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Nanoscale periodic domain patterns in tetragonal ferroelectrics: A phase-field study
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Ferroelectrics form domain patterns that minimize their energy subject to imposed boundary conditions. In a
linear, constrained theory, that neglects domain-wall energy, periodic domain patterns in the form of multirank
laminates can be identified as minimum-energy states. However, when these laminates (formed in a macroscopic
crystal) comprise domains that are a few nanometers in size, the domain-wall energy becomes significant, and the
behavior of laminate patterns at this scale is not known. Here, a phase-field model, which accounts for gradient
energy and strain energy contributions, is employed to explore the stability and evolution of the nanoscale
multirank laminates. The stress, electric field, and domain-wall energies in the laminates are computed. The
effect of scaling is also discussed. In the absence of external loading, stripe domain patterns are found to be
lower-energy states than the more complex, multirank laminates, which mostly collapse into simpler patterns.
However, complex laminates can be stabilized by imposing external loads such as electric field, average strain,
and polarization. The study provides insight into the domain patterns that may form on a macroscopic single
crystal but comprising nanoscale periodic patterns, and on the effect of external loads on these patterns.
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I. INTRODUCTION

Domains are regions of a ferroelectric crystal with uniform
polarization. The arrangement, or pattern, of these domains
is of great importance in determining the properties of
a ferroelectric at the nanoscale [1–7]. For example, the
effective piezoelectric coefficients depend upon the fractions
of different domain types present [6], and enhanced actuation
can be achieved by using specific domain patterns [7].
Engineered configurations of domains have been used to make
improved actuators, sensors, and energy harvesting devices [8].
Domain patterns are particularly important to the working of
nanoscale devices, where relatively few domains are present
[9–12].

What determines the pattern of domains? Where any two
domains meet, a domain wall forms, and this has surface
energy proportional to the wall area. But there is also potential
energy, proportional to domain volume, associated with
externally applied stresses and electric fields. Minimization
of energy then produces a competition between the individual
energy contributions, leading to specific patterns. In the
absence of external loads, a single domain state minimizes
energy; likewise, for boundary conditions consistent with
a uniform stress or electric field, the single domain state
is an energy minimizer. However, boundary conditions that
impose an average strain or electric displacement can lead to
a mixture of domains. Once a mixture of domains becomes
favorable, energy minimization produces arrangements of
domains that relieve internal stresses and electric fields.
Thus “head-to-tail” polarization arrangements [13–15] form
across domain walls, and the spontaneous strains in adjacent
domains satisfy compatibility conditions, well known from
the crystallographic theory of martensite [16,17]. Where these
conditions cannot be met, the resulting misfit strains cause
internal stresses and incompatible polarization causes electric
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fields; both produce a contribution to the net energy. The
compatibility rules give a “constrained theory” that has been
widely used to study pattern formation in ferroelectrics and
other materials [18,19]. Here, we use this approach to provide
a starting point for our simulations.

The fact that the domain-wall energy scales with area,
while the potential energy scales with volume, introduces
an intrinsic, material specific length scale. Thus energy
minimization can determine both the pattern of domains
and the scale at which this pattern forms. At a sufficiently
coarse scale, the domain-wall energy becomes negligible,
and a constrained theory, based on compatibility alone, is
sufficient. However, for the prediction of fine domain patterns,
the contribution of domain-wall energy becomes significant.
The key length scale for typical ferroelectrics is of the order
of nanometers, comparable with the finest spacing of observed
domains [20–22].

Of course, the materials may not behave as perfect mini-
mizers of energy. Kinetics has a central role in determining
the ways that domains can evolve. For example, the multiwell
nature of the energy dictates that even if the system is driven
towards minimum energy it may only reach a local energy
minimum. Defects, such as trapped charge [23], dislocations
[24], dopant atoms [25], and so forth, also play a role, affecting
both the energetics and kinetics [26]. Nevertheless, substantial
progress in understanding domain patterns has been made by
considering energy minimization in perfect crystals.

Domain patterns in single-crystal ferroelectrics commonly
take the form of nearly periodic laminations [1,15,27–31].
We can define a rank-1 laminate, as a pattern comprising
alternating layers of two domain types, each of which is
a single-crystal variant. Examples include alternating bands
of 180 or 90◦ domains. Similarly, simple laminations can
themselves be layered together to produce a higher rank
laminate. Based on the linear constrained theory of laminates,
Tsou et al. [18] identified several rank-2 periodic domain
patterns in tetragonal ferroelectrics. Of these, a layered stripe
domain pattern and herringbone domain pattern are both well

2469-9950/2016/93(17)/174120(13) 174120-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.93.174120


A. RENUKA BALAKRISHNA, J. E. HUBER, AND I. MÜNCH PHYSICAL REVIEW B 93, 174120 (2016)

known and commonly observed [13,14,30,32]. Meanwhile,
certain other patterns are rarely seen in experiments [33,34],
though elements of these patterns sometimes appear [15]. In
the present work, we consider periodic polarization patterns
formed in macroscopic single crystals, but with nanoscale
domains. These polarization patterns are referred to as
nanoscale periodic patterns. The theory employed by Tsou
et al. [18] neglected gradient energy due to domain walls and
the elastic and dielectric energy due to disclinations generated
at the junctions of domains. However, these factors could
be expected to be of importance, especially in nanoscale
periodic patterns [35,36]. This leads us to consider the
following questions: Among the periodic laminates identified
by the constrained theory, which are stable when gradient
and elastic energy are considered? Which patterns constitute
global energy minima, and does this depend on the scale?
Can imposed states of average strain or polarization stabilize
specific patterns, allowing the nanoengineering of domain
patterns?

In the present work, we use a phase-field approach based on
the time-dependent Ginzburg-Landau equations [37–41]. This
modeling approach is well established for ferroelectrics and
has been successfully applied to study defects [42,43], domain
structures in thin films [44,45], the effect of flexoelectric
coupling on domain patterns [46–54], and microstructural
evolution under electromechanical loading [55]. The phase-
field approach has made a significant contribution in under-
standing nanoscale ferroelectrics and reliably accounts for
energy contributions from polarization gradients and misfit
strains at domain walls [56]. Several reviews provide a broader
appreciation of the capabilities of the method [45,57,58]. The
phase-field simulations have also been employed to simulate
macroscopic ferroelectric properties by modeling periodic
boundary conditions [1,38,59–64]. For example, systematic
studies on the effect of electromechanical boundary conditions
on hysteresis, butterfly loops, and polarization switching have
been conducted using periodic conditions [38,59–63]. While
there exists a substantial literature making use of phase-field
models to study periodic patterns with stripelike features in
both two-dimensional (2D) [38,59–62] and three-dimensional
(3D) [63,65] simulations, to date there is relatively little
work done to systematically explore the stability of nanoscale
periodic patterns with 2D checkerboardlike features or with
cylindrical domains in three dimensions that are predicted to
form in tetragonal ferroelectrics [27,28,66], which is the goal
of the present work. In this paper, the stability of these complex
nanoscale periodic patterns under externally applied strain and
electric field is also explored.

