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Sparse phonon modes of a limit-periodic structure
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Limit-periodic structures are well ordered but nonperiodic, and hence have nontrivial vibrational modes. We
study a ball and spring model with a limit-periodic pattern of spring stiffnesses and identify a set of extended
modes with arbitrarily low participation ratios, a situation that appears to be unique to limit-periodic systems.
The balls that oscillate with large amplitude in these modes live on periodic nets with arbitrarily large lattice
constants. By studying periodic approximants to the limit-periodic structure, we present numerical evidence for
the existence of such modes, and we give a heuristic explanation of their structure.
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I. INTRODUCTION

Nonperiodic structures are known to support vibrational
modes that differ markedly from the Bloch waves of infinite
periodic crystals. Well-studied examples include the localized
modes of disordered systems [1] or floppy materials [2];
the critical modes of quasiperiodic systems, which exhibit
power-law decays [3]; and the topologically protected modes
associated with boundaries or line defects in isostatic lat-
tices [4,5] or mechanical models with broken time-reversal
symmetry [6] or chiral couplings [7]. An interesting feature of
such systems is the possibility of the localization of mechanical
energy on low-dimensional structures [8–11]. Typically, when
such modes exist in well-ordered systems, they are confined
to regions near defects in crystals or at surfaces [12,13].

Limit-periodic (LP) structures occupy a conceptual space in
between periodic crystals and quasicrystals or disordered sys-
tems. Like crystals and quasicrystals, they are homogeneous
in the sense that every local region in them is repeated with
nonzero density, and they are translationally ordered, having
diffraction patterns that consist entirely of Bragg peaks. Unlike
crystals, however, there is no smallest wave number in the
diffraction pattern; the set of Bragg peaks is dense. But unlike
quasicrystals, the point-group symmetry of a LP structure is
compatible with periodicity, and the structure can be described
as a union of periodic structures with ever increasing lattice
constants [14]. It is thus natural to ask whether LP systems
might support vibrational modes with novel spatial structures.
In particular, one might wonder if the LP structure could
support modes with low participation ratios.

Though no naturally occurring LP structures have
been discovered, a recent result in tiling theory shows
that local interactions among tiles that are identical up to
reflection symmetry can favor the production of two- or
three-dimensional hexagonal LP structures [14,15]. It has
also been shown in simulations that a collection of identical
achiral units with only nearest-neighbor interactions can
spontaneously form a hexagonal limit-periodic structure when
slowly cooled [15,16]. With recent advances in colloidal
particle synthesis, the fabrication of particles with the
necessary interactions for formation of the LP structure seems
experimentally feasible [17–20]. The possibility of creating
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a LP phase motivates us to explore the physical properties
associated with its unique translational symmetries.

Here we study the spectrum of a LP structure inspired by the
Taylor-Socolar tiling [14,22]. Our system consists of identical
point masses placed on the sites of a triangular lattice and
connected by springs on all of the nearest-neighbor bonds. The
springs are assigned one of two possible stiffnesses, where the
pattern of assignments is LP. To study the vibrational spectrum,
we construct a hierarchy of periodic approximant models and
use standard techniques to calculate their phonon modes. We
observe that certain modes with low participation ratios remain
unchanged as the lattice constant of the approximant increases
and that at each new scale additional modes arise with even
lower participation ratios. Though these modes are extended,
and indeed are perfectly periodic, the particles that oscillate
with large amplitude are confined to sparse networks of one-
dimensional (1D) chains. We also find that these modes are
not destroyed by vacancies or by small amounts of disorder in
the spring constants.

We note that the sparse modes of the LP structure have
a qualitatively different nature from the confined modes
observed in models of quasicrystals [21]. In the latter, a special
local cluster of particles supports a strictly localized mode,
and this cluster is repeated at a finite density throughout the
bulk of the system. Extended linear combinations of these
degenerate modes, which may be the true modes when the
degeneracy is broken by the slightly different environments
around the clusters, have participation ratios on the order of
the fraction of particles participating in the special clusters.
The sparse vibrational modes of the LP structure, on the other
hand, cannot be described as linear combinations of localized
modes. They are extended modes with finite degeneracy, and
the existence of such modes with arbitrarily small participation
ratios is a distinctive feature of the LP system.

