) or an average of many
entanglement spectra (N = 12,14). We have obtained qualitatively similar data for the unitary Hamiltonian. (b) Level spacing distributions
for the entanglement spectrum in the thermal phase of Eq. (1) (hx = hz = 0.25) for chains obeying GOE (hy = 0) and GUE (hy = 0.25). The
solid lines show the corresponding predictions for the energy spacings distributions, and we see that there is good agreement; i.e., the level
spacings of the entanglement spectrum follow the same distribution as the level spacings of the energy spectrum. This is true even for N = 18,
where we show data from the entanglement spectrum of a single typical state.

The entanglement spectrum of an eigenstate can be defined
as follows [27]: We first consider a system prepared in an
eigenstate |ψ〉. We then cut the system into two subregions, A

and B. Unless otherwise specified, we always consider the
“standard entanglement cut” that partitions the system (of
N spins) into two equal subregions containing N/2 spins
each; i.e., we cut the system in half. We then construct the
reduced density matrix ρA(ψ) = Tr B |ψ〉〈ψ |. Taking the log
of the reduced density matrix then defines the entanglement
Hamiltonian Hent(ψ,A) for that eigenstate and cut; i.e.,

Hent(ψ,A) = − ln ρA(ψ) = − ln(Tr B |ψ〉〈ψ |). (3)

The entanglement spectrum is the spectrum of this entangle-
ment Hamiltonian that we denote ξi .

While conceptually clean, the above definition is not the
most convenient for numerical work. Indeed, it is instead
more convenient to consider the Schmidt decomposition of
an eigenstate |ψ〉 into two subregions A and B, i.e.,

|ψ〉 =
∑

i

e−ξi/2|A : i〉 ⊗ |B : i〉, (4)

where the |A : i〉 states (|B : i〉) form an orthonormal basis
restricted to the region A (B). Note that |A : i〉 are also the
eigenstates of the entanglement Hamiltonian Hent(ψ,A). The
Schmidt decomposition is obtained through singular value
decomposition and it provides better numerical accuracy for
the ξi’s, an important advantage when analyzing the high
entanglement energy features of the entanglement spectrum.

When studying the entanglement spectrum, we must decide
first how to calculate entanglement statistics, since every
many-body eigenstate has its own entanglement spectrum,
and the number of many-body eigenstates is exponentially
large in system size even for a single-disorder realization. One
possible approach is to study the entanglement spectrum for
a single typical eigenstate. A drawback of this approach is

that the number of entanglement energies per entanglement
spectrum is at most 2N/2. Therefore, we need to study fairly
large sizes to extract useful data, and even then the small
number of entanglement energies will mean that we incur a
large statistical error.

We can reduce these problems by averaging many entan-
glement spectra corresponding to different eigenstates of the
same Hamiltonian. This will allows us to get better statistics
even though we are limited to small systems. In the ETH phase
we expect that every eigenstate should have the properties of
the Hamiltonian [30], and therefore this averaging should not
distort our data. Sorting the energies from the smallest to the
largest {Ei,Ei � Ei+1}, we consider all states between two
indices imin and imax. These latest are chosen such that we
cover a large fraction of spectrum bulk while corresponding to
an almost constant density of states. Typically we average over
all of the states in the middle third of the spectrum following
the path trodden by [19]. In the Appendix we further justify
this choice. In Fig. 1(a) we shade the region that we have
considered for our calculations at N = 14. We verify post
facto that the averaged results agree with the results obtained
from a single many-body eigenstate.

We first study the density of entanglement energies in the
orthogonal symmetry class. In Fig. 3 we show density of states
for the entanglement spectrum at several different system sizes.
At sizes N = 12,14, the density of states was obtained by
averaging over several thousand states. For N = 16 and 18,
the data are for only a single state with an energy located in
the bulk of the spectrum and obtained using the shift-and-
invert method. This technique was introduced in the context
of the ETH-MBL transition in Ref. [42]. We see that though
the single-state data are noisier, they give qualitatively the
same results as the averaged data. This provides evidence in
support of our averaging procedure. For the GUE case we have
obtained data for only N = 12,14, and the density of states is
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very similar. Note that in the absence of a reliable numerical
library for the shift-and-invert method for complex matrices,
we do not provide any data for N = 18 when hy �= 0.

We next focus on extracting the level spacings of the
entanglement spectrum. Figure 3 shows the distribution of
these spacings. For the GOE case, we plot both the level
spacings for a single state entanglement spectrum at N = 18,
and that for the average of all states in the shaded region of
Fig. 1(a) at N = 14. We also show GUE data taken at N = 14.
While the density of states for the entanglement energies
barely differs between the orthogonal and unitary classes, the
situation is drastically different for the level statistics. Indeed,
if the Hamiltonian is in the orthogonal (unitary) class, then the
level statistics for the entanglement energies is GOE (GUE).
This is a clear example where we see that the level statistics
of the Hamiltonian are also encoded in the entanglement
spectrum. This agreement of entanglement level statistics in
the thermal phase with random matrix theory predictions was
also observed in [28].

The agreement between the entanglement spectrum and
the energy spectrum in the thermal phase can be viewed
as a consequence of ETH. ETH states that for a small
subregion A in a thermal state, the entanglement Hamiltonian
of Eq. (3) should be proportional to the local Hamiltonian
HA restricted to the subregion A, up to an additive constant;
i.e., ρA ≈ 1

Z
exp(−βHA) and thus Hent(ψ,A) = − ln (ρA) ≈

βHA + ln Z [30]. Here β is an inverse temperature related
to the energy density in the corresponding eigenstate. So the
entanglement spectrum and energy spectrum should have the
same level statistics. However, traditional ETH only applies
when the subregion A is small (strictly an infinitesimal
fraction of the full system), whereas we are considering an
entanglement cut whereby A is half the size of the full system.
Our results can thus be viewed as evidence in support of a
particularly strong form of the ETH (see, e.g., [29]), which
continues to apply even when the subregion is comparable in
size to the system itself.

