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Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a
fundamental and important scientific need for understanding the response of such materials and for exploring the
potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult
to select between predictions from different theoretical methods. Recently the complete set of third-order elastic
constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches
to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods
to calculate the six third-order elastic constants of diamond. Two different approaches based on homogeneous
deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a
longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111]
directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach
provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach
differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial
strain approach show good agreement with the measured TOECs and match the experimental values significantly
better than the TOECs reported in previous theoretical studies. Our results on diamond have demonstrated that,
with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the

TOEC: of strong solids.
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I. INTRODUCTION

The synthesis, investigation, and computational design
of strong solids (also known as ultrahard materials) are
of significant ongoing scientific interest to fields like solid
state physics, geophysics, nanoscience, and high-pressure
physics [1-6] and have applications in wide-ranging areas like
abrasives, biomedical sciences, superconductive materials,
and defense technologies [7-9]. A detailed understanding
of the mechanical response of these materials is important
because many potential applications involve large and/or
highly nonuniform applied stresses. The elastic constants are
fundamental to understanding the mechanical response: the
second-order elastic constants (SOECs) characterize the linear
elastic response, and the third-order elastic constants (TOECs)
characterize the lowest-order nonlinear elastic response.

Determination of the TOECsS of crystals has a long history
in solid state physics because they reflect the lowest-order
nonlinear (anharmonic) contributions to the lattice poten-
tial [10]. Therefore, the TOECs are important for understand-
ing physical phenomena related to lattice anharmonicity such
as phonon-phonon interactions, thermal expansion, and stress-
and temperature-dependent elastic response [11,12]. For ul-
trahard materials, such as diamond, experiments to investigate
their nonlinear elastic properties are particularly challenging.
Therefore, theoretical determination of the TOECs for such
materials is of significant importance.

Although theoretical calculations of the diamond TOECs
have been reported previously [13—17], two shortcomings in
these studies are noteworthy: significant differences existed
between the reported values, and experimentally determined
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values of the full set of diamond TOECs were not available.
Hence, it was difficult to evaluate the validity of the various
theoretical approaches. In 2011, Lang and Gupta [ 18] reported
an experimental determination of the full set of TOECs for
diamond by combining their shock compression data [18,19]
along three different crystal orientations with previously
reported pressure derivatives of the SOECs [20]. Subsequently,
Modak et al. [21] reported theoretical TOECs for diamond
determined by combining SOEC pressure derivatives, cal-
culated using density functional theory, with results from
shock wave propagation simulations using classical molecular
dynamics employing an empirical interatomic potential. More
recently, revised values [22] for the experimental TOECs,
which corrected the errors in the previously reported SOEC
pressure derivatives [20], were reported. With the availability
of the revised experimental TOEC values, an assessment of
the different theoretical approaches to accurately calculate the
TOECsS of diamond is in order.

Here we present a theoretical determination of the TOECs
of diamond from density functional theory (DFT) calculations
using the method of homogeneous deformations. Two different
approaches were used to obtain the TOECS: (1) fitting TOECs
to calculated energy-strain states, similar to Ref. [23], and (2)
fitting TOECs to the calculated longitudinal stress-uniaxial
strain states and to the calculated pressure derivatives of
the SOECs. The second approach provides a more direct
comparison with the experimental measurements [18-20,22].
The results of these calculations are compared with the exper-
imental results and with previous theoretical determinations
of the TOECs, providing a robust theoretical approach to the
calculation of the nonlinear elastic response of strong solids.
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II. THEORETICAL METHODS

The diamond elastic constants were calculated by using
the method of homogeneous deformations [11,24] to combine
continuum elasticity theory with total energy and stress
calculations determined from first-principles methods. The
continuum elasticity theory and first-principles computational
methods used in this work are briefly summarized here,
together with the energy-strain and longitudinal stress-uniaxial
strain fitting approaches used to determine the TOECs.

A. Continuum elasticity theory

Let a; be the initial coordinates of a material element in a
body and let x{ = x;(a;) be the coordinates after application
of ahomogeneous elastic deformation. The deformation of the
material system is described by the deformation gradient

8x,~

Fj = ey

3611'.