The rest of the paper is ordered as follows. In Sec. II, we
describe the LP structure of interest, its periodic approximants,
and the corresponding ball and spring models. Section III
presents the methods used to compute the spectra of the
approximants. Section IV shows how modes of the infinite LP
structure are identified and describes their structure. Section V
presents an analysis of the origin of the modes of interest.

II. A LIMIT-PERIODIC BALL AND SPRING MODEL

The LP pattern studied here is formed from a dense packing
of a single type of decorated tile: the hexagon with black stripes
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FIG. 1. (a) The tile that can be used to create the LP structure. (b)
A section of the LP structure. (c) An example of a local configuration
of tiles.

shown in Fig. 1(a). The tiles are arranged on a triangular lattice
and oriented as shown in Fig. 1(b). The structure is completely
homogeneous in the sense that it consists of a uniform density
of identical tiles. We note that in a statistical mechanical lattice
model of this system this LP structure forms spontaneously in
a slow quench from a state of disordered tile orientations [15].

As mentioned above, a LP structure consists of a union
of periodic crystals with ever larger lattice constants. In the
present case, each set of triangles of a given size forms a
crystal, with the centers of the triangles at the vertices of a
honeycomb. Figure 1(c) shows the way that neighboring tiles
join to form the edges and corners of all but the smallest
triangles. The number of tiles that contribute decorations to
form a triangle is 3 × 2n−1, where n is any positive integer.
Three of these tiles create the corners, while the rest form the
edges. We refer to a triangle with a given n as a level-n triangle,
and we refer to the entire pattern of such triangles as level n.
The shading in Fig. 2(a) highlights the level-3 triangles. Note
that the level-n pattern has exact sixfold rotational symmetry
for all n. The LP structure is sixfold symmetric in the sense
that every bounded configuration that appears is repeated with
equal density in all six orientations corresponding to rotations
by π/3.

FIG. 2. (a) The LP structure. (b) The 3-periodic structure with the
unit cell colored dark gray. The level-3 triangles are filled to highlight
the difference in the pattern of level-3 triangles within the structures
shown in (a) and (b).

To develop a physically plausible ball and spring model,
we place a point mass at the center of each hexagonal tile and
connect nearest neighbors with springs, where the stiffness
of a given spring is determined by the configuration of black
stripe decorations across the boundary between the two tiles.
In the LP structure, there are three types of nearest-neighbor
bonds: bar-bar (bb), bar-corner (bc), and corner-corner (cc),
as illustrated in Figs. 3(a)–3(c). Spring stiffnesses kbb, kbc, and
kcc are assigned to the bb, bc, and cc bonds, respectively, as
shown in Fig. 3(d). Note that for n � 3 level n is formed by
kbb chains of length 2n−1 − 1 coupled through kbc bonds at the
triangle corners.

The relative densities of the different bond types are set
by the level-1 structure. First note that the total number of
bonds is three per tile. All cc bonds are formed by the tiles
that create the level-1 triangles. In the LP pattern, 3/4 of the
tiles contribute four corner bonds each to level 1. As each cc
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FIG. 3. Examples of the three types of bonds in the LP structure:
(a) a bar-bar bond (bb), (b) a bar-corner bond (bc), and (c) a corner-
corner bond (cc). (d) A depiction of the ball and spring model. The
coupling strength of a spring connecting nearest-neighbor masses is
determined by the type of bond.

bond is counted twice in this manner, the number of cc bonds
is 3/2 per tile. The corners on each of the remaining 1/4 of
the tiles form bc bonds, again with each tile contributing to
four corner bonds. In this case, each bond is only counted
once, so the number of bc bonds is one per tile. The remaining
bonds, 1/2 per tile, must be bb bonds. Thus in any pattern in
which level 1 is the honeycomb of the LP structure, 1/2 of the
bonds are cc, 1/3 are bc, and 1/6 are bb. All of the models
considered below, including the periodic approximants, have
this property, making the average spring stiffness the same in
all cases.