The phase-field model [42,67] used in the present work
enables an initial assessment of the stability of rank-1 and
rank-2 nanoscale periodic domain patterns in tetragonal fer-
roelectrics. We then examine the internal fields in the domain
patterns and consider the effect of scaling on internal energy.
Several of the rank-2 periodic patterns when modeled with
nanoscale domains collapse into simpler states. However, they
can be stabilized by external loads, and examples of this are
given. We also show that, with suitable loading, simple rank-1
domain patterns can be made to evolve into more complex,
rank-2 patterns, suggesting a mechanism for the formation of
complex domain patterns. Throughout, the phase-field results
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FIG. 1. (a) Coordinate axes and polarization directions of the six
crystal variants in the tetragonal system. (b) A rank-2 tree diagram
illustrating the domain pattern “1234”.

are compared with the existing literature on periodic domain
patterns.

II. PROBLEM DESCRIPTION AND MODEL

The objective is to test the stability of nanoscale periodic
patterns that form in a macroscopic single crystal. To do
this, a set of rank-1 and rank-2 periodic laminates identified
by Tsou et al. [18] is modeled using phase-field methods.
Following Tsou et al. [18,66], the multirank laminates are
labeled on the basis of the crystal variants present in the domain
pattern. There are six crystal variants in the polar tetragonal
system, with distinct spontaneous polarization states as shown
in Fig. 1(a). The structure of a multirank laminate consists
of layers which are themselves subdivided into finer layers,
the finest laminations comprising material of a single-crystal
variant. The arrangement of layers is readily described using
a hierarchical tree structure [68] [see Fig. 1(b)]. At the lowest
level are single-crystal variants, numbered according to their
polarization orientation. Ascending the tree diagram, higher
rank laminates are labeled so as to show the crystal variants
present, reading from left to right across the lowest level of
the tree. Thus, in Fig. 1(b), the rank-1 domain patterns are
labeled as “12” and “34.” These rank-1 domain patterns can
be laminated together to form a rank-2 herringbone domain
pattern, labeled “1234.”

There are many laminate patterns that can be formed in this
way. However, most are reflections, rotations, or inversions
of other patterns. Taking out these symmetrical copies, Tsou
et al. [18] found just two distinct laminates of rank-1 and eight
of rank-2. We model nanoscale periodic cells of these patterns
and seek equilibrium states.

A phase-field model developed by Landis and coworkers
[42,67] is used. This model has been calibrated using the
material properties of barium titanate (BaTiO3) in its tetragonal
phase [67]. The order parameter is the local polarization Pi ,
and the polarization field is allowed to approach equilibrium
by relaxation using the Ginzburg-Landau equation [67]:

(
∂ψ

∂Pi,j

)
,j

− ∂ψ

∂Pi

= βṖi . (1)

174120-2



NANOSCALE PERIODIC DOMAIN PATTERNS IN . . . PHYSICAL REVIEW B 93, 174120 (2016)

Here ψ is the Helmholtz free energy per unit volume. An
arbitrary polarization viscosity,β, is introduced for numerical
purposes, and is controlled as a relaxation parameter. Equi-
librium states satisfy Eq. (1) with β = 0. The Helmholtz free
energy is described by

ψ = 1

2
aijklPi,jPk,l + 1

2
āijPiPj + 1

4
¯̄aijklPiPjPkPl

+ 1

6
¯̄̄aijklmnPiPjPkPlPmPn

+ 1

8
¯̄̄̄aijklmnrsPiPjPkPlPmPnPrPs

+ bijklεijPkPl + 1

2
cijklεij εkl + 1

2
fijklmnεij εklPmPn

+ 1

2
gijklmnεijPkPlPmPn + 1

2κ0
(Di − Pi)(Di − Pi) (2)

where Di is the electric displacement, εij is the strain
tensor, and κ0 is the permittivity of free space. The tensorial
coefficients a, b, c, f, and g are given, along with further
details of the model and the material properties of BaTiO3 at
room temperature (22◦C) in the work by Landis and coworkers
[42,67]. These parameters were chosen to represent the multi-
well free energy and provide the correct symmetries to model
the material properties in the tetragonal phase. In Eq. (2),
the energy contribution from surface energy is assumed to be
negligible since the work focuses on macroscopic crystals. The
phase-field problem is solved using finite element methods,
with eight-noded quadratic elements in 2D simulations or
brick elements in 3D simulations. An element size of 1 nm
was chosen, such that domain walls typically span over about
three elements.

The material model is fully 3D, but several of the domain
patterns considered have polarization in a single plane with all
domain walls perpendicular to that plane. In these cases the
prismatic nature of the patterns is exploited, allowing them to
be modeled in two dimensions, with plane strain and electric-
field conditions. This is practically expedient because the
simulations are computationally intensive. However, it does
limit the simulation by preventing out-of-plane polarization.
Our experience with a wider range of simulations indicates
that this restriction does not greatly affect the model outcomes.
Domain patterns with out-of-plane polarizations are modeled
in three dimensions. To model a regular repeating laminate
structure, periodic boundary conditions are imposed (see
Fig. 2). A periodic square of side L = 40 nm, Fig. 2(a), and a
periodic cuboid with depth D < L, Fig. 2(b), are modeled in
the 2D and 3D simulations, respectively. These periodic cells
when repeated infinitely form a macroscopic object like a thin
film or a single crystal.

The midelements of the periodic cell shown in Figs. 2(a)
and 2(b) have simple supports, while periodic conditions are
enforced on the boundary nodes, controlling the displacement
ui , electric potential φ, and polarization Pi . For a typical node
R, these conditions are

ui(L,x2,x3)|R−ui(L,0,0)|B = ui(0,x2,x3)|Rm
−ui(0,0,0)|A,

φ(L,x2,x3)|R = φ(0,x2,x3)|Rm
, (3)

Pi(L,x2,x3)|R = Pi(0,x2,x3)|Rm
i = 1,n.
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FIG. 2. Schematic representation of the periodic cell and bound-
ary conditions on (a) a square of side L and (b) a cuboid of depth D.
Arrows indicate the nodal relations in periodic boundary conditions.