IV. ENTANGLEMENT SPECTRUM IN
THE LOCALIZED PHASE

We now consider tuning up the amplitude of the ran-
dom field in Eq. (1), thereby driving the system into the
localized phase, and track the evolution of the entanglement
spectrum. The analysis reveals new and hitherto unsuspected
entanglement structure in the eigenstates of the many-body
localized phase, including a residual criticality that persists
deep into the localized phase and appears to be a consequence
of interactions.

A. Numerical results

We recall that the energy spectrum exhibits Poisson level
statistics in the localized phase and is believed to display semi-
Poisson level statistics at the critical point [31], but once we
leave the thermal phase there is no longer any reason to expect
the entanglement spectrum and energy spectrum to match. This
expectation is clearly borne out by numerics [see Fig. 2(b)],
which reveal entanglement spectrum distributions that are
definitely not Poisson, even though the energy spectrum is
Poisson at the corresponding disorder strength. Moreover, we
do not observe any noticeable distinctions in the entanglement
spectrum of the localized phase depending on whether the
Hamiltonian is in the orthogonal or unitary symmetry class.

We reexamine the question of whether we can get meaning-
ful results by averaging entanglement spectra since in the local-
ized phase there could be dramatic variations in the structure of
eigenstates from one eigenstate to the next (which [6] referred
to as “temperature chaos”). We address this question within
the orthogonal class by putting hy to zero. Figure 4 shows
the results. It appears that the entanglement level splitting
distribution (b) obtained from averaging over a narrow energy
window is essentially the same as that obtained from a single
eigenstate, so that averaging over eigenstates appears to be
an acceptable procedure even deep in the localized phase if
entanglement level statistics are the quantity that is being

(a) (b)

FIG. 4. Entanglement spectrum properties with the standard entanglement cut which cuts the system into two equal halves. Data are for
hx = hz = 12 and hy = 0 (orthogonal class). (a) Density of states for the entanglement spectrum in the MBL phase (hx = hz = 12, hy = 0).
Note that the density of states has qualitatively the same behavior whether it is extracted from a single entanglement spectrum (N = 16,18)
or an average of many entanglement spectra (N = 12,14). (b) Entanglement level splitting distribution averaged over the middle third of the
spectrum (N = 14) of states (red dots), and for a single eigenstate (N = 18, blue dots). We note that averaging over a narrow energy window
gives the same level statistics as computing the spectrum for a single eigenstate.
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FIG. 5. A comparison of the ES in the localized phase (hx =
hz = 12, hy = 0 for the orthogonal Hamiltonian; hx = hy = hz = 12
and 24 for unitary) to the semi-Poisson form P (s) ∼ s exp(−s) (i.e.,
α = γ = 1). The data in the orthogonal case are the same as those in
Fig. 4(b). The N = 18 data are noisier because we have not averaged
over eigenstates.

probed. Thus, we conclude that even though the detailed
structure of individual eigenstates can change dramatically
from one eigenstate to the next in the localized phase, it
appears that the statistical properties of the entanglement
spectrum do not change, such that microcanonical averages
of entanglement spectrum level statistics give essentially the
same results as calculations with a single eigenstate. Moreover,
the parameters governing the statistical distribution appear to
vary only slowly across the energy band such that averaging
over a narrow energy window should be a good method for
accessing statistical properties of the entanglement spectrum
in a numerically efficient manner.

Having established that averaging over energy eigenstates
is an acceptable method of calculating entanglement spectra
for small systems, we now turn to a detailed analysis of the
entanglement level splittings. We note in Fig. 4(b) that the
entanglement splittings show level repulsion but repulsion
that is weaker than would be predicted by the Gaussian
ensembles. We find that (Fig. 5) the level spacing distribution
fits beautifully to the semi-Poisson form P (s) ∼ s exp(−s)
[43], at least in the orthogonal symmetry class. In the unitary
symmetry class the data are qualitatively similar, but the fit to
the semi-Poisson form is not quite as good. We note that if we
go too deep into the localized phase, we run into problems with
machine precision as the Schmidt coefficients are extremely
small. These machine precision issues are more severe in the
unitary class and are also why we do not show data at larger
sizes for the unitary class.

For the energy spectrum, the transition from the thermaliz-
ing phase to the localized phase has been recently probed in

Ref. [31] by interpolating between the GOE distribution and
the Poisson distribution. Indeed, they have proposed to fit the
level statistics with a generalized semi-Poisson distribution,

P (s) = C1(γ,α)sαe−C2(γ,α)s2−γ

, (5)

where

C2(γ,α) =
[

�
(

2+α
2−γ

)
�

(
1+α
2−γ

)
]2−γ

and C1(γ,α) = (2 − γ )C
1+α
2−γ

2

�
(

1+α
2−γ

) ,

(6)

such that the distribution satisfies 〈1〉 = 〈s〉 = 1. The Poisson
distribution corresponds to γ = 1 and α = 0, while the GOE
(GUE) distribution is obtained for γ = 0 and α = 1 (γ = 0
and α = 2). We can also try to see if such a distribution would
describe the ES level statistics. We still only consider the case
where hy = 0. We have fitted the ES level statistics to Eq. (5).
The resulting values of γ and α are depicted in Fig. 6. In
the localized phase the fit parameters seem quite close to the
strict semi-Poisson values α = γ = 1. This is true even for a
single realization of disorder. In the Appendix we show data
averaged over multiple realizations of disorder and for a variety
of system sizes. Such data are also consistent with α ≈ γ ≈ 1
in the localized phase.

B. Criticality in the localized phase ES comes from high
entanglement energies and is invisible to entropy measures

We have found that in the many-body localized phase, the
ES fits well to a semi-Poisson form, exhibiting level repulsion
with small entanglement splittings s being suppressed as sα ,
where α ≈ 1. Semi-Poisson statistics for the energy spectrum
are associated with multifractality and arise at criticality
[31]. The entanglement spectrum, however, appears to show
persistent criticality and multifractality deep into the localized
phase. This is a major surprise, since while it is well known that
entanglement entropy and Renyi entropies display multifractal
statistics at localization transitions [44,45], no such features
have ever before been observed (or even conjectured to exist,
as far as we are aware) deep in the localized phase.