There exist periodic tilings of the decorated hexagon of
Fig. 1(a) that contain elements of the LP structure. (Note
that the next-nearest-neighbor interactions required to force
aperiodicity of the Taylor-Socolar tile are not enforced by this
decoration.) For present purposes, we construct a series of
periodic approximants of the type shown in Fig. 2(b) and refer
to them as n-periodic. In an n-periodic structure, the largest
triangles are level n. A crucial feature of these approximants is
that levels 1 through (n − 2) are identical to their counterparts
in the LP structure. The n-periodic structure has threefold
rotational symmetry and a unit cell consisting of 3 × 4n−2

tiles. For n � 3, the level-1 structure is identical to that of the
LP pattern, so the ratio of densities of the bond types is also
the same. For completeness we note that there does exist a
2-periodic structure in which 1/3 of the bonds are cc, 2/3 are
bc, and there are no bb bonds, but it is not relevant for present
purposes.

Figure 4 shows the 4-periodic structure. In this structure
levels 3 and 4 do not have the honeycomb pattern characteristic
of the LP structure, while levels 1 and 2 do. In general,
the n-periodic approximants with larger n have the same
structure, with the dotted triangles in the figure indicating
level-n triangles and all levels below and including n − 2
having the same structure as they do in the LP case.

In the ball and spring models studied here, all the balls
are taken to have the same mass μ, in accordance with the
fact that the tiles are all identical. The coupling strengths kij

are assigned as described above, and all springs are taken to

FIG. 4. The unit cell of the 4-periodic structure. The dashed lines
are drawn to show how the largest triangles are formed by the unit
cell. The shades of the tiles indicate edges that are equivalent when
periodic boundary conditions are applied.

have an unstressed length equal to the lattice constant a. An
algebraic formula specifying kij at a given location in the LP
structure is given in the Appendix.

III. COMPUTATIONAL METHODS

To determine whether low participation ratio modes exist
in the LP structure, we study the periodic approximants and
extrapolate our results. Though we are interested in modes
of a nonperiodic structure, for which standard Bloch mode
methods cannot be applied directly, we will see that some of
these modes are actually periodic and also exist in the spectra
of n-periodic approximants with sufficiently large n. These
modes can be identified using standard methods for a periodic
lattice with a large basis. The bulk of the numerical analysis is
done using the 7-periodic structure, but specific modes of the
5-, 6-, and 8-periodic structures were also calculated.

Following standard practice for a lattice with a basis [23],
we let ui(R,t) denote the displacement of the particle at
equilibrium position R. The index i specifies which element of
the basis corresponds to position R. For a normal mode with
wave vector q and frequency ω we have

ui(R,t) = �[εie
i(q·R−ωt)] = (uix(R,t),uiy(R,t)), (1)

where � denotes the real part and εi is a polarization vector that
is the same for the particle in each unit cell corresponding to
basis element i. The εi’s are normalized such that

∑
i εi · εi =

1, where the sum runs over the sites in one unit cell. Defining

fi = 1

μ

6∑
j=1

kij [(εi − εj e
iq·nij ) · n̂ij ]n̂ij = (fix,fiy), (2)

where nij = rj − ri , ri is the position of particle i, and kij

is the coupling strength of the bond between particle i and
nearest neighbor j , and the vectors

F = (f1x,f1y,f2x,f2y,...,fNx,fNy), (3)

E = (ε1x,ε1y,ε2x,ε2y,...,εNx,εNy), (4)
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FIG. 5. Coupling patterns for n-periodic approximants with n � 5. Black (light gray) lines represent bonds with coupling constant kbb

(0.6kbb). (a) Coupling pattern common to all approximants and the LP structure. The different cases correspond to particular patterns of springs
within the dark gray hexagons: (b) the 5-periodic couplings and (c) the LP coupling pattern. The kbb bonds in (b) and (c) are bolded to highlight
the difference between them.

one constructs the dynamical matrix D(q) with elements

Dn,m(q) = ∂Fn

∂Em

, (5)

where n and m are integers between 1 and 2N . Periodic
boundary conditions, as shown in Fig. 4, are applied when
determining the force fi on each particle i. The normal
modes and their frequencies are determined by the eigenvalue
equation

(D(q) − ω2I)E = 0. (6)

After constructing the dynamical matrix corresponding to the
proper assignment of coupling strengths kij , we use standard
Mathematica functions to solve for ω and E.

We report results for coupling strengths

kcc = kbc = αkbb, (7)

with α < 1. For purposes of illustration, we choose α = 0.6.
The qualitative features do not depend on the particular values
of the coupling strengths as long as kcc and kbc are both less
than kbb. Without loss of generality we set kbb/μ = 1 and
a = 1.