Here n is the number of dimensions, and for 2D simulations
x3 = 0. The notation |X is used to indicate a value at a
node X as labeled in Fig. 2. Similar conditions apply to
typical node S and (in the 3D case) T. Care is needed at
corners in two dimensions and at edges in three dimensions
to avoid duplication of boundary conditions. These boundary
conditions allow the domain pattern to adopt periodic strain
fields εij (x1,x2,x3) with zero average stress. That is, the
strain fields εij are dependent on the relative displacement
between the corner nodes, for example, node A and node
B, which are not bound. These corner nodes are free to
adopt any displacement values ui such that the periodic cell
possesses zero average stress. Meanwhile, periodic values
of electric potential φ with zero average electric field and
polarization Pi are imposed on the boundary nodes. We shall
later refer to the boundary conditions represented by Eq. (3)
as “zero external load” conditions. Equation (3) imposes the
boundary conditions of a bulk material and previous literature
[3,14,15,30,32,69–71] indicates that periodic domain patterns
have been experimentally observed in bulk samples.

The phase-field simulation is initialized by imposing a
polarization field consistent with the repeating unit of a
laminate pattern on the periodic cell. The nodal polarization
values are set equal to the spontaneous polarization of the
domain, producing sharp discontinuities at domain walls in
the initial state. The displacement and electric potential values
are initialized at zero. Note that this initial state may not
satisfy electromechanical compatibility conditions, however
it provides a state of the order parameter Pi that approximates
an equilibrium pattern.

During the early stages of each simulation, high values of
polarization viscosity,β, are used to facilitate the resolution
of domain walls into a continuous polarization field and
displacement field. The sharp discontinuity at the domain
walls rapidly relaxes, but the overall pattern of polarization
is otherwise almost unchanged at this stage. Once this initial
settling has occurred—a condition that will be referred to as
the “settled state”—the free energy of the pattern, though not
necessarily yet in equilibrium, is calculated. Subsequently,
larger relaxation steps are used, allowing the simulation to
evolve towards equilibrium, with the possibility of changing
the polarization pattern in the process.
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III. RESULTS AND DISCUSSION

Before presenting the results of the simulations, several
normalizations are introduced. The Helmholtz free energy per
unit volume is normalized as ψ̃ = (ψ0 − ψ)/ψ0, where ψ0

corresponds to the energy per unit volume of a spontaneously
polarized monodomain. Here ψ0 < 0, while ψ = 0 corre-
sponds to the cubic state with Pi = 0. The polarization and
strains are normalized by P0 = 0.26 C/m2 and ε0 = 0.0082,
respectively, which arises from the spontaneous state of
barium titanate. Note that BaTiO3 has tetragonal symmetry
and possesses a transverse spontaneous strain εt

0 = −0.0027.
E0 = 21.82 MV/m is the normalization constant for electric
field and corresponds to the critical field required to cause
homogeneous 180◦ switching of a spontaneously polarized
monodomain. Equating mechanical and electrical energies,
the normalization for stress is derived as σ0 = E0P0/ε0 =
692 MPa. The characteristic length scale in this model is
l0 = √

a0P0/E0 = 1 nm, where a0 = 1 × 10−10 Vm3/C is a
coefficient used in specifying the gradient energy term in
Eq. (2) [67]. The electric potential normalization is derived
from the electric field and length scale normalizations as
φ0 = E0l0 = 0.022 V.

A. Rank-1 domain patterns

At first, we test the stability of the rank-1 domain patterns
under zero external load conditions as given by Eq. (3). The two
rank-1 domain patterns identified in tetragonal ferroelectrics
are the “12” laminate pattern with alternating 180◦ domain
bands and the “14” laminate pattern with alternating 90◦
domain stripes (see Fig. 3). The “12” domain pattern is
modeled with two different domain spacings s = 20 and 10 nm
defined along cross section AA [see Figs. 3(a) and 3(b)].
Similarly the “14” domain pattern is modeled at two spacings,
with s = 14.1 and 7.1 nm defined along cross section BB, as
shown in Figs. 3(c) and 3(d).
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FIG. 3. Testing the stability of rank-1 domain patterns under zero
external load conditions. P/P0 values in (a) laminate “12” with s =
20 nm, (b) laminate “12” with s = 10 nm, (c) laminate “14” with
s = 14.1 nm, and (d) laminate “14” with s = 7.1 nm. AA and BB
indicate cross sections perpendicular to the domain walls.
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FIG. 4. Nodal values of (a) polarization P||, parallel to the domain
wall, and (b) stress component σ||, parallel to the domain wall on cross
section AA in the 180◦ band domain pattern.

At equilibrium, the sharp domain walls in the initial states
become smooth, but the patterns are otherwise unchanged [see
Figs. 3(a)–3(d)]. Nanoscale periodic patterns with bundles of
stripelike or bandlike features have been observed to be stable
in experiments on BaTiO3 [27] for example by McGilly et al.
[15] and Schilling et al. [29,70]. This stability of nanoscale
patterns with 180 or 90◦ domains is in agreement with the
phase-field simulation results [see Figs. 3(a)–3(d)].

The variations in polarization and stress developed on
section AA in the 180◦ domain pattern “12” are shown in Figs.
4(a) and 4(b). From Fig. 4(a), the domain-wall width is close
to 2 nm, consistent with the value for an isolated domain wall
given by Su and Landis [67], and is unaffected by changing
the domain spacing from 10 to 20 nm. These values are also
consistent with the results from the quasi-one-dimensional
analysis of tetragonal twins by Cao and Cross [72] and match
separate calculations by Hlinka and Márton [73]. Away from
the domain walls, the polarization magnitude is close to the
spontaneous value (within 1%) and there is no polarization
perpendicular to the walls. The electric field is everywhere
negligible. The domain-wall width in ferroelectrics can also
be influenced by surface effects and elastic interaction between
nonferroelastic domain walls, which are discussed in previous
investigations [74,75].