A partial understanding may be attained by a careful
consideration of the density of states in Fig. 7(a) for the
many-body localized regime. The density of states exhibits a
“two-peak” structure. There are a small number of states near
zero entanglement energy, and the number and location of
these states is highly dependent on the realization of disorder.
In addition, there are a large number of states above the
“entanglement gap” (here concentrated around entanglement
energy �30). This “two-peak structure” is illustrated also by
Fig. 8.

An important observation is that the semi-Poisson statistics
that we observe come entirely from the large peak and
high entanglement energies. In the smaller peak below the
entanglement gap, there are not enough states to say anything
definitive about the statistics of the entanglement levels, but
we do not see any signs of level repulsion in these low
entanglement energy states. However, as is clear from Figs. 4
and 8, since the peak above the entanglement gap contains
a much larger area, the high entanglement energy states will
dominate any measure which averages over all states. The
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(a) (b)

FIG. 6. (a) Evolution of the fitted values of γ and α as we tune disorder strength for an orthogonal Hamiltonian with hx = hz, hy = 0, with
N = 14. The fit is to an ES averaged over states in the middle third of the spectrum. For each exponent we show two curves, each corresponding
to a different realization of disorder. There are two sources of error in such measurement: variations between states in the same realization of
disorder (ROD) and variations between ROD. The error bars represent the error within an ROD, while the error between RODs can be estimated
from the differences between the two curves and is discussed in more detail in the Appendix. (b) Same but in the unitary class hx = hy = hz.

level statistics of the full entanglement spectrum will thus be
dominated by the states at high entanglement energy. Further
evidence is provided in Fig. 7(b), where we plot the level
spacing distributions for the high (ξ > 8) and low (ξ < 8)
entanglement energy (EE) states. The high EE states agree
well with the semi-Poisson distribution, while the low EE
states do not show any signs of level repulsion.

Our findings confirm that the signatures of “criticality” in
the form of semi-Poisson level statistics come predominantly
from states above the entanglement gap at high entanglement
energies. Since most states are located above the entanglement
gap, these high entanglement energy states dominate the
level statistics of the entanglement spectrum. However, since
entanglement entropy and Renyi entropies are dominated by
the states at low entanglement energies, the signatures of

critical entanglement structure at high entanglement energies
will likely be essentially invisible to these entropy measures.
They might emerge as correction to the area law but they
would be difficult to probe in numerical simulations of small
systems. This explains why the remnants of criticality in the
entanglement structure of many-body localized eigenstates
have hitherto been overlooked. Fortunately, these signatures
are straightforwardly revealed by an analysis of the full ES.

This analysis motivates the following understanding for
the evolution of the entanglement spectrum across the
localization-delocalization transition. Recall that the entan-
glement entropy (which dominated by the low entanglement
energy states) is volume law in the thermal phase and at
the transition [26], but boundary law in the localized phase.
Thus, in the thermal phase, there are a large number of states

(a) (b)

FIG. 7. (a) The density-of-states data plotted in Fig. 4(a), but only for N = 14. There are two peaks, once around ξ = 0 (which contains
only 2% of the states), and a much larger one around ξ = 30. The red points correspond to the “low entanglement energy” part of the spectrum,
where we expect that nonuniversal behavior is encoded, while the blue “high entanglement energy” points have the universal distribution of
level spacings. (b) Level spacing distributions for the low and high entanglement energy states. The high entanglement energy states follow a
semi-Poisson distribution with α = γ = 1, while the low entanglement energy states do not.
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(a) (b)

FIG. 8. (a) Entanglement spectra for a single eigenstate in the middle of the energy spectrum (the 8000th eigenstate in a system with
N = 14), for various values of hx = hz and with hy = 0. (b) Density of states for the same system, averaged over all states in the middle
third of the spectrum. We see that most of the states are concentrated in a peak above the entanglement gap, and this peak moves to higher
entanglement energies as disorder is increased.

at low entanglement energy, and they obey random matrix
statistics with strong level repulsion (governed by the Gaussian
ensembles). At the critical point there is still a large number of
states at low entanglement energy (a volume law worth), but
these show weaker (but nonzero) level repulsion characteristic
of multifractality [45], and follow a semi-Poisson distribution
just like the energy spectrum. At this point, standard entropy
measures such as von Neumann and Renyi entropies also see
multifractality. As we move into the delocalized phase, only a
small number of states (a boundary law worth) remain at low
entanglement energies, and these cease to show level repulsion.
Thus, standard entropy measures cease to see any signs of
criticality or multifractlity. However, the vast majority of states
(a volume law worth) move off to high entanglement energies,
and effectively stick at criticality, continuing to be governed
by a semi-Poisson distribution as a signature of multifractality,
albeit a signature that is difficult to see in entropy measures,
which are dominated by low entanglement energies.

Thus, signatures of criticality persist in the entanglement
structure of eigenstates even deep into the localized phase, but
they lie at high entanglement energies (above the entanglement
gap), and flow off to infinite entanglement energy as we go
deep into the localized phase and the entanglement gap grows.
This residual criticality never disappears, even deep in the
localized phase, but it becomes difficult to see in standard
entropy measures, which are dominated by low entanglement
energies.

C. Critical entanglement structure as a signature of residual
many-body entanglement resonances

We now propose an explanation for the persistent criticality
in the entanglement structure of many-body localized states.
The central idea is that small entanglement gaps correspond to
a “resonant” structure in the eigenstates, with different Schmidt
states having almost equal weight, and such resonances should
be rare in the localized phase, leading to level repulsion of
entanglement energies. To make this idea quantitative we
employ a gedanken experiment; consider instead of Eq. (1)

an otherwise identical system, but with the bond strength at
the position of the entanglement cut set to zero, i.e., JN/2 = 0
(for a system with periodic boundary conditions one would
also have to set J0 = 0). The Schmidt states |A : i〉 ⊗ |B : i〉
will now be energy eigenstates, with eigenvalue Ei . Now the
model of Eq. (1) may be recovered by turning J0 and JN/2 back
on. Now the Schmidt states are no longer energy eigenstates.
When we construct the energy eigenstates of Eq. (1), the new
eigenstates will have some (potentially very small) overlap
with all the different Schmidt states. The simplest ansatz is
that the overlaps scale as exp(−|E − Ei |/ζ ), where ζ is some
kind of localization length. This ansatz would imply that the
entanglement energies are proportional to |E − Ei |. However,
this ansatz cannot be completely correct, since the energies Ei

will be Poisson distributed, and this logic would imply that
the entanglement energies should also be Poisson distributed,
which they are not.