The limit of interest is a structure that has no periodically
repeated unit cell and hence requires an infinite set of polariza-
tion vectors for each mode. For any n-periodic approximant,
the number of polarization vectors required is 3 × 4n−2. When
n is increased by one, the Brillouin zone shrinks in area by a
factor of 4, and the number of modes at any given wave number
within the new Brillouin zone grows by that same factor. In the
limit of infinite n all of the modes are formally q = 0 modes.
To explore the structure of these modes, we consider only the
q = 0 modes of each approximant, which turn out to have
features that allow for extrapolation to the full LP system.

IV. MODES OF THE LIMIT-PERIODIC STRUCTURE

Given the homogeneity of the structure, we expect the
low-frequency modes of all of the approximants to be small
perturbations of ordinary plane waves. We have confirmed
that the sound speed is isotropic and corresponds to that of
a triangular lattice with coupling constant 0.659kbb, which is
roughly equal to the weighted average of the coupling strengths
in the unit cell 〈k〉 = 0.667. The more interesting portion of

the spectrum contains the high-frequency modes, which are
sensitive to variation of couplings on all scales.

The identification of modes of the LP structure rests on the
surprising observation that certain modes are simultaneously
normal modes of the n-periodic and the LP structures. To
see how this may be possible, consider the pattern of bond
strengths depicted in Fig. 5(a). If there is a mode in which all
of the springs within the shaded hexagons remain unstressed
to first order, that mode is entirely insensitive to the pattern
of coupling strengths within each hexagon. In particular, the
coupling strengths can be chosen to create the 5-periodic
structure shown in Fig. 5(b) or, alternatively, to create the LP
structure shown in Fig. 5(c), or indeed to create any n-periodic
approximant with n > 5. Because the pattern in Fig. 5(a) has
sixfold symmetry about each shaded hexagon, there can be
modes that exhibit threefold or sixfold symmetry about these
points as well, as long as they do not involve any stretching
of the bonds within the shaded hexagons. If such a mode does
exist, then it is a mode of any of the approximants of higher
order. We find numerically that there are many such modes.

The existence of periodic modes within a nonperiodic
system is a consequence of the special type of nonperiodicity
of the LP structure: the fact that there are subsets of tiles
in it that form periodic lattices. In this respect, LP systems
differ dramatically from quasicrystals and other forms of
nonperiodicity.

To identify modes of particular interest, we calculate for
each mode a participation ratio p defined as [24,25]

p =
(

N

N∑
i=1

|εi |4
)−1

, (8)

where the normalization of εi yields p = 1 if |εi | is the same
for all i. We find that most modes of the 7-periodic structure
have p ∼ 0.6. Some typical examples are shown in Fig. 6.

The n-periodic approximant supports modes with very low
participation ratios, many of which have the threefold or
sixfold symmetry that marks them as modes of the LP system.
For each increase in n, modes are added in which the large
amplitude oscillations are confined to triangle edges of level
n − 2. Figure 7 shows examples of such modes, along with
additional modes in which two levels are excited. For each
mode in which the excitations are confined to level n (or a
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FIG. 6. A selection of q = 0 modes of the 7-periodic structure with typical participation ratios. Dot size indicates the amplitude of
oscillation of the corresponding mass. (a,b) Modes that are also modes of the LP structure. (c) A mode that reflects the unique periodicity of
the 7-periodic approximant. The frequencies and participation ratios of the modes are (a) ω = 1.772, p = 0.611; (b) ω = 1.378, p = 0.725;
and (c) ω = 1.225, p = 0.637.

set of levels up to n), there are corresponding modes confined
to level n + 1 (or a set up to n + 1). All modes within these
hierarchies are high-frequency modes in which neighboring
masses on every level-n edge oscillate out of phase with each
other, as indicated by the black arrows in the first column

of Fig. 7. The modes in the first two rows of Fig. 7 are
threefold symmetric, while those in the bottom row are sixfold
symmetric. In the sixfold symmetric modes, the instantaneous
pattern around each triangle is chiral and every triangle has
the same chirality. Note that the participation ratios in a given