At equilibrium, stresses develop parallel to the 180◦ walls
as shown in Fig. 4(b), while stresses perpendicular to the
walls are zero. Here, these stresses correspond to the values of
σ11 and σ22, respectively. With spacing s = 20 nm the tensile
stress peaks at about 0.85σ0 in the domain walls, balanced
by compressive stresses of about −0.1σ0 in the domains.
On decreasing the spacing to s = 10 nm, the peak stress
reduces to about 0.65σ0, while the compressive stresses in the
domains double in magnitude, becoming −0.2σ0. The energy
per unit area associated with the presence of domain walls was
calculated using

γw =
∫
V

(ψ − ψ0)dV

Aw
(4)

where Aw is the wall area within the periodic cell of volume
V . We found γw ∼ 13.1 mJ/m2 when s = 20 nm and γw ∼
12.6 mJ/m2 for s = 10 nm. This compares with the value of
14.8 mJ/m2 for the case of an isolated domain wall s → ∞
[67]. It is interesting to note that the domain-wall energy in the
periodic laminate is less than the energy of an isolated domain
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wall, and dependent upon the domain spacing. The decrease
in stresses at the domain walls accounts for the difference.
Similar magnitudes of domain-wall energy have been found
in previous investigations [76].

The polarization variation on section BB in the 90◦ stripe
domain pattern “14,” with spacing of 14.1 and 7.1 nm, is shown
in Fig. 5(a). Away from the domain walls, the polarization
magnitude approaches P0 with components of magnitude
P0/

√
2 parallel and perpendicular to the domain walls. From

Fig. 5(a) the 90◦ domain-wall width is ∼3 nm, in agreement
with Su and Landis [67].

At equilibrium, tensile stresses parallel to the 90◦ domain
walls develop, balanced by compressive stresses in the
domains [see Fig. 5(b)]. The stresses at the domain walls
peak at about 0.2σ0 for s = 14.1 nm and reduce to 0.17σ0

when s = 7.1 nm. This differs from the value of ∼0.33σ0

calculated for the case s → ∞ [67]; the difference can be
attributed to the fine spacing of the domains, which places
the domains into significant compression and hence affects
the stress distribution in the domain walls. The domain-wall
energies are calculated to be ∼ 6.0 mJ/m2 for s = 14.1 nm and
∼ 5.8 mJ/m2 for s = 7.1 nm. These values are consistent with
the energy calculations by Su and Landis [67]. The stresses
developed in the 90◦ stripe domain pattern are rather low in
comparison to the 180◦ band domain pattern, and this accounts
for the difference in the 90 and 180◦ domain-wall energies.

Nonzero local electric fields are developed at the 90◦
domain walls, as shown by the change in electric potential
values in Fig. 5(c). Note that the pattern has a nonzero
average polarization. The electric fields are in the direction
opposite to this net polarization and cause deviation from the
spontaneously polarized state at the walls. A consequence is
that there are electric fields in the domains that are aligned
with the average polarization. With s = 14.1 nm the change in
electric potential across a domain wall is about 
φ ∼ 0.6φ0,
corresponding to an electric field of magnitude ∼0.2E0. On
decreasing the spacing to s = 7.1 nm, 
φ drops to ∼0.5φ0

with the corresponding electric-field magnitude reduced to
∼0.17E0. However, the electric field in the polarized domains
increases with decrease in spacing.

We also tested whether keeping the cell size the same but
changing the relative position of the domain walls affects the
overall energy. If moving one domain wall within the cell
affects the energy then there could be a minimum-energy

arrangement—effectively a “preferred” separation distance
between domain walls. We found that this is not the case: the
domain walls in the cell were in neutral equilibrium over a wide
range of separation distances. Details of these simulations are
omitted for brevity. The finding is consistent with observations
that commonly show an approximately periodic pattern, but
with considerable variation in distances between domain walls
[14,34]. This is significant because it indicates that perfectly
engineered domain configurations with regular spacing are
unlikely to form naturally and will require special conditions
to enforce regularity. An example of such conditions is given
later in Sec. III C.

B. Rank-2 domain patterns

Next we test the stability of rank-2 periodic domain
patterns under the zero external load conditions. Among the
rank-2 laminates identified by Tsou et al. [18] four domain
patterns which contain polarization only in a single plane with
domain walls perpendicular to that plane are first tested [see
Figs. 6(a)–6(d)]. All of the rank-2 domain patterns shown
in Figs. 6(a)–6(d) are modeled with zero average stress and
electric-field conditions as described by Eq. (3). Here, note
that the strain fields εij adopted by the periodic cell vary based
on the type of domain pattern imposed in the initial state.
The volume average free energy ψ̃ , average axial components
of strain ε̃ij , and polarization P̃i , adopted by these domain
patterns in their settled states, are given in Table I. Each pattern
was simulated in a square region of side L = 40 nm using plane
strain and electric-field conditions.

The herringbone domain pattern “1234” shown in Fig. 6(a)
is found to be stable at this scale. This domain pattern contains
several domain walls in the periodic cell, which accounts for its
relatively high free energy in comparison to the rank-1 domain
patterns.

Stresses in the herringbone domain pattern are developed
at the 180◦ domain walls, while nonzero local electric fields
are observed at the 90◦ domain walls. During relaxation the
domain walls drifted slightly, resulting in a small magnitude
of net polarization (∼0.05P0) due to the slightly unequal sizes
of the ±P2 domains at equilibrium. Herringbone patterns are
observed to be stable in ferroelectrics [14,27,30,77], thereby
confirming the phase-field results in Fig. 6(a).

The periodic domain pattern in Fig. 6(b) shows laminate
“1323” which contains alternating bands of ±P1 180◦ domains
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interspersed with a zig-zag stripe which is a single +P2

domain. This domain pattern was identified as a minimum-
energy state in the linear constrained theory [18]; that is, all
domain walls satisfy compatibility conditions. However, when
“1323” is modeled with nanoscale domains, the pattern is
found to be unstable: during relaxation it dissolves to form
a uniformly polarized +P2 domain. At the settled state, i.e.,
where domain walls are resolved but the polarization pattern
is unchanged, the ±P1 domains experience a tensile stress σ22,
while the P2 domains experience compressive stress σ22. This
is to be expected because the spontaneous strains component
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FIG. 7. Stress distributions in the rank-2 periodic domain patterns
with in-plane polarizations: (a) σ11 and (b) σ22 at a cross section
x2 = L/2, at varying x1 positions.

