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Determining pressure-temperature phase diagrams of materials
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We extend the nested sampling algorithm to simulate materials under periodic boundary and constant pressure
conditions, and show how it can be used to determine the complete equilibrium phase diagram for a given potential
energy function, efficiently and in a highly automated fashion. The only inputs required are the composition and
the desired pressure and temperature ranges, in particular, solid-solid phase transitions are recovered without
any a priori knowledge about the structure of solid phases. We benchmark and showcase the algorithm on the
periodic Lennard-Jones system, aluminum, and NiTi.
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I. INTRODUCTION

Phase diagrams of materials describe the regions of
stability and equilibria of structurally distinct phases and
are fundamental in both materials science and industry. In
order to augment experiments, computer simulations and
theoretical calculations are often used to provide reference
data and describe phase transitions. A plethora of methods
exist to determine individual phase boundaries, including
Gibbs ensemble Monte Carlo [1], Gibbs-Duhem integration
[2], thermodynamic integration, and even direct molecular
dynamics simulations of coexistence. Each of these algorithms
requires the user to specify at least the identity and approximate
location of the phase transition under investigation. Moreover,
in the case of the solid phases, where much of the interest lies,
advance knowledge of the crystal structure of each phase is
required. Calculating an entire phase diagram by combining
the results of such methods therefore demands a high degree
of prior knowledge of the result. This in turn poses a barrier
to the discovery of unexpected phases and phase transitions.
Furthermore, such algorithms require specific expertise and a
separate setup for each type of phase transition.

In this paper we introduce a single algorithm, based
on nested sampling (NS) [3,4], that enables the efficient
calculation of complete pressure-temperature phase diagrams,
including the solid region. This algorithm requires no prior
knowledge of the phase diagram and takes only the potential
energy function together with the desired pressure and tem-
perature ranges as inputs. Moreover, the direct output of the
simulation is the partition function as an explicit function of its
natural variables, so calculating thermodynamic observables,
such as the heat capacity, is straightforward.

Nested sampling systematically explores the entire poten-
tial energy landscape and in this way is related to parallel
tempering (also known as replica exchange) [5,6] and Wang-
Landau sampling [7]. However, those algorithms encounter a
particular convergence problem at first-order phase transitions
because the probability distributions (parametrized in terms
of temperature in case of parallel tempering or energy in case
of Wang-Landau) on the two sides of the phase transition
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have very little overlap [8]. This results in poor equilibration
between the distributions on either side of the phase transition
and large errors (both random and systematic) in the predicted
locations of phase transitions.

The NS algorithm was designed to solve this problem. It
constructs a sequence of decreasing potential energy levels
{Ei}, each of which bounds from above a volume of config-
uration space χi , with the property that χi is approximately a
constant factor smaller than the volume χi−1, corresponding
to the level above. Each volume is sampled uniformly, and
therefore each distribution will have an approximately constant
fractional overlap with the one immediately before and after,
ensuring fast convergence of the sampling and allowing an
accurate evaluation of phase-space integrals. In particular, the
energy levels near the phase transition, where phase volumes
change rapidly, will be very narrowly spaced. The sequence
of energy levels comprise a discretization of the cumulative
density of states χ (E), which allows the evaluation of the
partition function at arbitrary temperatures,

Z(N,V,β) = 1

N !

(
2πm

βh2

)3N/2 ∫
dE χ ′(E)e−βE (1)

≈ Zm(N,β)
∑

i

(χi−1 − χi)e
−βEi , (2)

where N is the number of particles of mass m,V is the volume,
β is the inverse temperature, h is Planck’s constant, the density
of states χ ′ is the derivative of χ , and we labeled the factor
resulting from the momentum integral as Zm. The total phase-
space volume is χ0 = V N , corresponding to the ideal gas limit.
Note that the sequence of energies {Ei} and configuration space
volumes {χi} are independent of temperature, so the partition
function can be evaluated a posteriori at any temperature by
changing β in (2).

The basic NS algorithm is as follows. We initialize by
generating a pool of K uniformly random configurations and
iterate the following loop starting at i = 1:

(1) Record the energy of the sample with the highest energy
as Ei , and use it as the new energy limit, Elimit ← Ei . The
corresponding phase-space volume is χi ≈ χ0[K/(K + 1)]i .