FIG. 7. Low participation ratio modes. Column 1: Snapshots of unit cells. Black arrows indicate the displacement of the masses at a
given time. Gray arrows indicate the symmetry of the instantaneous pattern of displacements. Columns 2 and 3: Members of the hierarchy
corresponding to column 1. Black dot sizes indicate the amplitude of the polarization vector at each lattice site. Row (a): Two-level modes
of the 8-periodic structure. (a2): Levels 4 and 5 are excited; ω = 2.161; p = 0.138. (a3): Levels 5 and 6 are excited; ω = 2.187; p = 0.103.
Row (b): Single-level modes of the 7-periodic structure. (b2): Level 4; ω = 2.163; p = 0.144. (b3): Level 5; ω = 2.188; p = 0.075. Row (c):
Modes of the 7-periodic structure in which all of the edges of a single level are excited. (c2): Level-4 kagome mode; ω = 2.162; p = 0.208.
(c3): Level-5 kagome mode; ω = 2.189; p = 0.118.
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FIG. 8. A section of the n = 4 template used to identify the
kagome mode of Fig. 7(c1). Black arrows represent the displacement
vectors at a given time. Gray arrows illustrate that in every triangle the
instantaneous chiralities associated with the motion of the particles
at edge centers are the same.

hierarchy decrease dramatically (roughly, by a factor of 2) with
increasing n.

We now focus in more detail on the set of modes with the
simplest geometry, those with the kagome structure depicted
in Fig. 7(c1). [The modes in Fig. 7(b) actually have lower
participation ratios, but those modes are degenerate and
therefore less straightforward to analyze.] We refer to a mode
within this hierarchy as a level-n kagome mode and denote
its frequency by ωn. To extract modes of this type from the
computed spectrum, we construct a template that captures the
essential structure of the mode and search for modes that have
a high overlap with the template.

For the level-n template embedded in a m-periodic approx-
imant with m � n + 2, we assign a polarization vector to each
particle as follows. Define lattice vectors

eλ ≡ (cos(2πλ/3), sin(2λπ/3)), (9)

a normalization constant cnm ≡ 9 × 22m−n−5, and the quanti-
ties kn ≡ 2n−1 and zn(i) ≡ i mod 2n. The polarization vector
for the particle i at position R = i0e0 + i1e1 is given by

v(n)
i =

[
(−1)i0 sin

(
i0π

kn

)
δ(zn(i1),kn) e0

−(−1)i1 sin

(
i1π

kn

)
δ(zn(i0),kn) e1

−(−1)i1 sin

(
i1π

kn

)
δ(zn(i0 − i1),kn) e2

]
1

cnm

, (10)

TABLE I. The position in the spectrum of the kagome modes of
interest in four n-periodic structures.

Level 3 Level 4 Level 5 Level 6

5-periodic 29
6-periodic 119 27
7-periodic 482 108 22
8-periodic 1916 432 82 22

where δ(a,b) is the Kronecker delta. The normalization
constant cnm is defined such that

∑
i v(n)

i · v(n)
i = 1, where the

sum runs over the sites in one unit cell of the m-periodic
structure. Figure 8 shows a section of the level-4 kagome
mode template.

To locate modes of interest, we scan through the high-
frequency q = 0 modes, calculating the overlap I of the
numerically calculated mode with v:

I =
∣∣∣∣∣

N∑
i=1

v(n)
i · εi

∣∣∣∣∣. (11)

Modes with I > 1/2 are the relevant kagome modes. Table I
gives the position of the mode in the list sorted from high
to low frequency. All of the identified kagome modes have
frequencies that are within the highest 8% of the relevant
spectrum.

V. ORIGIN OF THE KAGOME MODES

The existence of a level-n kagome mode depends on the
inability of lower level triangles to sustain oscillations at the

FIG. 9. (a) Frequencies and estimated frequencies of the level-
n kagome modes. Open circles are obtained using the methods
described in Sec. III. Closed circles are estimates based on a model of
stiff chains embedded in a soft triangular lattice. The inset shows the
same data on a log scale, where ω∞ is the highest frequency that can
propagate on the infinite embedded chain. (b) The difference between
the estimated frequency of the level-(n + 1) kagome mode and the
highest frequency that can propagate on the level-n chain. The inset
shows the ratio of the decay length ξn+1,n to the length of a level-n
edge 2n−1 − 1 (see text).
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FIG. 10. The level-4 embedded chain used to compute approx-
imate frequencies. (a) The mode corresponding to the highest
frequency, 
4. (b) The mode corresponding to the level-4 kagome
mode with frequency ω4. Similar chains are used to compute
approximate values of ωn and 
n for 3 � n � 9. The dashed bonds
shown are a portion of a two-dimensional triangular lattice.