ε22 differs between the ±P1 domains (where it is εt
0) and

the P2 domains (where it is ε0). Since these vertical zig-zag
stripes are assumed to be perfectly adhered to each other,
misfit stress arises from the difference in spontaneous strain.
Figure 7 shows the direct stresses σ11,σ22 evaluated at a cross
section of the model where x2 = L/2. It is clear that the
herringbone pattern (label “a”) has relatively low values of
stress throughout, while the tensile and compressive stresses
in the alternating bands of the “1323” domain pattern (label
“b”) are of order σ0. This contribution of elastic energy due to
misfit stress explains the lack of stability and accounts for the
net energy of the domain pattern (see Table I).

An additional factor contributing to the high energy of
the “1323” domain pattern is the presence of disclinations at
the junctions of domains. These arise because the unstressed
condition of a 90◦ domain wall produces a slight rotation of
the crystal lattice, dependent on the tetragonal c : a ratio. In
barium titanate this rotation is about 0.63◦. Upon circulating a
continuous junction of domains, no net rotation of the crystal
lattice is permissible. Consequently the domains are stressed if
the set of domain walls at a junction would otherwise produce
a net rotation. For example, the domains in the “1234” herring-
bone pattern are so arranged that there is no net lattice rotation
upon circulating any junction: opposite rotations on passing
90◦ domain walls cancel. However, in the “1323” pattern,
circulation of a domain junction implies two consecutive lattice
rotations of 0.63◦, resulting in a disclination.

The domain rearrangement process during relaxation in
Fig. 6(b) indicates the growth of domains with a larger
initial volume fraction, i.e., P2 domains, in comparison to
the ±P1 domains which reduce in size. The relaxation process
eventually eliminates the misfit stresses of the “1323” domain

TABLE I. The normalized volume average free energy ψ̃ , average axial strains ε̃ij , and polarization P̃i adopted by rank-2 periodic domain
patterns with in-plane polarization in their settled state.

Average Average strain Average polarization
Rank-2 periodic free energy components ε̃ij = 〈εij 〉/ε0 components P̃i = 〈Pi〉/P0

domain pattern ψ̃ ε̃11 ε̃22 P̃1 P̃2

(a) Laminate “1234” 0.49 0.29 0.29 −0.05 0.05
(b) Laminate “1323” 0.48 0.32 0.29 0.47 0.00
(c) Laminate “1434” 0.77 0.06 0.54 0.24 −0.24
(d) Laminate “1324” 0.75 0.28 0.28 0.00 0.00
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pattern, resulting in a uniformly polarized stress-free domain
at equilibrium.

The domain pattern “1434” shown in Fig. 6(c) contains
stripelike and herringbonelike domains. This domain pattern
is unstable at the scale simulated (L = 40 nm), dissolving into
a monodomain. During relaxation, the −P2 domains, which
have the largest volume fraction, grow relative to neighboring
domains. Referring to Fig. 7, the “1434” pattern has stressed
domains which contribute to an increased free energy.

The checkerboard domain pattern “1324” contains repeat-
ing groups of 90◦ domains forming closed polarization loops,
or vortices [see Fig. 6(d)]. This pattern too is unstable: it
dissolves into a rank-1 stripe domain pattern at equilibrium. As
noted by Tsou et al. [18] the checkerboard pattern contains the
strongest disclinations among the four in-plane rank-2 domain
patterns of Figs. 6(a)–6(d), leading to stresses of order 2σ0, and
hence high energy. This can clearly be observed in the stress
distributions of Fig. 7. During relaxation, the domain junctions
dissolve by formation of 180◦ domain walls. Symmetry
breaking occurs and the final state is a rank-1 domain pattern
with nonzero average polarization at equilibrium.

Although the herringbone pattern “1234” is well known
both at the nano- and microscales, the other patterns shown
in Figs. 6(b)–6(d) have relatively rarely been observed and
reported [27,18]. A recent work by Tang et al. [28] reports a
periodic array of flux-closure domains in PbTiO3. However,
this polarization pattern differs from the checkerboard pattern
in Fig. 6(d), in that the observed pattern possesses a 180◦
domain wall at the vortex core. This domain pattern observed
by Tang et al. is referred to in Sec. III C of this paper, where
the phase-field simulations indicate its stability in the presence
of external loads.

So far, the experimental observations on nanoscale periodic
polarization patterns available in literature are in agreement
with our phase-field simulations. However, it is of interest
to consider how scaling of the periodic cell size affects the
energy density of these patterns. Crudely, we can think of
the free energy

∫
ψdV as including a contribution due to

gradient energy
∫

ψwdV and an elastic or dielectric energy part∫
ψedV . The gradient energy is mainly due to domain walls

and scales with domain-wall area. Meanwhile the contributions
to the elastic or dielectric energy arise from misfit stress and
disclinations, with disclinations being the main factor. For the
i th disclination in a given pattern, the energy contribution
scales with the square of its disclination angle, θi , the elastic
modulus, c ∼ 67 GPa [78], and the volume Vi of material
in proximity to the disclination (taken here to be the set
of material points closest to the i th disclination). Note
the laminates in Figs. 6(b)–6(d) contain disclination dipoles.
For example, consider laminate “1324” in Fig. 6(d)—in this
pattern, alternating positive and negative disclinations are
observed upon circulating domain junctions. The long-range
elastic field induced by these disclination dipoles cancel each
other and are neglected in the present approximation. A rough
estimate of the free energy can then be calculated using

∫
ψ(x)dV ∼

∫
A90

γ90dA90 +
∫

A180

γ180dA180 +
∑

i

cθ2
i Vi .

(5)
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FIG. 8. Estimates of the variation of free energy for rank-1 and
rank-2 domain patterns as a function of periodic cell size, L. Markers
indicate the energy calculated for domain patterns in Figs. 3(a)–3(d)
and 6(a)–6(d) using phase-field simulations.

Here γ90 ∼ 6 mJ/m2 and γ180 ∼ 13 mJ/m2 are the 90 and
180◦ domain-wall energies, respectively. A90 and A180 are
the corresponding domain-wall areas within the periodic cell.
Dividing through by the periodic cell volume and using
the normalization ψ̃ = (ψ0 − ψ)/ψ0, the variation of the
normalized free energy with scale can be compared for the
different patterns (see Fig. 8).