(2) Remove the sample with energy Ei from the pool
and generate a new configuration uniformly random in the
configuration space, subject to the constraint that its energy
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is less than Elimit. One way to do this is to clone a randomly
chosen existing configuration and make it undergo a random
walk of L steps, subject only to the energy limit constraint.

(3) Let i ← i + 1, and return to step 1.
At each iteration, the pool of K samples is uniformly

distributed in configuration space with energy E < Elimit.
The finite sample size leads to a statistical error in log χi ,
and also in the computed observables, that is asymptotically
proportional to 1/

√
K , so any desired accuracy can be achieved

by increasing K . Note that for any given K , the sequence of
energies and phase volumes converge exponentially fast (the
number of iterations required to obtain the results shown below
never exceeded 2000 × K), and increasing K necessitates a
new simulation from scratch.

Since its inception NS has been used successfully for
Bayesian model selection in astrophysics [9], and also to in-
vestigate the potential energy landscapes of atomistic systems
ranging from clusters to proteins [10–18].

The structure of this paper is as follows. In Sec. II we modify
the NS algorithm to enable its application at constant isotropic
pressure with fully flexible periodic boundary conditions [19]
where the periodic simulation cell is allowed to change shape.
In Secs. III and IV we show that this development enables
the determination of pressure-temperature phase diagrams of
materials directly from the potential energy function without
recourse to any othera priori knowledge. In particular, in
Sec. IV we calculate phase diagrams for aluminum and
NiTi. Finally, in Sec. V we conclude this paper, discussing
some consequences of the capability to calculate entire phase
diagrams with a single method and in a highly automated
fashion.

II. NESTED SAMPLING WITH FULLY FLEXIBLE
PERIODIC BOUNDARY CONDITIONS AT

CONSTANT PRESSURE

Nested sampling produces new samples by cloning an
existing sample and then evolving the clone using a Markov
chain Monte Carlo (MCMC) random walk [20]. Although one
could work in the NV T ensemble and use Eqs. (1) and (2),
that would be very inefficient. MCMC simulations performed
at fixed pressure require just a fraction of the computational
expense as equivalent calculations performed at fixed volume.
There are two reasons for this.

First, allowing the system to change volume by dilating
or contracting expedites the cooperative freeing of jammed
atoms. In contrast, at fixed volume, atoms that have become
jammed are only freed by the coincidental movement of all
atoms to separate them. Consequently, MCMC simulations at
fixed pressure explore configuration space far more rapidly
than simulations at fixed volume.

The second reason arises from the thermodynamic behavior
of systems at a first-order phase transition. At a phase transition
under constant volume conditions the two phases coexist and
an interface forms between them. Such interfaces are large on
the atomic scale [21], and the behavior of atoms at an interface
is not representative of the behavior of atoms in the equilibrium
phases. As a result the interface introduces a systematic error
that is overcome only by simulating very large numbers of
atoms.

Such interfaces also occur under constant pressure condi-
tions in the infinite system size limit. The contribution to the
Gibbs free energy from an interface is proportional to γN

2
3 ,

where γ is the interfacial tension. In contrast, the Gibbs free
energies of each of the pure phases are extensive (proportional
to N ). Therefore the Gibbs free-energy cost of the interface
is negligible for thermodynamic systems. Conversely, for the
relatively small system sizes amenable to density of states
calculation methods such as nested sampling, the Gibbs
free-energy cost of the interface is appreciable, provided γ

is not close to zero. Consequently, at a constant pressure phase
transition between phases with identical atomic compositions,
configurations containing an interface have negligible statisti-
cal weight in such simulations, and a discontinuous transition
is observed from one equilibrium phase to the other. This
enables the accurate simulation of phase transitions using
much smaller numbers of atoms.