We conjecture that the observed semi-Poisson statistics of
the entanglement spectrum can be explained by modifying
the above argument to account for many-body resonances.
We modify the above ansatz to say that the overlaps scale
as exp(−|E − Ẽi |/ζ ), where Ẽi is the energy density of
a Schmidt state |A : i〉 ⊗ |B : i〉 with the full Hamiltonian,
i.e., Ẽi = 〈B : i| ⊗ 〈A : i|H |A : i〉 ⊗ |B : i〉, where H is the
Hamiltonian from Eq. (1). If the local operator that stitches
the system back together (by turning on J0 and JN/2) produces
a resonance between two product states |A : i〉 ⊗ |B : i〉 and
|A : j 〉 ⊗ |B : j 〉, where a resonance means that the matrix
element between these two states is comparable to the energy
splitting between them, then this will introduce level repulsion,
with the energy splitting |Ẽi − Ẽj | > |Ei − Ej | (note that
mean energies of Schmidt states can exhibit level repulsion
even though the exact eigenenergies of the Hamiltonian do
not). The probability of small splittings Ẽi−Ẽj will therefore
be suppressed and the probability of small entanglement
energy splittings along with it.

The probability of small entanglement splittings may be
estimated from the probability of small splittings ω = Ẽi−Ẽj .
In the absence of resonances, these splittings would follow
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a Poisson distribution. However, a local operator (such as
the operator that stitches together the two subregions) will
produce resonances, and for an interacting system the density
of resonances will scale as ω−φ , where 0 < φ < 1 (Ref. [14]),
with φ = 1 being the maximum value consistent with stability
of the localized phase (and φ → 1 at the critical point). The
distribution of small splittings in the energies of Schmidt states
may then be estimated by multiplying the Poisson distribution
by a suppression factor 1/ω−φ , where the suppression factor
accounts for the level repulsion coming from resonances.
The distribution of entanglement splittings will then follow
a Poisson distribution multiplied by ωφ , i.e., will follow
P (s) ∼ sφ exp(−s), where 0 < φ � 1 and where φ → 1 at
the transition. This is consistent with our numerical results,
which observe a power law suppression of the density of small
entanglement energy splittings. Moreover, we observe that the
entanglement spectrum (more properly the high entanglement
energy part of the entanglement spectrum) saturates the bound
φ ≈ 1 (which is expected to apply at criticality), consistent
with our picture that the high entanglement energies “stick” at
criticality as we move into the localized phase.

An interesting test of this conjecture is afforded by
noninteracting localized systems. In noninteracting localized
systems, many-body resonances are absent, and while single-
particle resonances do exist, their probability scales simply
as a logarithmic function of ω (i.e., φ = 0). We therefore
predict, if the above explanation is correct, that noninteracting
localized phases should exhibit Poisson level statistics of their
ES. Meanwhile, interactions should drive a transition to semi-
Poisson behavior. That is, we predict that the semi-Poisson
form is a diagnostic of the many body nature of the localized
phase, and that a noninteracting localized phase would show
Poisson level statistics for the entanglement spectrum. This
conjecture may be directly tested by deforming the model
of Eq. (1) by allowing anisotropic interactions Jx = Jy �= Jz,
i.e., considering the XXZ spin chain. For Jz = 0, we have
an XX spin chain, which can be Jordan Wigner transformed
into a quadratic fermion model. Evaluating the ES of this
noninteracting model gives the results in Fig. 9, which
shows that at Jz = 0 the entanglement spectrum loses its
level repulsion. We note that, in principle, the entanglement
spectrum for a noninteracting system of this form could be
computed exactly using methods from Ref. [46].

On turning on the interaction and considering the generic
XXZ spin chain we find that the level repulsion is imme-
diately restored. Figure 9 shows that even for small Jz, the
entanglement spectrum follows semi-Poisson statistics. On
the small system sizes studied here we can find a transition
from the Poisson to semi-Poisson behavior at small Jz.
The critical Jz shrinks rapidly to zero as system size is
increased, so we expect that in the thermodynamic limit the
Poisson distribution is unstable even to small interactions.
This conclusively demonstrates that the level repulsion ob-
served in the entanglement spectrum is intimately tied to
the interacting nature of the localized phase and reveals
a feature in the entanglement structure of eigenstates that
distinguishes single-particle and many-body localized states.
It also provides supporting evidence for our conjectured
explanation of the level repulsion as arising due to many-body
resonances.

FIG. 9. Entanglement spacings for a Hamiltonian with Jx =
Jy = 1, hx = hy = 0, hz = 6, and varying Jz. This system is always
in a localized phase, but at Jz = 0 it is a noninteracting system. We
see that in this case (red symbols) the entanglement spectrum does not
display the level repulsion observed elsewhere in this work; instead,
it seems to follow a Poisson distribution. Data were taken for N = 18
restricted to the Sz = 0 sector, averaging over the middle third of
the energy spectrum. When calculating the entanglement spectra we
only considered entanglement states with Sz = 1 on the left half of
the system. The blue points show that even small interactions return
the spectrum to semi-Poisson statistics α = γ = 1. One complication
when taking this data is that the lack of interactions leads to a large
number of very small eigenvalues of the reduced density matrix. In
order to obtain good statistics, one must throw out these levels. For
the data shown we threw out all eigenvalues less than 10−24.