When the periodic cell size is L < 100 nm, the contri-
butions from gradient energy become significant, increasing
the energy of each of the rank-1 and rank-2 domain patterns.
Conversely, for periodic cells a few micrometers in size, the
elastic energy contribution is dominant, and the energy density
approaches a constant for the rank-2 domain patterns with
nonzero elastic energy. For the herringbone pattern, “1234”
and the rank-1 laminates, the domains are almost stress-free
and so the gradient energy is the dominant contribution over a
wide range of scale: then ψ̃ ∝ L−1. The percentage of gradient
energy contribution for complex domain patterns such as the
checkerboard pattern “1324” is low at the microscale, but they
have high overall energy because of residual stresses.

The phase-field calculations of free energy, carried out
at L = 40 and 20 nm for various laminates, are marked in
Fig. 8. It was not practically feasible to carry out phase-field
simulations over a wide range of scales because of the
computational cost, which increases approximately as L4.
Reducing the periodic cell size much below L = 20 nm is
also problematic because the spacing between domain walls
becomes comparable to the domain-wall width—then the
domains become unstable. This lower limit of stability is
indicated by a transition to dashed lines in Fig. 8.

Since the area and volume contributions differ from pattern
to pattern, some scale dependent cross-over in energies is
expected, as seen in Fig. 8. However, the energy estimates
are not sufficiently precise to quantify the length scales at
which cross-over occurs. In any case, we can see that the
simpler, stress-free rank-1 laminates have lower energy than
the rank-2 patterns for all sizes of the periodic cell. Stability
of the laminates under zero external load conditions does not
correspond to a global energy minimum, but rather a local
minimum or neutral equilibrium state.

Figure 8 provides a qualitative insight into the domain
pattern energies. Rank-2 domain patterns which were unstable
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FIG. 9. Testing the stability of rank-2 domain patterns with out-of-plane polarizations ±P3 under zero external load conditions: (a) laminate
“5556” and (b) laminate “5656.”

at the 40-nm scale under zero external load conditions reduced
their gradient energy and elastic energy contributions by
evolving into simpler patterns such as rank-1 stripes, or
forming a monodomain. By contrast, the herringbone domain
pattern “1234” reached equilibrium although having substan-
tial domain-wall energy. Closer examination reveals that this
domain pattern is easily dissolved: for example, application
of external electric field E2 = −0.05E0 ∼ 1 MV/m dissolves
this domain pattern into a monodomain. These findings are
important because they suggest that the rank-2 patterns other
than the well-known herringbone pattern are relatively unlikely
to form at microscale, though they are occasionally seen
[18]. This is due to their having high energy from residual
stress. However, at the nanoscale the energies of rank-2 and
rank-1 laminates become rather similar. At this scale, the
more complex patterns are still energetically unfavorable, but
there may be a possibility to stabilize them with stress/strain
conditions, or electrical conditions. This opens an exciting
possibility of domain engineering at the nanoscale that will be
explored further in Sec. III C below.

Next, we test the stability of three rank-2 domain patterns
with out-of-plane polarizations under zero external load
conditions as described for a 3D model by Eq. (3). In each
case we use the minimum periodic cell size that allows the
pattern to be represented with sufficient elements to resolve the

domain walls. Two of these domain patterns, namely, “5556”
and “5656” [see Figs. 9(a) and 9(b)], have a 2D arrangement of
domain walls, but out-of-plane polarizations, parallel to x3. For
these patterns a prismatic platelike periodic cell is used. The
third pattern, “1423” (see Fig. 10), has a fully 3D domain-wall
arrangement, requiring a thicker periodic cell.

The laminate “5556” is initialized with its polarization
values on a periodic cell of dimension 16 × 16 × 2 nm [see
Fig. 9(a)]. During relaxation, the 180◦ domain walls curve to
enclose a cylindrical P3 domain. The radius of this cylindrical
domain reduces to zero, leaving a monodomain at equilibrium.
The volume average free energy and average axial components
of strain and polarization adopted by this domain pattern in
the settled state are given in Table II. It is interesting to note
that domain patterns similar to the “5556” laminate, though
less regular, are observed experimentally [30,71]. The current
phase-field model lacks lattice friction, which is likely to be a
factor in stabilizing this domain pattern.

For interest, we test the ability of an external electric field
E3 to hold a nanoscale cylindrical domain, such as that formed
during the relaxation of pattern “5556,” in equilibrium. The
simulation is initialized with the “5556” pattern but subject to
the condition

φ(x1,x2,D) = φ(x1,x2,0) − E3D. (6)

-1         -0.5         0          0.5          1   

muirbiliuqEnoitaxalergniruDlaitinI

0/ PP
( )×

θ1x
2x3x

FIG. 10. Testing the stability of rank-2 domain pattern “1423” with 3D domain-wall arrangement under zero external load conditions.
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TABLE II. The normalized volume average free energy ψ̃ , average axial strains ε̃ij , and polarization P̃i adopted by rank-2 periodic domain
patterns with out-of-plane polarization in their settled states.

Average Average strain Average polarization
Rank-2 periodic free energy components ε̃ij = 〈εij 〉/ε0 components P̃i = 〈Pi〉/P0

domain pattern ψ̃ ε̃11 = ε̃22 ε̃33 P̃1 = P̃2 P̃3

(a) Laminate “5556” 0.39 − 0.26 0.82 0.00 − 0.50
(b) Laminate “5656” 0.70 − 0.27 0.86 0.00 0.00
(c) Laminate “1423” 0.74 0.24 − 0.19 0.00 0.00

Other boundary conditions are as in Eq. (3), giving zero
average stress. While it was possible to hold cylindrical
domains in equilibrium with electric field, the pattern was
unstable to small perturbations in applied field strength,
dissolving to a monodomain.

The periodic domain pattern “5656” shown in Fig. 9(b)
is imposed on a periodic cell of size 24 × 24 × 2 nm, with
corresponding polarization values in the initial state. This
domain pattern also dissolves into a monodomain. During
relaxation, symmetry is broken and the 180◦ domain walls
curve to form loops, each enclosing a P3 domain. This reduces
the domain-wall area as discussed by Tagantsev et al. [27].
The eventual collapse to a monodomain is similar to that of
the “5556” pattern. Patterns with intersecting 180◦ domain
walls, like “5656,” are rarely observed.