The symmetric finite Lagrangian strain tensor (negative in
compression) is then defined by

1
nij =5 Z(Fki Frj — 68ij). )
X

Elastic constants are defined by expanding the internal
energy per unit mass U as a Taylor series in strain at constant
entropy [11,24,25]

1
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ikl
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where pg is the mass density of the material in the stress-free
initial state. The expansion coefficients of the Taylor series in
Eq. (3) are the isentropic elastic constants [11,24,25]
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It is convenient to introduce stress-strain coefficients,
defined as [11]
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where the o;; are applied Cauchy stresses in the current
(strained) configuration. In the case of hydrostatic stress
(0ij = —Pé;;) applied to a cubic crystal, Eq. (6) reduces to

B =Cy — P, 7
Bpo=Cp+ P, (8)
By = Cy4 — P. )
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Here and in the remainder of this paper we use the contracted
(Voigt) notation [11,24,25] (11 — 1,22 —2,33 —3, 23 —4,
13 —5, 12 —6) for tensor indices to express Cjx and Cjximn
as Cop and Cyp,, respectively.

To calculate TOECs using the method of homogeneous
deformations, the total energy of the strained diamond crystals
was calculated using first-principles methods, and the TOECs
were determined by fitting the calculated energy-strain results
to Eq. (3) [23]. Alternatively, the stress state of the strained
crystals was calculated and the results were fit to the derivative
of Eq. (3) [17].

B. First-principles methods

In this work we used the Vienna ab initio simulation
package (VASP) [26] density functional theory (DFT) code
to carry out first-principles total energy and stress calculations
using a plane-wave basis set at 0 K. Electron-ion interactions
were described using projector-augmented wave pseudopo-
tentials [27] within both the local density approximation
(LDA) [28] and the PBE formulation of the generalized gra-
dient approximation (GGA) [29]. High accuracy in evaluating
the total energy is necessary to compute the TOECs, and
convergence tests showed that a large energy cutoff (Ecywoft =
1500 eV) was necessary to achieve convergence of the TOECs.
A T-centered Monkhorst-Pack k-point grid of 13 x 13 x 13
was used. Energies were calculated using the tetrahedron
method with Blochl corrections. The simulation cells used for
cubic diamond in this work were composed of eight atoms,
whose internal coordinates were relaxed for each applied
deformation. The tolerances for the energy convergence of
the self-consistent field loop and the maximum forces on the
atoms in the ionic relaxation procedure were 10~% eV and
104 eV/A, respectively.

Homogeneous deformations were applied using the defor-
mation gradient F;;, obtained by inverting Eq. (2) to determine
the crystal lattice vectors r; of the deformed unit cell from the
unstrained lattice vectors rj:

I'; = F,'jl'j. (10)

For each applied deformation, a conjugate-gradient relaxation
of the crystal internal coordinates was performed for the
deformed cell, minimizing the total energy of the strained
crystal.

C. Energy-strain approach

In this approach the calculation of TOECs is based on
Eq. (3), as described previously by Zhao et al. [23]. For a cubic
crystal, calculations incorporating six different strain tensors
are required to determine the six TOECs. The strain tensors
n;; used in this work are listed in the Appendix as (A1)—(A6).
The nonzero components of each strain tensor were written in
terms of a single parameter &, conveniently reducing Eq. (3)
to an expansion in terms of a single variable:

polUE) —UO)] = 3Ko6° + £ K38 + 0EY,  (11)

where U(0) is the energy of the unstrained state. Using
Eq. (11), the calculated total energies were fit to a fourth-order
polynomial to determine K, and K3 for each strain. K, and K3,
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for strains (A1)-(A6), provide a system of equations (Table IV
in the Appendix) that were solved for the SOECs and TOECs.

As shown in previous calculations for silicon [23], the fitted
values of K, and K3 in Eq. (11) are insensitive to the choice of
maximum strains used in the fit over a certain range. Here we
use —0.08 < & < 0.06 with a strain step size of A& = 0.004.
Changing A§ to a smaller value had a negligible effect on the
elastic constants.