Using small numbers of atoms to simulate a phase transition
naturally introduces new finite-size errors. In particular, for
a fixed number of atoms, it is not possible to represent all
crystal structures in a simulation cell of fixed shape. This
representational bias is removed by the use of fully flexible
periodic boundary conditions [19], which allow the simulation
cell to deform smoothly and thus take any shape. However,
using fully flexible periodic boundary conditions allows the
formation of very thin simulation cells containing unphysical
quasi one- and two-dimensional configurations, characterized
by interacting periodic images. In Sec. II A we describe a
rigorous solution to this new finite-size problem. Later, in
Sec. II B we describe the calculation of the constant pressure
partition function and heat capacity, both as explicit functions
of temperature, using nested sampling.

A. Constraint on the simulation cell to exclude unphysical quasi
one- and two-dimensional configurations

The partition function at fixed isotropic pressure p with
fully flexible periodic boundary conditions [19] is

�(N,p,β) = Zmβp

∫
dh0δ(det h0 − 1)

×
∫ ∞

0
dV V N

∫
(0,1)3N

ds e−βH (s,h0,V ,p). (3)

Here H (s,h0,V ,p) = E(s,h0,V ) + pV,h is the 3 × 3 matrix
of lattice vectors relating the Cartesian positions of the atoms
r to the fractional coordinates s via r = hs,V = det h is
the volume, and h0 = hV −1/3 is the image of the unit cell
normalized to unit volume.

The partition function (3) corresponds to integration over
all nine elements of the matrix h0, and the δ function
restricts the integration to matrices satisfying det h0 = 1. This
partition function is formally correct in the thermodynamic
limit [19,22]. However, finite systems in this description can
adopt configurations for which the simulation cell becomes
very thin. In this case, periodic boundary conditions give rise
to a quasi one- or two-dimensional system. The prevalence
of such configurations leads to a poor approximation of
the three-dimensional atomic system due to excessively large
finite-size effects. We exclude such thin configurations by
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changing the limits for integration over elements of h0, so
that the perpendicular distances between opposite faces of the
simulation cell h0 are greater than some “minimum cell depth”
value d0.

The perpendicular distance between faces of the unit cell h
made by lattice vectors h(i) and h(j ) is given by

d⊥
h(k) = det h

|h(i) × h(j )| . (4)

The cell depth D(h0), which measures how “thin” the cell has
become, is defined as the minimum value of d⊥

h(k) for the cell
at normalized (unit) volume h0,

D(h0) = min
i=1,2,3

(
d⊥

h(i)
0

)
. (5)

Thus we integrate over elements of h0 such that

D(h0) > d0. (6)

The minimum cell depth d0 is a real number on the interval
[0,1] where d0 = 1 restricts the simulation cell to a cube.
Smaller values of d0 are accordingly less restrictive on the
shape of the simulation cell, and d0 = 0 corresponds to no
restrictions on the simulation cell.

Incorporating this change of integration limits into the
partition function (3) yields a new partition function

�̃(N,p,β,d0) = Zmβp

∫
D(h0)>d0

dh0δ(det h0 − 1)

×
∫ ∞

0
dV V N

∫
(0,1)3N

ds e−βH (s,h0,V ,p). (7)

In the thermodynamic limit (7) is equal to (3) up to a factor
which depends only on d0. The two partition functions are
equal if and only if d0 = 0.

In tests with 64 atoms we verified that the heat capacity
curves were independent of d0 at values of 0.65, 0.7, and
0.8, in Lennard-Jonesium and aluminum. The window of
independence from d0 grows wider as the number of particles is
increased. For larger numbers of atoms, there are more ways to
arrange those atoms into a given crystal structure, including in
simulation cells that are closer to a cube. Similarly, unphysical
correlations are introduced when the absolute number of
atoms between faces of the cell becomes too small, and
therefore larger simulations can tolerate “thinner” simulation
cells h0. The nickel-titanium calculations were performed with
d0 = 0.7.