The “1423” domain pattern comprises layers of rank-
1 stripe domain pattern arranged in a three-dimensional
configuration as shown in Fig. 10. This domain pattern is
initialized on a periodic cell of size 20 × 20 × 13 nm. At
this periodic cell size, the gradient energy contribution is
substantial (see Table II); this destabilizes the domain pattern.
However, the layered stripe domain pattern is disclination free.
It has been observed in experiments [18,27], and we expect
that this domain pattern could reach equilibrium at a larger
size of the periodic cell, or with suitable boundary constraints.
In other work, the pattern was found stable with a 33-nm cell
size, the boundaries of which were constrained to match a fixed
strain field [79].

A fourth rank-2 laminate with out-of-plane polarization,
“1325,” contains domains polarized along all three coordinate
axes [18] and requires a minimum periodic cell size of about
60 nm. This pattern is not tested here, due to computational
limitations, but is the subject of ongoing work.

To conclude the discussion of rank-2 laminates with zero
external load conditions, our key finding is that the majority
of these complex laminates are not stable at the nanoscale.
The exception is the well-known herringbone domain pattern.
The main reasons for the instability of most of the patterns
appear to be the high contribution to the overall energy
from either disclinations or domain walls. Nevertheless, these
structures, if they could be stabilized, offer the possibility of
nanoengineering of domain configurations. We thus explore
next the possibility of stabilizing these patterns using external
loading.

C. Stabilization by external loading

Are there loading conditions that can stabilize the rank-2
patterns? To explore this question, we start by considering the

average of the spontaneous strain in each of the three laminates
“1323,” “1434,” and “1324,” found unstable under zero
external load conditions. Suppose a given pattern contains n

domains, numbered k = 1 . . . n, each having a volume fraction
fk and normalized spontaneous strain tensor εk

ij . Neglecting
domain-wall volume, the volume average of spontaneous
strain in the periodic cell is

ε̄ij =
n∑

k=1

fkε
k
ij

(
0 � fk � 1,

∑
fk = 1

)
. (7)

In the simulations of Sec. III B, the periodic cell under zero
load conditions given by Eq. (3) was allowed to adopt any value
of average strain in order to minimize energy. The resulting
equilibrium states have different domain volume fractions
from the initial states and hence the average spontaneous strain
changes during relaxation. We next conduct simulations in
which the average strain is fixed at the ε̄ij value of the initial
state, using the boundary conditions

u1(L,x2)|R = u1(0,x2)|Rm
+ ε̄11L,

(8)
u2(x1,L)|S = u2(x1,0)|Sm

+ ε̄22L

in place of the corresponding displacement boundary con-
ditions in Eq. (3). All other boundary conditions remain
unchanged. As before, plane simulations were conducted,
enforcing P3 = 0 and fixing ε33 = εt

0. The resulting pattern
evolution is shown in Fig. 11: fixing the average strain
stabilizes the “1323” laminate, while “1434” and “1324” still
collapse into lower-energy patterns. In the case of the “1324”
pattern, the 90◦ stripe pattern that forms matches the imposed
ε̄ij without stress, while the “1434” collapses to a stressed
monodomain.

A further attempt to stabilize the “1434” and “1324”
patterns can be made by imposing a fixed average polarization
state to match the average spontaneous polarization of the
initial state. This discourages the formation of monodomain
or simple stripe patterns because they do not match the
initial average polarization. Defining P k

i as the normalized
spontaneous polarization of the k th domain and neglecting
domain-wall volume, the volume average polarization in the
periodic cell is

P̄i =
n∑

k=1

fkP
k
i

(
0 � fk � 1,

∑
fk = 1

)
. (9)

This is applied to the periodic cell by replacing the zero
electric-field condition in Eq. (3) with

φ(L,x2)|R − φ(L,0)|B = φ(0,x2)|Rm
− φ(0,0)|A (10)
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(a)  “1323”

(b)  “1434”

(c)  “1324”

Initial    During relaxation                     Equilibrium

-1         -0.5         0          0.5          1   
0/ PP

θ
( )×

1x

2x

FIG. 11. Evolution of rank-2 laminates (a) “1323,” (b) “1434,”
and (c) “1324,” under fixed average strain boundary conditions.

and similar conditions for typical node S. These boundary
conditions allow an arbitrary, but periodic, electric field. A
uniform charge density q = −P̄ini (where ni is the outward
surface normal) can then be added on all boundary nodes
to enforce the average polarization. The other boundary
conditions are as given in Eq. (3). Note that in the checkerboard
pattern “1324” P̄i = 0. The resulting simulations are shown
in Figs. 12(a) and 12(b), where it can be seen that the
imposition of an average polarization does stabilize pattern
“1434.” However, the checkerboard pattern “1324” undergoes
some pattern change before stabilizing. During relaxation,
180◦ domain walls appear at the 90◦ domain junctions, forming

Initial    During relaxation                       Equilibrium
(a)  “1434”

(b)  “1324”

-1         -0.5         0          0.5          1   
0/ PP

θ
( )×
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2x

FIG. 12. Evolution of the rank-2 domain patterns (a) “1434” and
(b) “1324,” under fixed average polarization condition.

a “displaced” checkerboard pattern. Similar features at domain
junctions have been imaged in BaTiO3 lamellae by McGilly
et al. [15]. The simulations with imposed average strain or
polarization demonstrate that periodic laminations of domains
can be stabilized by external loading: if domains form in
a region of crystal that is mechanically constrained, or has
charged surfaces, nanoscale patterns such as these could form.
Thus in a prestressed thin film or particle it may be possible
to engineer specific nanoscale patterns through the control
of the stress/strain and external charge state. This suggests
an exciting route towards generating specific arrangements of
domains with useful functional properties. However it should
be noted that the existence of a stable pattern does not imply
that the material will adopt that pattern from arbitrary starting
conditions. In the simulations so far, an idealized pattern was
imposed as a starting state: this would not normally be possible
in a practical device. This leads us to explore whether complex
patterns can be generated starting from known simple patterns,
and whether they can be transformed or switched by applied
fields.