necessary frequency. That is, the frequency of the kagome
mode is higher than the highest frequency that can propagate
through the lower level triangles that make up the bulk of the
system. Figure 9(a) shows the numerically exact frequencies
of the kagome modes of different levels, along with calculated
values based on the theory described below.

High-amplitude oscillations do not occur on levels (m <

n) in the level-n kagome modes because the lower levels
cannot support propagation of a wave with frequency ωn.
The highest-frequency mode that can propagate on the level-1
and level-2 structures is 
1,2 = 1.90, corresponding to the
highest-frequency mode of a kagome lattice with coupling
strength 0.6kbb. This implies that in the high-frequency modes
of the LP structure the large-amplitude oscillations will be
confined to the stiff chains with lengths greater than one. One
can see that oscillations at ωn cannot propagate deeply into
levels (3 � m < n). When a chain is driven at one point at a
frequency ω above the highest frequency in its spectrum, 
,
the excitation will be localized with a decay length

ξ ≈ 1

2
√

δ
, (12)

where δ = ω − 
 
 1 [26]. To estimate the decay length ξn,m

of the level-n kagome mode with frequency ωn into level m

we take δn,m = ωn − 
m, where 
m is the highest frequency
supported by the level-m structure.

We estimate 
m by calculating the phonon spectrum of an
approximation to the level-m structure: a line of stiff chain
segments of length 2m−1 − 1 connected by pairs of weak
links and embedded in a soft triangular lattice (see Fig. 10).
The stiff bonds were assigned a coupling strength kbb and
the weak bonds were assigned a coupling strength 0.6kbb.
The coupling strength for the bulk triangular lattice, 0.619kbb,
was chosen so that the frequency of the level-6 chain matches
exact computation. Figure 11 shows the predicted decay curves
overlaid on the oscillation amplitudes of two modes obtained
from the full phonon calculations for the 7-periodic structure.
In all three plots, the predicted decay lengths account well for
the numerically determined amplitudes.

One might worry that, as n increases, the decreasing
frequency difference between adjacent levels may result in
modes that have large amplitude oscillations on levels (m < n).
We estimate ωn and 
n for levels larger than those we have
numerically computed by again using the chain illustrated in
Fig. 10. The frequency ωn is that of the mode with polarization
vectors similar to the actual level-n kagome mode [Fig. 10(b)].
Although the difference between ωn+1 and 
n decreases
quickly with n, as shown in Fig. 9(b), the ratio of the decay
length of the level-n kagome mode into the level-(n − 1)
structure to the length of a level-(n − 1) triangle edge [Fig. 9(b)
inset] shows a trend towards lower values, a strong indication
that the kagome mode structure persists to arbitrarily large n.

We estimate the behavior of the participation ratio of the
level-n kagome mode pactual

n by determining the functional
form of the participation ratio of the level-n template p

temp
n .

From Eqs. (8) and (10) a straightforward derivation gives

ptemp
n = 1

3 × 2n−3
, (13)

which decreases by a factor of 2 with each level. The actual
level-n kagome modes deviate from the template due to the
exponential decay into the bulk. The participation ratios of both
the templates and the actual modes are presented in Fig. 12
for multiple n. Although the slope of pactual

n (n) up to n = 6
appears smaller than the expected scaling, we conjecture that
the scaling will recover at larger n. Numerical confirmation of
the 2−n scaling would require greater computational capacity.

FIG. 11. Decays of oscillations in kagome modes. (a) Level-3 edges in the level-4 kagome mode. (b) Level-3 edges in the level-5 kagome
mode. (c) Level-4 edges in the level-5 kagome mode. Open circles represent the magnitudes of the polarizations of the masses lying along the
black line in the images above the plots. Filled circles are the amplitudes of an exponentially decaying function with decay length determined
using Eq. (12).
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FIG. 12. Participation ratios of level-n kagome modes (open
circles) obtained as described in Sec. III and the level-n templates
(filled circles) generated by Eq. (10).