B. Partition function and thermodynamic variables

The partition function we seek to calculate is given
in Eq. (7). Above some sufficiently large volume V0, we
approximate the system as an ideal gas, neglecting interatomic
interactions, which corresponds to the condition E(s,h0,V ) �
pV . In this approximation the volume integral in (7) is the sum
of two parts,

�̃(N,p,β,d0)

≈ Zmβp

[
�NS(N,p,β,V0,d0) +

∫
D(h0)>d0

dh0δ(det h0 − 1)

×
∫ ∞

V0

dV V N

∫
(0,1)3N

ds e−βpV

]
, (8)

where

�NS(N,p,β,V0,d0) =
∫

D(h0)>d0

dh0δ(det h0 − 1)
∫ V0

0
dV V N

×
∫

(0,1)3N

ds e−β[E(s,h0,V )+pV ]. (9)

We calculate �NS using nested sampling. Calculations
are performed at fixed pressure to generate a sequence of
enthalpies Hi , where H = E(s,V ,h0) + pV . The NS approx-
imation for �NS is

�NS(N,p,β,V0,d0) ≈
imax∑
i=1

(χi−1 − χi)e
−βHi

≈
imax∑
i=1

�χie
−βHi , (10)

where χi ≈ χ0( K
K+1 )

i
,χ0 = V N+1

0
N+1 , and �χi ≈ χi−1 − χi . We

use single-atom Monte Carlo (MC) moves in fractional
coordinates with the amplitude updated every K

2 iterations
to maintain a good acceptance rate. Uniform sampling of
lattice shape matrices h0 subject to Eq. (6) was achieved
by independent shearing and stretching moves which do not
change the volume. The ratios of atom, volume, shear, and
stretch moves were N:10:1:1. Further details of the MC moves
and parallelization scheme are given in the Supplemental
Material (SM) [23].

We show in Appendix A that volumes greater than V0 make
a negligible contribution to the partition function (8), provided
kBT � pV0. In this case we have

�̃(N,p,β,d0) ≈ βp

N !

(
2πm

βh2

)3N/2

�NS(N,p,β,V0,d0), (11)

where we have expanded Zm. One can always assert the
condition kBT � pV0, and in practice it is easy to find values
of V0 suitable for physically relevant conditions. We found

V0 = 107N Å
3

to be suitable for all conditions considered in
this paper. From (11) we obtain the expected enthalpy

〈H 〉 = −∂ log �̃(N,p,β,d0)

∂β

=
(

3N

2
− 1

)
1

β
+ 〈Hconfigurations〉 (12)

and the heat capacity at constant pressure

Cp = −kBβ2 ∂〈H 〉
∂β

(13)

=
(

3N

2
− 1

)
kB + kBβ2(〈H 2

configurations

〉
−〈Hconfigurations〉2

)
, (14)

where

〈Hconfigurations〉 ≈
∑imax

i=1 �χi Hi e−βHi∑imax
i=1 �χi e−βHi

,

(15)〈
H 2

configurations

〉 ≈
∑imax

i=1 �χi H 2
i e−βHi∑imax

i=1 �χi e−βHi

.
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FIG. 1. Demonstration of how NS can be used to calculate
phase diagrams using the case of the periodic Lennard-Jones model.
NS calculations are performed at a series of pressures, and phase
transitions are located by peaks of the heat capacity curves (blue).
The red lines show values from the literature for the melting (solid)
[24], boiling (dashed) [25], and sublimation (dotted) [26] curves.

This form (15) naturally does not depend on the contribution
made by the low-density configurations omitted from the NS
calculation, or explicitly on the value of d0. We used Eq. (15)
when calculating the heat capacities presented in this paper.

III. CALCULATING PHASE DIAGRAMS

In this section we describe a method for calculating the
phase diagram of a material from the output of nested
sampling. We then benchmark the performance of NS on
the periodic Lennard-Jones system and find NS to be orders
of magnitude more efficient than parallel tempering (PT) for
resolving the melting and evaporation transitions.

Given the partition function (11), phase transitions can
be easily located by finding the peaks of response functions

0.5 1 1.5

T ∗

−4

−2

0

lo
g 1

0
P

∗

[24]: 108 particles

[24]: 256 particles

[25]

[26]

NS: phase transitions

NS: Widom-line

FIG. 3. Phase diagram for N = 64 Lennard-Jones particles as
calculated using NS, with comparison to the literature (N ≈ 500)
phase diagram, as described in the text.

such as the heat capacity (14). By performing separate NS
simulations at a number of pressures and combining the
pressure and temperature values corresponding to the heat
capacity peaks, one can straightforwardly construct the entire
phase diagram including all thermodynamically stable phases.
This process is illustrated in Fig. 1.