D. Switching and transformation of patterns

Can complicated patterns, such as the rank-2 laminates,
develop under some conditions, from simpler patterns, such
as the rank-1 stripes? To explore this, we study the effect
of imposing zero average polarization on rank-1 laminates
“14” with s = 14.1 and 7.1 nm, as shown in Fig. 13. The
simulations are initialized with the 90◦ stripe domain patterns
at equilibrium from Figs. 3(c) and 3(d). Note that these stripe
patterns possess a net polarization field and only 90◦ domain
walls. If we now impose P̄i = 0, some 180◦ domains are
expected to form to accommodate the average polarization.
In the simulations, during relaxation, the polarization in the
domains reduces to near zero magnitude and new domains
nucleate such that rank-2 laminate patterns begin to evolve.
At first, the strong electric fields generated by imposing a
zero average polarization state cause the local polarization
vectors to bend far away from the crystallographic axes—a

Initial    During relaxation                       Equilibrium

-1         -0.5         0          0.5          1   
0/ PP

θ
( )×

1x

2x

(a)

(b)

FIG. 13. Evolution of the rank-1 90◦ stripe domain pattern under
zero average polarization (a) s = 14.1 nm and (b) s = 7.1 nm.
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high-energy vortexlike state that must relax further. But as
the system approaches equilibrium the polarization in each
new domain returns close to the spontaneous value and aligns
with the crystal axes. For s = 14.1 nm [see Fig. 13(a)], a
“displaced” checkerboard pattern as seen in Fig. 12(b) is found
at equilibrium.

The periodic pattern in Fig. 13(a) is similar to the experi-
mental observation of a periodic array of flux-closure domains
in PbTiO3 reported by Tang et al. [28], while with s = 7.1 nm
[see Fig. 13(b)] a herringbone domain pattern is stabilized.
Care is needed in interpreting these results: observe that scaling
of the cell size in these simulations (or equivalently, changing
the domain spacing) leads to different equilibrium states.
This happens because the imposed conditions have forced the
polarization, at first, far from the spontaneous states, making
the subsequent evolution of domains highly sensitive to the
kinetics, here represented crudely through the polarization
viscosity. Thus the path of domain evolution during switching
is to some extent an artifact of the model. Also, from an
energetic point of view, the nucleation of the new domains is
less costly in the simulation if the pattern adopts the minimum
number of periods that will fit into the simulation cell. This
explains the way the individual domains form new layers with
the minimum possible spatial frequency. This is an artifact of
the cell size: in nature there is no imposed cell and the new
spacing must arise purely from a balance between the gradient
and bulk energies. Nevertheless, the simulations in Fig. 13
indicate the opportunity to engineer complex patterns such as
the rank-2 laminates by starting with a simple rank-1 pattern
and applying suitable external conditions that force the pattern
to nucleate new domains. The length scale of the initial pattern
then controls or guides the generation of the new pattern. We
have given only a few examples to illustrate the process, but
expect that similar methods could enable the generation of a
range of patterns.

Finally, we give an example of the effect of electric field on
a strain stabilized laminate. Once again, switching is involved,
so the cell size and kinetics could affect the simulations.
Taking as initial state the stabilized “1323” laminate from
Fig. 11(a), additional loading in the form of an electric field
of magnitude 0.9E0 = 20MV/m is applied, and the pattern
is relaxed towards a new equilibrium state. If the field is
applied along the ±x1 direction the pattern collapses into
90◦ stripe domains, by growing whichever domain is aligned
to the applied electric field. The electric field in the +x2

direction expands the domain polarized in this direction, but
the pattern is otherwise unchanged. However, Fig. 14 shows
the interesting case where electric field is applied along the
−x2 direction and there is no domain in the initial state that is
aligned with the applied electric field. The pattern undergoes a
transition which produces laminate “1424,” a symmetry related

Initial    During relaxation                       Equilibrium
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FIG. 14. Evolution of rank-2 domain pattern “1323” stabilized
by average strain and under electric field, E2 = −20 MV/m.

pattern in the same family. From symmetry, the process can
be reversed by subsequent application of electric field in the
+x2 direction, suggesting a mechanism for cyclic polarization
switching of the nanoscale periodic patterns. Such switchable
nanoscale patterns could have great potential for memory
elements, or tunable devices.

IV. CONCLUSION

The stability of rank-1 and rank-2 laminates comprising
nanoscale domains formed in tetragonal ferroelectrics was
explored using a phase-field model, taking account of energy
contributions from gradient energy and elastic strain energy.
With zero external load conditions, the rank-1 laminates
(simple stripe patterns) were found to be in neutral equilibrium,
while the more complex rank-2 laminates were on the whole
unstable, with the exception of the herringbone domain pattern.
Rank-2 nanoscale domain patterns with multiple domain walls
and disclinations were found to possess high-energy density,
which destabilized them. The effect of scaling the rank-1 and
rank-2 laminates was qualitatively discussed. It was found
that the unstable rank-2 domain patterns could be equilibrated
under external loads such as electric field, average strain,
or polarization, representative residual states of stresses and
electric fields that are commonly present or can be imposed
on ferroelectric crystals. Finally, the simulations indicated
possible routes to generate rank-2 laminated domain patterns
from simpler rank-1 domain patterns, and how polarization
reversal could occur in nanoscale periodic patterns.
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[6] J. Rödel, Mech. Mater. 39, 302 (2007).

174120-11

http://dx.doi.org/10.1063/1.4807315
http://dx.doi.org/10.1063/1.4807315
http://dx.doi.org/10.1063/1.4807315
http://dx.doi.org/10.1063/1.4807315
http://dx.doi.org/10.1016/j.actamat.2014.12.056
http://dx.doi.org/10.1016/j.actamat.2014.12.056
http://dx.doi.org/10.1016/j.actamat.2014.12.056
http://dx.doi.org/10.1016/j.actamat.2014.12.056
http://dx.doi.org/10.1063/1.4922970
http://dx.doi.org/10.1063/1.4922970
http://dx.doi.org/10.1063/1.4922970
http://dx.doi.org/10.1063/1.4922970
http://dx.doi.org/10.1016/j.actamat.2013.06.044
http://dx.doi.org/10.1016/j.actamat.2013.06.044
http://dx.doi.org/10.1016/j.actamat.2013.06.044
http://dx.doi.org/10.1016/j.actamat.2013.06.044
http://dx.doi.org/10.1080/00150199008223825
http://dx.doi.org/10.1080/00150199008223825
http://dx.doi.org/10.1080/00150199008223825
http://dx.doi.org/10.1080/00150199008223825
http://dx.doi.org/10.1016/j.mechmat.2006.06.002
http://dx.doi.org/10.1016/j.mechmat.2006.06.002
http://dx.doi.org/10.1016/j.mechmat.2006.06.002
http://dx.doi.org/10.1016/j.mechmat.2006.06.002


A. RENUKA BALAKRISHNA, J. E. HUBER, AND I. MÜNCH PHYSICAL REVIEW B 93, 174120 (2016)
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