D. Longitudinal stress-uniaxial strain approach

To facilitate a more direct comparison to what is measured
in the shock wave experiments [18,19], longitudinal stresses
were calculated for three uniaxial strain tensors, corresponding
to the different shock wave compression directions examined
in the experiments: [100], [110], and [111]. The longitudinal
elastic constants C{, and C1;, are defined here by an expansion
of the longitudinal stress to second order in uniaxial strain 1:

1
o = 22l + 5Ch?). (12)
where the primed tensor variables are expressed in a coordinate
system that is aligned with the direction of shock compression.
Equation (12) is identical to the equation used previously [18]
to analyze the experimental shock wave compression results.
The strain step size for the longitudinal stress calculations
was A& = 0.004 and the maximum strain was & = —0.08.
The uniaxial Lagrangian strains were determined in terms
of the density compression ratio for the compressed (p) and
uncompressed (pg) crystal:

,_1(pg
=—|—-1). 13
771 Z(pz > ( )

The calculated longitudinal stress-uniaxial strain results
were fit using Eq. (12) to provide three equations containing
linear combinations of the TOECs [see (A7)-(A9) in the
Appendix]. To determine the complete set of six TOECs, the
pressure derivatives of the SOECs were calculated to provide
three additional equations [see (A10)—(A12) in the Appendix].
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These six equations were solved to determine the six TOECs
for diamond.

The SOEC pressure derivatives were calculated by relaxing
the diamond unit cell to —10, 0, and 10 GPa external
hydrostatic stress and then applying small secondary defor-
mations. For each hydrostatic stress state, the stress-strain
coefficients B,g, defined in Eq. (6), were determined using
a linear fit to the calculated stresses for the deformed diamond
lattice. The pressure derivatives of the Cyg were calculated by
differentiating Eqgs. (7)—(9).

III. DETERMINATION OF THIRD-ORDER
ELASTIC CONSTANTS

A. Energy-strain approach

We present our results for the unstrained lattice constants,
ambient densities, and elastic constants up to third order
calculated using the energy-strain approach [23] for both
LDA and PBE in Table I alongside previous theoretical and
experimental determinations of the same [14—17,20-22]. The
lattice constants and densities for LDA and PBE in this
work match the experimental values well. The error between
calculated and experimental values for LDA (PBE) in the
lattice constant is 1% (0.1%) and in density is 3% (0.3%).
As shown in Table I, the LDA lattice constant is somewhat
smaller than that obtained using PBE. Consistent with the
smaller lattice constants, the LDA SOECs are larger than
the PBE SOECs, reflecting a larger stiffness, and the LDA
TOECs are either larger or of a similar magnitude compared
to the PBE TOECs. Differences between the LDA and PBE
results are relatively small for the TOECs (2%—-5%) and larger
for the SOECs (5%—-20%). In calculating the TOEC Cjysg,
compressive strains larger than & = —0.048 for the (A6) strain
yielded a different relaxed structure than the lower magnitude
strains, which caused the energy-strain relationship to diverge.
Therefore, the fitted value of Cy4s¢ reported in Table I was
evaluated using —0.048 < & < 0.06.

TABLE 1. Lattice constant (A), density (g/cm?), and the second- and third-order elastic constants of diamond (GPa). The elastic constants
presented here were calculated using the energy-strain approach. Previous theoretical results [14-17,21] and experimental results [20,22] are

also shown for comparison.

Previous theory

Present theory

Ref. [14] Ref. [15] Ref. [16] Ref. [17] Ref. [21] Experiment LDA PBE
a - - - 3.55 - 3.567 3.533 3.570
00 - - - 3.567 - 3.517 3.619 3.508
Ciy - - - 1050 + 10 1065 1079 + 5 1104 1054
Ci - - - 127 + 4 122 124 + 5° 148 124
Cus - - - 550 £ 5 568 578 £ 20 593 559
Cin —6260 ~7367 —6475 —6300 £ 300 —7290 —7600 £ 600° —6303 —6026
Cin —2260 —2136 —1947 —800 & 100 —1398 —1270 & 570° —~1739 —1643
Cin 112 1040 982 0 + 400 —247 —330 =+ 920 589 606
Cras —674 186 115 0 + 300 —-592 2390 + 850° —~196 —200
Ciss —2860 —3292 —2998 —2600 £ 100 —2863 —4100 & 380° 2911 —2817
Cuss —823 76 ~135 —1300 £ 100 —2991 —2890 + 750° —1074 1168

4Reference [20].
bReference [22].
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TABLE II. Experimental and calculated longitudinal second-
order elastic constants (C}, ), longitudinal third-order elastic constants
(C1,)), and pressure derivatives of the second-order elastic constants.