In Fig. 2 we compare the performance of NS to that of
PT for calculating the melting and evaporation transitions.
NS provides a reasonable estimate of the melting and boiling
points using only ∼108 energy evaluations, while parallel
tempering needs many orders of magnitude more computa-
tional effort than NS to find the evaporation transition and
almost 2 orders of magnitude more computational effort to find
the melting transition. (A similar increase in computational
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FIG. 2. Performance comparison of NS and PT. Sixty-four Lennard-Jones particles were simulated at a pressure of 0.027 (Lennard-Jones
units). Both NS and PT simulations were initialized from the vapor phase. PT was performed using 128 equispaced temperature values in the
range [0.4,1.4]. The left panel shows the estimated transition temperatures as a function of computational cost, while the right panel shows the
mean enthalpy as a function of temperature corresponding to three selected values of the cost.
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FIG. 4. Phase diagrams corresponding to four EAM models of aluminum. Red symbols show the NS results; the error bars are calculated
as the width at half maximum of the peaks on the heat capacity curves. On the boiling line points are connected by a solid line up to the
critical point. (The method we used to estimate the critical point is described in the SM [23].) Black symbols show experimental melting
points measured with Bridgman cells [28], with diamond anvil cells (DAC (a) [29] and (b) [30]), and shock waves (SW) [31]. Different square
symbols show estimates of the critical point from experiments, (a) [32], (b) [33], (c) [34], and (d) [35]. For NPB-EAM and MD-EAM, large
black squares show the critical point and smaller black squares show the evaporation temperatures, all calculated using Gibbs ensemble Monte
Carlo [36]. At pressures below the critical point, NS parameters K = 800 and L = 3000 were used (the total number of energy evaluations was
3 × 109 for each pressure), while runs at pressures where solid-solid transitions are present required K = 3200 and L = 15 000 (total number
of energy evaluations was 4 × 1010).

efficiency compared with parallel tempering was found for
Lennard-Jonesium clusters [10] and hard spheres [11,27]).

Finally, in Fig. 3 we show the phase diagram for 64 particles
of Lennard-Jonesium as calculated using NS with K =
640,L = 1.6 × 105. Comparison with the literature phase
diagrams for ∼500 particles confirms excellent agreement with
the literature values for the evaporation transition [25] and
also the solid-liquid and high-pressure solid-vapor transitions
[24]. Below the triple point, we observe slower convergence
with respect to L towards literature values of the sublimation
transition [26]. We also find the beginning of the Widom line:
the shallow line of heat capacity maxima that extends into
the supercritical region. The Widom line and our method for
estimating the critical point are described in the SM [23].

IV. RESULTS

A. Aluminum

In this section we apply the new algorithm to several
empirical models of aluminum in order to demonstrate the
capability of nested sampling to find solid-solid phase tran-
sitions without any prior knowledge of the crystal structures
or even the existence of multiple stable phases. Furthermore,
although the particular off-the-shelf models we use here do
not reproduce the experimentally determined phase diagram
of the material everywhere, the fact that nested sampling allows
a direct calculation of the entire phase diagram means that in
the future one could automate the optimization of potentials to
match the experimental phase diagram.
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As one of the most commonly used metals, the thermody-
namic properties of aluminum have been extensively studied.
The melting line of aluminum has been measured up to
125 GPa [28–31], with good agreement between the different
experimental techniques. Theoretical calculations have also
been performed using embedded-atom-type potentials [37–44]
and ab initio methods [45–47], the latter providing melting
temperatures up to 350 GPa [48]. At ambient conditions
aluminum crystallizes in the fcc structure, but a phase
transition to the hcp structure at 217 GPa has been revealed
by x-ray diffraction experiments [49] and the bcc phase has
been also produced in laser-induced microexplosions [50]. The
critical points of most metals are not amenable to conventional
experimental study and thus estimation of their properties is
usually based upon empirical relationships between the critical
temperature and other measured thermodynamic properties.
In the case of aluminum, these result in predictions in a wide
temperature and pressure range [32–35].