D. Summary of results on one-dimensional Hamiltonian systems

We now summarize the key results from our study of the ES
in one-dimensional Hamiltonian systems. In the thermal phase
the level statistics of the ES follow the predictions of random
matrix theory (for the same ensemble as the energy spectrum),
in accordance with a strong version of the ETH. In the localized
phase, the level statistics of the ES follow a semi-Poisson
distribution. In both the thermal and the localized phases,
the statistical properties of the ES do not vary much from
one eigenstate to the next, so that averaging over eigenstates
in a narrow energy window provides essentially identical
results (with lower statistical error) to calculations for a single
eigenstate.

The semi-Poisson level statistics of the ES in the localized
phase are indicative of criticality in the entanglement structure,
which surprisingly persists deep into the localized phase.
However, these residual signatures of criticality are difficult
to see in standard measures such as entanglement entropy or
Renyi entropies, since they are absent in the low entanglement
energy states which dominate these entropy measures and are
carried instead by the parts of the entanglement spectrum at
high entanglement energy. Apparently, the ES evolves across
the transition as follows. At the critical point, all entanglement
energies follow semi-Poisson statistics, just like the energy
levels. As we move into the localized phase, the low entangle-
ment energy states (which dominate the entropy measures)
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cease to show level repulsion, but the high entanglement
energy states “stick” at criticality and continue to follow the
semi-Poisson form. As we move deep into the localized phase,
these states move to ever higher entanglement energy (i.e.,
have ever less weight in the many-body wave functions), but
they continue to show signs of residual criticality up to the
largest disorder strengths that we can probe (up to h ≈ 30).
We have also linked this residual criticality to interactions (it is
absent in noninteracting localized phases) and have advanced
an explanation of the apparent level repulsion in the ES in
terms of many-body resonances. However, all our results thus
far have been restricted to one-dimensional systems.

V. TWO-DIMENSIONAL TRANSVERSE FIELD
ISING MODEL

The vast majority of existing work on many-body local-
ization and thermalization has focused on one-dimensional
systems, with higher dimensional systems representing an
important open problem. In this section, we investigate the
evolution of the ES across a two-dimensional localization-
delocalization transition, using numerical exact diagonaliza-
tion. We find results which are qualitatively identical to
one-dimensional systems, suggesting that the entanglement
structure in the thermal and localized phases is insensitive to
spatial dimension.

We make use of the model from Ref. [47], which has
recently provided convincing evidence of the ETH for the
two-dimensional transverse field Ising model using exact
diagonalizations on small clusters. We consider N spin- 1

2 on
a square lattice of size Nx × Ny (see Fig. 10) with periodic
boundary conditions. The transverse field Ising Hamiltonian is

H2DTFIM = J
∑
〈i,j〉

Sz
i S

z
j + hx

∑
i

Sx
i

+hz

∑
i

Sz
i + hzrandom

∑
i

ciS
z
i , (7)

where 〈i,j〉 denotes the pairs of neighboring sites. We first
look at the disorder free case (hzrandom = 0). This is informative
in two dimensions since (unlike in d = 1), unless we look

A

B

FIG. 10. The two-dimensional square lattice used for the trans-
verse field Ising model. Here we depict the case that we have
considered, namely N = 18 spin- 1

2 on a square torus of Nx = 6 sites
in one direction and Ny = 3 in the perpendicular direction. When we
perform the ES, the system is cut into a part A (red dotted region)
of NA = 8 = 4 × 2 sites and a part B (green dotted region) made
of the 10 remaining sites. Note that the cut breaks both translation
symmetries and the inversion symmetry.

at some finely tuned values of hx and hz, the model is not
integrable. In the following and without any loss of generality,
we focus on the ferromagnetic case J < 0. For the numerical
calculations we have used both the translation symmetries
along the two directions x and y and the inversion symmetry.
The momentum is denoted (kx,ky) and the inversion parity
λI = ±1. As observed in Ref. [47], the level statistics of the
energy spectrum differ if we look at one of the inversion-
symmetric momentum sectors [i.e., (0,0), (0,π ), (π,0), or
(π,π )] or any other momentum sector. In sectors without
inversion symmetry the distribution follows the predictions
of random matrix theory for the GOE, whereas in sectors with
inversion symmetry the distribution is close to (but not quite)
Poisson. This property is illustrated by Fig. 11 for a system of
Nx × Ny = 6 × 3 spins.

We can now look at the properties of the entanglement
spectrum for this model. For simplicity, we choose to cut our
system in such a way that the ES does not inherit any of the
quantum numbers of the original system. This can be easily
achieved by taking a rectangular domain that breaks both the
translation symmetries and the inversion symmetry as shown in
Fig. 10. We use the same setup as the one discussed in Sec. III;
i.e., we average over a large number of ES corresponding
to states in the bulk of the spectrum. The average level
statistics for the entanglement spectrum is given in Fig. 12.
We observe the remarkable high similarity between the energy
spectrum level statistics and the entanglement spectrum level
statistics.

We now want to study the transition to the localized phase,
which we accomplish by tuning hzrandom . Since no one has stud-
ied this transition before, we begin by locating the transition
by looking at the distributions of the energy eigenstates. To
numerically probe this transition, we can compute the ratio of
adjacent energy gaps. For a sorted spectrum {λn; λn � λn+1},
the ratio of adjacent gaps is defined as

rn = min(λn − λn−1,λn+1 − λn)

max(λn − λn−1,λn+1 − λn)
. (8)

We incorporate the full energy spectrum in the calculation of
r . The average ratio r of adjacent gaps is r � 0.530 for GOE
[34], r � 0.60 for GUE [34], and r � 0.386 for a Poisson
spectrum [19].

Figure 13(a) shows the r for systems of N = 4 × 3 = 12
and N = 5 × 3 = 15 states. We see that it starts at the GOE
value of 0.52, and as hrandom is increased it drops to the Poisson
value of 0.396 at around hrandom = 5. Figure 13(b) shows
distributions of the spacings of the energy levels, which agree
with the GOE and Poisson distributions in the appropriate
phases.