Present theory

Experiment® LDA PBE
/o) 1079 £ 5 1083 £ 4 1033 £ 5
ci 1180 £+ 7 1163 + 13 1094 + 12
cit 1213 £8 1214 £ 10 1139 £ 9
ch ~7603 + 600 —7828 + 154  —7515 + 143
e —15146 £ 1067 —15741 £400 —15183 + 383
citt —14631 £ 1183 —14949 £ 314  —14385 + 289
dC;/dP 6.98 + 0.7 6.09 6.26
dCyy/dP 2.06 + 0.7 1.94 1.94
dCy/dP 3.98 £03 3.83 3.99

4References [18,22].

Comparing the TOECs calculated here with the measured
TOECs [22], we find that Ci11, Cia4, Cigs, and Cyse show
significant differences (as large as 110%) with experimentally
determined values. Only C;j; and Cip3 lie within the error
bounds of the experimental results. The TOECs calculated
previously using a first-principles approach in Ref. [17]
are consistent with the present results and show similar
disagreement with the experimental results. Although the
TOECs calculated previously [14-16] differ significantly
among themselves, our calculated TOECs lie within the scatter
of the previous theoretical results.

With the exception of Cj44 and C¢6, the TOECs calculated
by Modak et al. [21] provide a somewhat better overall match
to the measured TOECs, compared to the other calculated
results. However, their approach relies upon a combination of
ab initio calculations and classical molecular dynamics simu-
lations using empirical potentials. Hence the TOECs reported
in [21] were not all calculated at the same level of theory.

To gain insight into the differences between the theo-
retically calculated TOECs (obtained with the energy-strain
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method) and the experimental results, we now turn to a more
direct comparison between theory and experiment, using the
methods of Sec. IID.

B. Longitudinal stress-uniaxial strain approach

The second- and third-order longitudinal elastic constants
(C4, and C},,, respectively) for uniaxial compressions along
[100], [110], and [111] were determined by fitting the calcu-
lated longitudinal stress to Eq. (12). Table II shows that the
C|, calculated using PBE are smaller than the LDA results by
4%-9% but differences in the C},, are smaller between the two
functionals (less than 4%). C{, and C{,, calculated using LDA
agree well with experiment for all orientations, as do the PBE
values for C/,,. The error bars for the DFT results are statistical
uncertainties from the covariance matrix of the fit to Eq. (12).

Calculated longitudinal stress-uniaxial strain results are
shown in Fig. 1 for compressions along (a) [100], (b) [110], and
(c) [111] directions. The calculated longitudinal stress-strain
curves (red and blue for LDA and PBE, respectively) show
good agreement with the experimental results (black squares
and black curves), especially for LDA, where the theoretical
and experimental curves nearly overlap each other.

To determine the TOECsS, the calculated longitudinal stress-
uniaxial strain results were augmented with the calculated
SOEC pressure derivatives, as discussed in Sec. [ D. As shown
in Table II, the calculated pressure derivatives dCy,/d P and
dCys/dP are in good agreement with the measured results
and the calculated value for dCy;/d P lies just outside the
experimental uncertainty bounds [20,22].

The TOECs were determined by solving Eqs. (A9)—-(A14)
and are shown in Table III, together with the measured TOECs.
The calculated TOECs show good agreement with the experi-
mental results and all are within the experimental error bounds.
The difference between the calculated and measured [22]
pressure derivative dCy1/dP is the largest source of the
disagreement between the calculated and measured TOECs,
primarily affecting C;, and Cjy3 [see Eqs. (A9)-(Al4)].
Calculations using the LDA and PBE functionals show similar
results, with the LDA TOECs being somewhat larger in
magnitude those calculated using PBE. For all TOECs, the

120 ‘ 120 ‘ 120 ‘
(a) [100] “\(b) [110] N [111]
= 100 4 100F ) 4 100F .
o 3 o N
@ 80F N 1 8o} 1 8ot R 1
) A ‘& R
2 60f ’ . 60 N . 60 ) .
< A, A
£ )
T 40f {1 40} N {1 40} » 1
B
&
S 201 & W Ref. [18,19] 1 20f == This work, LDA 1 207 1
= Fit to data, Ref. [18, 19] == This work, PBE
0 L L L 0 L L L 0 L L L
—0.08 —0.06 —0.04 —0.02 0.00 —0.08 —0.06 —0.04 —0.02 0.00 —0.08 —0.06 —0.04 —0.02  0.00

Lagrangian strain

FIG. 1. Longitudinal stress versus uniaxial strain for diamond shock compressed along (a) [100], (b) [110], and (c) [111] directions. The
black squares are measured states from Refs. [18,19]. The solid black curve is a fit to the measured states, the red dashed and blue dot-dashed
curves are DFT calculations using the LDA and PBE functionals, respectively.
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TABLE III. Third-order elastic constants of diamond determined
from calculated longitudinal stress-uniaxial strain results and the
pressure derivatives of the second-order elastic constants.