We chose four widely used models all based on the
embedded-atom method (EAM): (1) the model developed by
Liu et al. [43] (LEA-EAM), which is an improved version
of the original potential of Ercolessi and Adams [42], (2) the
model developed by Mishin et al. [44], using both experimental
and ab initio data (Mishin-EAM), (3) the EAM of Mei and
Davenport [40] (MD-EAM), and (4) the recently modified
version of the MD-EAM, reparametrized by Jasper et al.
to accurately reproduce the density functional theory (DFT)
energies for Al clusters and nanoparticles of various sizes
(NPB-EAM) [51].

The phase diagrams for all four models based on NS
simulations with 64 particles are shown in Fig. 4. The resulting
critical parameters vary over a wide range for the different
models. Above the critical point we observe the Widom line,
indicated by those points not linked by a solid line. Heat
capacity maxima corresponding to the Widom line become
broader away from the critical point, as indicated by the larger
error bars. The Widom line and our method for estimating the
critical point are described in the SM [23].

The melting lines are in good agreement with the available
experimental data up to the pressure value p ≈ 25 GPa. Above
that pressure, the melting curves diverge from the experimental
results, except for the MD-EAM potential, which reproduces
the melting curve remarkably well.

At higher pressures small peaks appear on the heat capacity
curves below the melting temperature for all models, indicating
solid-solid phase transitions (see Appendix B). We postpro-
cessed the samples from the NS simulations. As expected,
the fcc structure was found to be stable at low pressures in
all four models. However, the models differ markedly in their
predictions at high pressures. The only commonality between
the predicted high-pressure solid phase diagrams is that the
maximum predicted stable pressure for the fcc structure is
far too low, both in comparison with experiment and density
functional theory [49,52,53].

B. NiTi

Finally, in order to demonstrate that NS is applicable
to more complex problems, we show results for a material
of current scientific interest, the NiTi shape memory alloy

FIG. 5. NiTi martensitic phase transition as a function of Ni
content (at 0.66 GPa) and pressure (at 1:1 composition). The
simulation cell contained 64 atoms in the cases of the 50% and 51.6%
Ni compositions and 108 atoms in the case of 50.8% Ni content.
NS parameters were K = 1920,L = 105, each data point used 1010

energy evaluations, and Ni–Ti swap moves were also included in the
MC. Experimental results are taken from [59].

[54,55]. The shape memory effect relies on the structural
phase transition from the high-temperature austenitic phase
to the low-temperature martensitic phase [56]. Studying
this transition is particularly challenging with traditional
free-energy methods because the austenitic phase does not
correspond to a local minimum of the potential energy surface.
Figure 5 shows the pressure-temperature-composition phase
diagram corresponding to a recent EAM model [57,58] as
computed with NS. The phase transition temperatures are
within 50 K of the experimental values and reproduce the trend
with compositional change. We predict a decreasing transition
temperature with increasing pressure. It is notable that this
potential successfully reproduces the martensitic transition
temperature, despite the fact that the minimum enthalpy
structure for the potential is different from the structure
observed both experimentally and in DFT: here the lowest
enthalpy structure (which we label B19X) is orthorhombic (see
the SM [23] for a description of the low-enthalpy structures
we identified). Thus it appears that the austenite-martensite
transition temperature is not sensitive to the detailed geometry
and ordering of the lowest enthalpy structures. Such empirical
potentials can therefore be useful tools for studying this
transition in the future.

V. CONCLUSION AND OUTLOOK

In summary, we have extended the nested sampling al-
gorithm to allow simulations using fully flexible periodic
boundary conditions at fixed pressure and demonstrated how
it can be used to determine pressure-temperature-composition
phase diagrams. In contrast to existing methods for comparing
specific phases, NS explores the entire configuration space
without requiring any prior knowledge about the structures of
different solid phases, with the only necessary input being
the composition and the desired pressure and temperature
ranges. This makes it the method of choice for exploring
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the pressure-temperature-composition space, which is the next
unexplored realm naturally following much recent work in
crystal structure exploration at zero temperature. Since the
algorithm is run independently for different pressures and
compositions, and also has excellent parallel scaling up to a
number of processors equal to the number of simultaneous
samples, it might even be possible to run it on ab initio
models on exascale computers. Furthermore, we suggest NS is
eminently suitable for validating materials models and in the
future could even play a role in the automatic optimization of
empirical models.
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APPENDIX A: IDEAL GAS CONTRIBUTION
TO THE PARTITION FUNCTION

In this Appendix we show that the ideal gas contribu-
tion to the partition function (8) asymptotically approaches
zero for any positive minimum cell depth d0, in the limit
kBT/pV0 → 0.