Now we can ask how the entanglement spectrum behaves
for the same system. When making entanglement cuts in 2D,
we have some freedom of choice as to where to make the cut. At
N = 12 = 4 × 3, we cut a 3 × 2 region out, similar to Fig. 10
but for the different size. Similarly for N = 15 = 5 × 3, we cut
a 4 × 2 region. Such cuts are advantageous in the absence of
disorder since they break all symmetries, but in the disordered
case we are free to choose other cuts, since the disorder breaks
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(a) (b)

FIG. 11. (a) Energy spectrum density of states and (b) energy level statistics for the system of N = 18 spins depicted in Fig. 10. Here we
have used hx = hz = −J = 1.We look at a typical momentum sector not invariant under the inversion symmetry [(π/3,2π/3) black dots] and
a typical momentum sector invariant under the inversion symmetry (π,0). In the right panel, we clearly see that level statistics is given by the
GOE for the (π/3,2π/3) sector while it is somehow closer to the Poisson distribution for (π,0) (the same is true in other inversion-symmetric
sectors). We also show in the left panel the region of the spectrum (shaded area) that we consider for the entanglement spectrum analysis,
setting imin = 6000 and imax = 9500 for (π/3,2π/3) (�24% of all states in this sector) and imin = 3000 and imax = 4500 for (π,0) and λI = ±1
(�20% of all states in this sector).

symmetries anyway, and for N = 16 = 4 × 4 we choose a
4 × 2 cut.

First we show entanglement density of states for a variety of
system sizes in Fig. 14. The figure is qualitatively very similar
to Fig. 4, with a peak at very small values but the bulk of the
states in another peak at larger values. Once again the data is
normalized so that the area is proportional to the number of
entanglement states.

We can also look at entanglement level spacings in the MBL
phase, which are shown in Fig. 14, and follow a semi-Poisson
distribution, similar to the 1D case. In the Appendix we fit
the entanglement statistics to Eq. (5) and find that once again
the exponents are quite close to the strict semi-Poisson values
α = 1 = γ , even though the energy spectrum is Poisson α =
0. Once again we do not see any sign of level repulsion in
the states at low entanglement energy, but the vast majority

of the states lie at high entanglement energy and follow the
semi-Poisson form.

To summarize, the statistical properties of the ES in both the
thermal and the localized phases appear substantially similar in
this two-dimensional model to the results we obtained earlier in
one dimension. We conclude, therefore, that the entanglement
structure of the eigenstates does not appear to depend strongly
on spatial dimensionality.

VI. ENTANGLEMENT SPECTRUM IN
FLOQUET SYSTEMS

Thus far we have focused on the ES in the thermal
and localized phases of Hamiltonian systems, in spatial
dimensions d = 1,2. We now consider periodically driven
Floquet systems, which constitute a different universality class

(a) (b)

FIG. 12. Density of states (a) and level statistics (b) for the entanglement spectra of the system with N = 18 spins. The system geometry
and the bipartition are shown in Fig. 10. Here we consider to the Hamiltonians of Eq. (7) with hx = hz = −J = 1. We look at the same
momentum sectors as those of Fig. 12. The average over the entanglement spectra is done over the 3500 states [1500 for each sector of (π,0)]
located in the bulk of the spectrum as shown in Fig. 11(a).
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(a) (b)

FIG. 13. (a) The r level spacing parameter for the energy eigenstates for the 2D model. The gray lines are a guide for the eye, showing the
predicted values for the Poisson (r ≈ 0.386 [19]) and GOE (r ≈ 0.530 [34]) cases. We see a transition from GOE to Poisson. For the N = 15
data, only the 200 states near the middle of the energy spectrum were used, while the N = 12 data include all states. (b) Energy level spacing
distributions for a system with N = 12 at representative points in the ETH and MBL phases, which follow the correct distributions.

due to the absence of energy conservation. We find that the
entanglement spectra in the localized and thermal phases are
substantially similar to that observed in Hamiltonian systems.
In the thermal phase this is something of a surprise since
Floquet systems thermalize to infinite temperatures, such that
the ETH does not relate the entanglement Hamiltonian to the
real Hamiltonian. Nevertheless, we find that the entanglement
spectrum in Floquet systems follows predictions of random
matrix theory, which appears to be more generally applicable
than ETH. We also find that the choice of random matrix
ensemble can depend on the choice of origin of time for the
Floquet operator.

We focus on a simple model based on a chain of N spins- 1
2

with periodic boundary conditions. We are using a two-bang
approach for the time evolution,

U (τ ) = exp(−iH1τ/2) exp(−iH2τ/2). (9)

We consider the situation where both H1 and H2 are
integrable,

H1 =
N∑

i=1

Sx
i Sx

i+1 + hcx,iS
x
i , (10)

H2 =
N∑

i=1

Sz
i S

z
i+1 + hcz,iS

z
i . (11)

The level statistics of the Floquet Hamiltonian were
discussed in Ref. [38]; for completeness we briefly summarize
it here. Since the Floquet operator is unitary, we are looking at
the phases of its eigenvalues, which we call here the “Floquet
energies.” At small h (�2) the Floquet energy statistics follow
a circular orthogonal ensemble (COE) (which has the same
spacing distribution as the GOE distributions studied in this
work) at both small and large τ . There is, however, a “dip”

(a) (b)

FIG. 14. (a) Entanglement density of states for the 2D case. As in the 1D case, we see a small peak at ξ = 0, as well as a larger peak at
higher entanglement entropies. The data are normalized such that each curve has an equal area. This hides the behavior at large N and small ξ ,
so in the inset we plot data normalized such that each curved area is proportional to the number of states, and the small ξ peak is visible. Data
are taken for hrandom = 8. (b) Entanglement level spacings for the 2D case, which follow a strict semi-Poisson distribution α = γ = 1. Data are
taken for hrandom = 8. We see that the data match well the expected distribution shown by the solid green line.
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(a) (b)

FIG. 15. (a) Ratio of adjacent gaps renergy for the Floquet energies of the two-bang models where H1 and H2 are given by Eqs. (10) and
(11), respectively. The calculations were done for N = 14 spins for a single realization of disorder. The Floquet energy data shows the same
behavior of that in Ref. [38]. Gray lines show the predicted values for the Poisson (r ≈ 0.386 [19]) and COE (r ≈ 0.530 [34]) cases. (b) Level
statistics (right) for a system of N = 14 spins for h = 6. Even without any average over disorder, we clearly see the good agreement with either
the Poisson distribution for τ = 0.25 or the COE for τ = 2 and τ = 6.

in the parameter r when the Floquet bandwidth is similar
to the drive frequency. At large h (�2) the Floquet energy
distribution is localized (obeys a Poisson distribution) at small
τ and thermal (obeys a COE distribution) at large τ . This is
in agreement with theoretical work [13,48], which predicts a
localization transition as a function of drive frequency. These
properties can be seen in Fig. 15(a), where we show the
parameter r as a function of τ for h values representative
of the thermalized and localized phases. Unlike the data
in Ref. [38], here we use only one realization of disorder,
and we use a system size large enough (N = 14) to get
adequate statistics despite this. In Fig. 15(b) we show the
density of states and spacing distribution for the Floquet

energy levels at h = 6, which further supports the conclusions
above.