PHYSICAL REVIEW B 93, 174113 (2016)

TABLE IV. The coefficients K, and K3 used in the energy
expansion of Eq. (11), expressed as combinations of SOECs and
TOEC:s for a cubic crystal, using (A1)-(A6) [23].

Present theory Strain K, K;
Experiment [22] LDA PBE (A.1) Ch Cii
Cin — 7600 + 600 _ 7828 + 154 —7515 + 143 A2 2Cn +2C 2Cin +6Cun2
c — 1270 + 570 —901 + 92 — 845 + 86 (A3) 3Cy, 4 6Ca 3Cyy) + 18Cy1p + 6Cin;
12 (A4) Ci +4Cy Ciit + 12C1a
Cixs —330 & 920 —1062 + 188 —960 & 176 (AS) Cir + 40 Cont + 120
Cia 2390 =+ 850 2783 =+ 283 2693 + 271 ( N 6 11‘2 c “ 1”48 c 166
Ciss — 4100 % 380 — 4369 + 134 — 4223 + 128 : . 456
Ciuss — 2890 % 750 —2983 + 189 — 2870 £ 175

statistical errors shown in Table III were much smaller than
the experimental uncertainties.

We note that our theoretical results calculated at T = 0 K
provide good agreement with the experimental results [18,22],
despite the temperature increase inherent in the previous shock
wave compression. This is because the extreme stiffness of
diamond causes modest elastic compressions in the shock
experiments and, as a result, the corresponding temperature
increases in the shocked diamond were extremely small.
To examine the nonlinear elastic response of strong single
crystals at higher temperatures, the SOECs and TOECs must
be incorporated into an anisotropic thermoelastic framework
(see, for example, Ref. [24]). However, such developments are
not considered here.

C. Discussion

Comparing the results presented in Secs. III A and III B, it
is seen that the TOECsS calculated using the longitudinal stress-
uniaxial strain approach show significantly better agreement
with the experimental results [18,19,22], compared to those
calculated using the energy-strain approach. Because the
same first-principles methods were used for the energy-strain
approach and the longitudinal stress-uniaxial strain approach,
the differences in the TOECs calculated using the two
approaches is likely due to differences in the analysis and
fitting of the calculated energies and stresses. These differences
are discussed next.

Examination of Egs. (A7)-(A12), which are similar to
those used to analyze and fit the data from the diamond
shock compression experiments [18,19], shows that some
TOECs appear more frequently, or with larger coefficients,
than others in the system of linear equations. As a result,
some of the TOECs are not as well constrained by the
experiments as others. In particular, Cj¢6 appears more often
and is weighted more heavily in Eqgs. (A7)-(A12) than Cy3,
C144, and Cysg. Therefore, Cg¢ is more well constrained than
C123, Cl44, and Cyse, and accordingly has a smaller experi-
mental uncertainty. Because the TOECs calculated using the
longitudinal stress-uniaxial strain approach were determined
using similar equations (A7)—(A12) as those used to analyze
the experimental results [18,19], the TOECs calculated using
this approach were determined under the same constraints
as those determined from the experimental results. Because
the TOECs calculated using the energy-strain approach were

determined using a different set of equations (see Table IV), the
calculated TOECs were constrained differently. As as result,
the TOECs calculated using the energy-strain approach did
not match the experimental results as well as those determined
using the longitudinal stress-uniaxial strain approach.

In the determination of TOECs from the experimental
shock compression data [18,19,22], the measured longitudinal
stresses were fit to a quadratic function of strain [Eq. (12)]
because fitting to a higher order expansion was unwarranted,
given the limited data set available. Therefore, the extent to
which the measured TOECs were affected by the higher-order
elastic response (fourth-order elastic constants, etc.) of the
material could not be determined. The same issue also arises
for the TOECs calculated using the longitudinal stress-uniaxial
strain approach because the calculated results were analyzed
using Eq. (12). In contrast, the calculated energy-strain results
were analyzed using Eq. (11), which incorporates terms
containing fourth-order elastic constants to mitigate the effect
of the higher-order elastic response. Thus, the two methods
differ regarding the truncation of the Taylor series in Eq. (3).
Examining the calculated and measured values for C;;, we
note that Cy; calculated using the longitudinal stress-uniaxial
strain approach (Table III) matches the measured value
well [18,19], but differs significantly from that calculated using
the energy-strain approach (Table I). Therefore, because Cj;
was calculated using the same strain (A1) for both theoretical
approaches, our results suggest that the higher order elastic
response (fourth-order elastic constants, etc.) plays a role in
the differences observed in the TOECs calculated using the
two different theoretical approaches.