To support the claim that the level-n kagome modes of
the 7-periodic structure exist within the spectrum of the LP
structure, we verify the persistence of the modes as the size
of the unit cell is changed. We find that for the 5-, 6-, 7-, and
8-periodic approximants the frequencies of a level-n kagome
mode that exist in more than one approximant are the same up
to five significant digits.

Because the frequencies of kagome modes lie outside the
spectrum of the bulk composed of lower level triangles, we
expect the modes to be robust to some degree of disorder.
Figure 13 shows a level-n mode in a system where a mass that
would oscillate at high amplitude is removed. The vacancy
gives rise to a hole in the pattern, but the long-range order of
the mode persists.

Introducing disorder into the coupling strengths destroys
the long-range order of the mode but does not increase the
participation ratio. We calculated the phonon modes of the
7-periodic structure with each coupling strength multiplied by
a random number between 1 − α and 1 + α. We find that the
high-frequency modes remain localized along the stiff chains

FIG. 13. The level-4 kagome mode of the 8-periodic structure
when a single mass along and near the center of a level-4 edge is
removed. Multiple unit cells are shown; the removal of one mass
along a level-4 edge in an infinite version of the structure would
create a single hole.

for all values of α used, but even for α as small as 0.01 the mode
can no longer be identified using the template of Eq. (10). As
expected, disorder results in localization along the 1D chains,
resulting in even lower participation ratios [27].

VI. CONCLUSION

We have shown that a LP ball and spring model supports
modes with arbitrarily small participation ratios. These are
not exponentially localized modes, but instead are extended
modes in which the large amplitude oscillations are confined
to sparse periodic nets. Two properties of the LP structure
enable it to support modes with arbitrarily low participation
ratios. First, the presence of stiff chains embedded in a softer
bulk allows for high-frequency modes confined to those chains.
The exclusion of the oscillations from the bulk also results in
the confinement of the modes being robust to vacancies and
some degree of disorder in the spring constants. Second, the
LP system is composed of a hierarchy of increasingly stiff and
sparse networks of chains. At each level, the chains are stiff
enough to support modes with sufficiently short decay lengths
in the bulk that the confinement is sharply defined. The result
is that for an arbitrarily small choice of p there exists a level
in the hierarchy that supports modes with participation ratios
less than p.

Questions remain about the nature of the LP spectrum. We
have studied in depth only a subset of the low participation
ratio modes, in particular, the level-n kagome modes. Though
we have not observed any obvious structural features of the
spectrum, a closer look is likely to reveal nontrivial scaling
laws. We have also not studied our model in the regime
where α > 1, in which case the longer triangle edges cannot
support the highest-frequency modes. Most importantly, a
more realistic model of a colloidal phase formed from
structured particles will have to include the degrees of freedom
associated with rotations of the tiles. We conjecture that modes
confined to level-n sublattices will still be generic in parameter
regimes where bonds associated with triangle corners are
weaker than bonds associated with triangle edges.
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APPENDIX: PATTERN OF SPRING STIFFNESSES FOR
THE LP BALL AND SPRING MODEL

Here we give a precise description of the pattern of coupling
strengths in a LP ball and spring model, corresponding to the
structure in Fig. 5(c).

Define the unit vectors

eλ = (cos(2πλ/3), sin(2πλ/3)), (A1)

with λ ∈ {0,1,2}. The point masses lie on lattice sites i0e0 +
i1e1, with i0,i1 ∈ Z. Consider the bond joining sites r and
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s = r + eλ. Assign to this bond a pair of integers

(i,j ) = 2√
3

(r · e′
λ+1, − r · e′

λ+2), (A2)

where subscripts are taken modulo 3 and e′
λ is a rotation of eλ

by π/2.
Let GCD(a,b) be the greatest common divisor of a and

b, and define Q(n) ≡ GCD(2n,n), taking Q(0) ≡ ∞. For

r,s = (0,0), the stiffness k is given by

k =
{
kbb if Q(|i|) = Q(|j |) ∧ Q(|i − 1|) = Q(|j − 1|)
αkbb otherwise .

(A3)
For bonds connecting to (0,0), if the bond is in the ±e0

direction, the stiffness is kbb, otherwise it is αkbb.
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