We now discuss the entanglement spectrum. Figure 16(b)
shows our results for the entanglement spacings of a Floquet
system. We see that, as in the undriven case, in the localized
phase the entanglement statistics seem to follow a semi-
Poisson distribution. The story in the thermalizing phase,
however, is far richer.

When Floquet systems thermalize, they do so to infi-
nite temperature [1]. The ETH therefore predicts that in a
thermalizing Floquet phase, the reduced density matrix will
be proportional to the unit operator, and the entanglement
Hamiltonian will be zero, such that the entanglement spectrum

(a) (b)

FIG. 16. Density of states (a) and level statistics (b) for the entanglement spectra of a system with N = 14 spins keeping NA = 7 spins and
h = 6. Here we consider evolution times τ = 0.25 (black dots), 2 (blue dots), and 6 (red dots). The average over the entanglement spectra is
done over the all the 4096 states. The origin of time is chosen according to Eq. (9). Considering only a fraction of the states does not change
the picture. The level statistics in the thermal phase are well described by the GUE. In the localized phase (τ = 0.25), there is a good fit to the
strict semi-Poisson form α = γ = 1 (green line). We have also fitted the level spacing distribution to the interpolating distribution considered
in Ref. [31]. The fitting parameters are γ � 1.68(6) and α = 1.31(2) (red line). Errors bars are from the fits alone and do not include averaging
over disorder or finite size effects.
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will be totally degenerate. In practice, however (and certainly
for a finite size system), we expect there will be corrections
to ETH and these corrections will dominate the entanglement
spectrum. The entanglement spectrum thus provides a nice
diagnostic for investigating corrections to ETH, since in
the Floquet thermal phase these corrections to ETH pro-
vide the leading contribution to the entanglement spectrum.
We observe indeed that the entanglement spectrum in the
Floquet phase fits well to predictions of random matrix
theory, indicating that random matrix theory is a more
robust descriptor of thermalization than ETH; i.e., even the
corrections to ETH follow random matrix theory. We also
highlight a surprising feature of the entanglement spectrum in
the thermal phase: The entanglement spacings follow a GUE
distribution, even though the energy spacings are GOE; i.e.,
the entanglement spectrum in the thermal phase is governed by
a different random matrix ensemble than the energy spectrum.

We note that while the Floquet eigenenergies are indepen-
dent of the “origin of time” used when defining the Floquet
unitary operator, the eigenstates of that unitary operator (and
hence the entanglement spectrum) do depend on the choice
of origin of time. The Floquet unitary operator with a general
choice of origin of time can be written as

U (τ,ε) = exp

(
− iH1

τ + ε

4

)
exp

(
− iH2

τ

2

)

× exp

(
− iH1

τ − ε

4

)
. (12)

This evolution operator is time-reversal symmetric at ε = 0
and identical to Eq. (9) for ε = τ . The eigenstates |ϕi(τ,ε)〉 are
related for different values of ε by the unitary transformation

|ϕi(τ,ε)〉 = exp[−iH1(ε′ − ε)/4]|ϕi(τ,ε
′)〉. (13)

We clearly see that the entanglement spectrum of |ϕi(τ,ε)〉
depends on the choice of ε unless H1 does not couple the
two regions A and B defining the bipartition. In our setup,
Eq. (10) has one term that prevents such a separation. Thus,
the choice of origin of time will have a dramatic consequence
on our entanglement spectrum analysis. We show the level
spacing distributions of the entanglement spectrum for the
ordinary time-reversal (TR)-breaking protocols in Fig. 17.
We can see that at the TR-symmetric point ε = 0, the
entanglement level spacings are GOE, just like the Floquet
energy distributions. (The distribution is GOE and not COE
because the entanglement Hamiltonian is Hermitian.) The inset
of Fig. 17 shows how the level spacing ratio rES depends on
ε; we see that rES is only GOE for a TR-symmetric choice of
origin of time.

Figure 18 shows the level spacing ratio rES for the entan-
glement spectrum with a time-reversal-symmetric drive for
the system whose Floquet energy spacing ratios are shown in
Fig. 15(a). Similar to the Floquet energy case, the entanglement
level spacing ratios are GOE at large τ , and at small τ they are
GOE for small disorder and Semi-Poisson for large disorder.
Note, however, that at unlike in the Floquet energy case there
is no “dip” in the spacing ratios between the two τ regimes.

FIG. 17. Demonstration of how the entanglement level statistics
depends on the origin of time. The blue dots are the entanglement
spacings for a time-reversal-symmetric origin of time; they satisfy a
GOE distribution, which is the same as the Floquet energy spacings.
The green dots are for the TR-breaking drive of Eq. (9); they follow
a GUE distribution. All data were taken for N = 14, h = 6. (Inset)
The level spacing ratio for various system sizes, which takes the GOE
value only when ε = 0 (the TR-symmetric point).