Overall, our results show that the details of the TOEC
analysis and fitting procedures play an important role when
making comparisons between different theoretical and exper-
imental approaches for determining the TOECs. The work
presented here shows that evaluation of the different theoretical
approaches for calculating the TOECs is best carried out using
calculations and analysis procedures that are closely aligned
to the experimental approach.

IV. CONCLUSIONS

To demonstrate the use of first-principles methods for
determining the nonlinear elastic response of strong solids,
density functional theory was used to calculate the third-
order elastic constants (TOECs) of diamond. Two different
approaches were used: an energy-strain approach and a longi-
tudinal stress-uniaxial strain approach. The TOECs calculated
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using the longitudinal stress-uniaxial strain approach provided
a good overall match to the experimentally determined
TOECs [22]. Also, the longitudinal stress-uniaxial strain
calculations provided a good match to the physical variables
that were measured directly in previous shock compression
experiments [18,19]. The present results demonstrate that
first-principles approaches can be used to accurately calculate
the TOECs of diamond.

Although the TOECs calculated using the energy-strain
approach were within the scatter of the values determined
in previous theoretical studies [14—17,21], they differed sig-
nificantly from the experimentally determined TOECs [22]
and the TOECs calculated using the longitudinal stress-
uniaxial strain approach. The differences between the TOECs
calculated using the two approaches can be understood in
terms of differences in the analysis and fitting of the calculated
energies and stresses. In particular, the series in Eq. (3) was
truncated differently in the two different approaches. The
significantly better match to the measured TOECs provided
by the longitudinal stress-uniaxial strain approach, compared
to the energy-strain approach presented here and in previous
theoretical studies [14—17], is due to the close alignment of
the analysis procedures used in the longitudinal stress-uniaxial
strain approach with the procedures used in the experimental
determination [18,19,22].

Although the work presented here has focused on diamond,
the theoretical methods used to determine the TOECs are
general. Therefore, the theoretical methods presented here
are also expected to provide an accurate description of the
nonlinear elastic response of other strong solids.
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APPENDIX: STRAIN TENSORS AND ANALYTICAL
RELATIONS FOR THE DETERMINATION OF TOECs

In (A1)-(A6) we list the Lagrangian strain tensors 7,; used
in the energy-strain calculations presented here:

£ 0 0
Nij = 0 0 O , (Al)
0 0 O
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£ 0 0

nj=10 §&§ 0], (A2)
0O 0 O
e 0 0]

Nij = 0 & 0], (A3)
0 0 ¢
e 0 o

nj=10 0 §&], (A4)
0 ¢ o
(e & 0]

nj=1& 0 0], (A5)
_0 0 O_
0 & £

nj=1§ 0 § (A6)
1§ & 0]

For each of the strains (A1)—-(A6), the coefficients K, and
K3 used in the energy-strain fitting function [Eq. (11)] are
expressed in terms of the SOECs and TOECs in Table IV.
When incorporated into Eq. (11), the results in Table IV
provide six equations to solve for the six TOECs of diamond.

For the longitudinal stress-uniaxial strain approach, the
system of six equations used to solve for the TOECs is

il — ¢y, (A7)
cor : C 3C 12C A8
111 _4_1( 111 +3Cr2 + 166)> (A8)
My 1
Ch, = §(C111 +6Ci12 +2C123
+12C144 + 24C166 + 16Css6), (A9)
dc
Clfy +2C1 = == 2HCu +2C0) = Cur. - (AL0)
dc
Cllo + 20} = == 22(C1i +2C0) = Ci. - (ALD)
dc
Clly+ 20l = —— ;“ (Cii +2C1) — Cua,  (A12)

where Cl-ij are the mixed third-order isentropic-isothermal
elastic constants [11]. Because the thermal expansion co-
efficient of diamond is very small, differences between the
mixed elastic constants and the isentropic elastic constants are
negligible.
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