The ideal gas contribution to the partition function (8) is∫
D(h0)>d0

dh0δ(det h0 − 1)
∫ ∞

V0

dV V N

∫
(0,1)3N

ds e−βpV .

(A1)

We begin by noting that the exponential term does not depend
on E(s,h0,V ), and therefore

∫
(0,1)3N ds = 1. Thus we have∫

D(h0)>d0

dh0δ(det h0 − 1)
∫ ∞

V0

dV V N

∫
(0,1)3N

dse−βpV

=
∫

D(h0)>d0

dh0δ(det h0 − 1)
∫ ∞

V0

dV V Ne−βpV . (A2)

The integral over volume V evaluates to∫ ∞

V0

dV V Ne−βpV = 1

(βp)N+1
	(N + 1,βpV0), (A3)

where 	(N + 1,βpV0) is the upper incomplete gamma func-
tion.

Finally, we define the function A(d0) to be equal to the
integral over h0,

A(d0) =
∫

D(h0)>d0

dh0δ(det h0 − 1). (A4)

The function A(d0) is finite for any positive value of d0,A(1) =
0, and A(d0) diverges in the limit d0 → 0. In the orthorhombic
case, where all angles of the simulation cell are equal to
π
2 , A(d0) = 9

2 (log d0)2, with A = 1 at d0 ≈ 0.62. However,
at any positive value of d0 the contribution to the partition
function (8) due to volumes greater than V0 goes to zero in
the limit kBT/pV0 → 0 because 	(N + 1,βpV0) → 0 in the
same limit.

APPENDIX B: IDENTIFYING SOLID-SOLID
PHASE TRANSITIONS

The locations of phase transitions are determined solely by
looking at the peaks in the heat capacity. Next, we inspect the
system at temperatures on either side of the phase transition.
Specific phases can be identified in the following way. If no
appropriate order parameter is to hand, then one picks a number
of random configurations from the output of nested sampling,
chosen according to their thermal weights �χie

−βHi , and
inspects them by eye. If an appropriate order parameter
is known, one can compute the free-energy landscape for
that order parameter. Here one proceeds by binning the
weights �χie

−βHi of all configurations, according to the
order parameter, to create a partial sum �j = ∑

�χie
−βHi

for each bin j . The free energy for each bin can then be
computed as Fj = − 1

β
[log(�j ) + log ( βp

N! ) + 3N
2 log ( 2πm

βh2 )].
In fact, simply calculating the expected enthalpy at the phase
transition and then examining the order parameter values for
output configurations around that enthalpy is often sufficient
to identify the crystal structures.

An example of the latter approach is shown in Fig. 6 for
the Mishin-EAM potential, which compares the enthalpies and
Q6 bond order parameter values for nested sampling output
configurations at three different pressures. At p = 25.0 GPa no
phase transition occurs and only fcc configurations are present.
At p = 34.9 GPa a first-order phase transition occurs at the
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FIG. 6. Identification of solid phases from inspection of an
order parameter: Mishin-EAM potential for aluminum. These plots
compare the enthalpies and Q6 bond order parameter values for nested
sampling output configurations at three different pressures. Nested
sampling proceeds towards lower enthalpies, thus from right to left in
each plot. Horizontal dotted lines show the bond order parameters for
the perfect fcc, bcc, and hcp phases, and the vertical dashed line shows
the expected enthalpy at the solid-solid phase transition, which was
located by inspecting the heat capacity and observing a peak. These
results are discussed in the text.
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average enthalpy marked by the vertical dashed line. At that
enthalpy there is a clear transition between two basins, from
a first basin that corresponds to the bcc structure, to a second
that corresponds to the hcp structure. Finally, at p = 37.5 GPa

no phase transition occurs and so there is no peak in the heat
capacity. At this pressure the bcc structure is stable at all
temperatures below the melting point. Nevertheless, the hcp
structure is clearly visible as a metastable structure.
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