VII. CONCLUSION

We have studied the entanglement spectrum in the thermal
and localized phases of Hamiltonian and Floquet systems,
revealing a wealth of information about the entanglement
structure. In the thermal phase of Hamiltonian systems, the
entanglement spectrum is governed by random matrix theory,
in accordance with a particularly strong form of the eigenstate
thermalization hypothesis. The conclusion appears indepen-
dent of dimensionality. In Floquet systems, the entanglement
spectrum is controlled by corrections to ETH, but is still

FIG. 18. Level spacing ratios rES for the entanglement spectrum
for the same model as that shown in Fig. 15(a), but with a time-
reversal-symmetric origin of time. The gray line shows the predicted
value for the GOE.
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governed by random matrix theory. However, the random ma-
trix ensemble governing the entanglement spectrum in Floquet
systems can be different from that governing the spectrum of
Floquet eigenphases. In particular, the entanglement spectrum
will follow GUE level statistics unless the energy spectrum is
COE, the drive has an inversion center, and we place the origin
of time at the inversion center (note that in Floquet systems
the entanglement spectrum depends on the choice of origin of
time).

Meanwhile, in the localized phase, we observe that the
entanglement spectrum has level statistics that follow a
semi-Poisson distribution, unlike the energy spectrum, which
follows Poisson level statistics. This semi-Poisson form is
observed in one- and two-dimensional Hamiltonian systems
and in Floquet localized phases and thus appears to be
a universal property of the entanglement structure of the
localized phase. However, it is not seen in noninteracting
localized phases; i.e., the semi-Poisson statistics appear to be
a consequence of the interacting nature of the localized phase.
We have conjectured an explanation for the semi-Poisson
statistics of the entanglement spectrum in terms of many-body
resonances.

Semi-Poisson statistics are generally considered a diagnos-
tic of criticality, and the entanglement structure even deep in
the localized phase thus appears to show a “residual criticality”
that has not hitherto been appreciated. We have identified
a “two-peak” structure in the entanglement spectrum of the
localized phase and have pointed out that information about the
level repulsion and semi-Poisson statistics is contained mainly
in the “high entanglement energy” part of the entanglement
spectrum, with the low entanglement energy states (that control
entanglement entropy and Renyi entropies) showing little sign
of level repulsion. Thus, it appears that this residual criticality
in the entanglement structure is likely to be invisible to entropy
measures and could only have been revealed by an analysis of
the full entanglement spectrum using diagnostics inspired by
random matrix theory. Whether the high energy entanglement
spectrum deep in the MBL phase retains a memory of any
other properties of the critical point (such as other critical
exponents), and if so how this information could be extracted,
is an intriguing question that we leave to future work. We
note that semi-Poisson statistics are also a diagnostic of
pseudointegrability [32,33], and our results thus suggest that
the entanglement Hamiltonian in the many-body localized
phase should be pseudointegrable (i.e., not integrable but also
not chaotic), an observation that may open new lines of attack
on the localized phase.

Finally, we have verified that performing microcanonical
averages of level statistics for entanglement energies gives
essentially the same results as calculating level statistics for
the entanglement spectrum of a single eigenstate. While this
is expected in the thermal phase (a corollary of ETH), it
is a surprise in the localized phase, where eigenstates are
known to vary dramatically in their properties (temperature
chaos). Nonetheless, it appears that the statistical properties
of the entanglement structure do not vary much from one
eigenstate to the next, such that microcanonical averaging may
be employed as a useful tool when studying level statistics
of entanglement spectra even in the many-body localized
phase.

FIG. 19. This plot was obtained by extracting the values of α and
γ for 256 energy eigenstates at a time. The horizontal axis shows the
index of the first state on the set of 256. We see that the at values at
small and large energy are different from that in the middle of the
spectrum. The region which we average over in the main text is shown
in gray; we can see the exponents are relatively constant in this region.
The different colored points correspond to different realizations of
disorder; we see that changing the disorder realization can affect the
extracted exponents, at least for the finite-size systems available to
our numerics. Data were taken with N = 14, hx = hz = 12, hy = 0.

(a) (c)

(b) (d)

FIG. 20. Fitted values of (a) γ and (b) α [as defined in Eq. (5)]
for the ES, for multiple sizes and averaged over multiple realizations
of disorder (16 RODs for N = 12, 4 for N = 14,16). Data were
taken for the GOE case with hx = hz = h, hy = 0. For N = 12,14
the entanglement spectra in each disorder realization was averaged
over the one-third of energy levels in the middle of the spectrum;
for N = 16 the spectra were averaged over 1000 energy levels near
the middle of the energy spectrum. α and γ were extracted for each
realization of disorder, and error bars are the variance of the different
values. (c),(d) Same as (a),(b) but in the unitary symmetry class
hx = hy = hz. In this case the entanglement eigenvalues are smaller
so that at h > 6 we run into problems with machine precision at
N = 16.
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Thus, a study of the entanglement spectrum has revealed
a rich and hitherto unsuspected structure to the pattern of
entanglement in both thermal and localized phases. Further
exploration of such ideas may open a new line of attack on
the localized and delocalized phases and the intervening phase
transition. We leave further exploration of these ideas to future
work.
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APPENDIX: DIFFERENT WAYS TO AVERAGE

In the main text at small sizes we had the problem
that there were not enough entanglement states to draw
concrete conclusions about their level statistics. We found that
averaging over a number of entanglement states gave the same

results as a single state, and, therefore, this is the approach that
we used throughout the paper. Specifically, we averaged over
all states lying within the middle third of the energy spectrum,
but one might wonder how this energy window was chosen.
We support this choice in Fig. 19. In this figure we estimate the
exponents α and γ from Eq. (5) as functions of location in the
energy spectrum, which we computed by averaging over 256
states. We can see that at the high and low ends of the spectrum,
slightly different values for γ are obtained. The shaded region
shows the middle third of states which were averaged over in
the main text; we can see that in this region the exponents are
relatively constant.

In the main text, all quantities are computed for only a
single realization of disorder (ROD), but we can ask how
averaging over disorder could improve our data. In Fig. 19
the different symbols correspond to different RODs, and we
can see that different realizations can give slightly different
results. Note that this is a finite-size effect, at larger sizes
the system would better self-average and differences between
RODs would disappear. In Fig. 20 we average over RODs to
improve our estimates of the exponents α and γ . The improved
estimates allow us to see how these quantities vary with system
size. The results support our hypothesis that in the limit of large
N and large h, α = γ = 1.
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