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Detecting weak coupling in mesoscopic systems with a nonequilibrium Fano resonance
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A critical aspect of quantum mechanics is the nonlocal nature of the wave function, a characteristic that may
yield unexpected coupling of nominally isolated systems. The capacity to detect this coupling can be vital in many
situations, especially those in which its strength is weak. In this work, we address this problem in the context of
mesoscopic physics, by implementing an electron-wave realization of a Fano interferometer using pairs of coupled
quantum point contacts (QPCs). Within this scheme, the discrete level required for a Fano resonance is provided
by pinching off one of the QPCs, thereby inducing the formation of a quasibound state at the center of its self-
consistent potential barrier. Using this system, we demonstrate a form of nonequilibrium Fano resonance (NEFR),
in which nonlinear electrical biasing of the interferometer gives rise to pronounced distortions of its Fano reso-
nance. Our experimental results are captured well by a quantitative theoretical model, which considers a system in
which a standard two-path Fano interferometer is coupled to an additional, intruder, continuum. According to this
theory, the observed distortions in the Fano resonance arise only in the presence of coupling to the intruder, indicat-
ing that the NEFR provides a sensitive means to infer the presence of weak coupling between mesoscopic systems.

DOI: 10.1103/PhysRevB.93.165435

I. INTRODUCTION

A central concept at the heart of physics is that extended
systems may demonstrate rich behavior, not associated with
their individual components but which arises when they are
coupled to one another. Just a few different examples of this
concept are provided by the natural band structures of periodic
crystals, and their engineered counterparts in semiconductor
superlattices [1] and metamaterials [2]. In the emerging field
of quantum information, the coupling of one system to another
brings both benefits and disadvantages; on the one hand
enabling sophisticated computations [3], while on the other
giving rise to undesirable decoherence [4]. Regardless of
the ultimate application, in many cases there is a critical
need to detect the coupling of different systems, especially
under conditions where this coupling is weak. The objective
of this work is to demonstrate the possibility of achieving
such detection by exploiting the strong spectral sensitivity of
Fano resonances [5–9] (FRs). Ubiquitous to both classical [8]
and quantum [7,9] wave systems, FRs are being explored
for application in areas as diverse as nanoelectronics [9–12],
plasmonics [8,13–16], metamaterials [17,18,36], energy har-
vesting [20], and optics and nanophotonics [21]. Here we
explore their importance to the discussion of transport in quan-
tum point contacts, in which we demonstrate a nonequilibrium
form of FR that provides an all-electrical scheme for the detec-
tion of weak quantum coupling in these mesoscopic devices.

A. Fano resonances and their extension to the nonequilibrium
Fano resonance

FRs are observed in wave systems in which the transmission
from an initial to a final state is governed by the interference
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between a continuum and a narrow level. Broadly realized
in a variety of systems [5–21], the essential features of the
Fano geometry are indicated schematically in Fig. 1(a). This
shows a problem in which waves propagate between points
A and B (in some configuration space), with the transmission
either occurring directly (matrix element w) or being mediated
(with matrix element v) by a discrete level (D) that serves
as an intermediate state. In this doubly-connected geometry,
resultant wave interference causes the transmission (T ) to
exhibit a rapidly-varying resonant modulation [Fig. 1(a), right
panel], as the energy (or frequency) of the incoming wave is
swept through that of the discrete level. The line shape of the
resonance takes a universal form whose profile is determined
by an asymmetry parameter (q), which in turn is governed by
the matrix elements w and v [5,6]. Dependent upon the value
of q a variety of different line shapes may be obtained, ranging
from Lorentzian (q = ∞) and near-symmetric (q � 1) forms,
to fully antisymmetric (q ∼ 1) and “window” resonances (or
antiresonances, with q = 0). The capacity to manipulate the
form of the FR via its asymmetry parameter, combined with the
ability to very effectively modulate the transmission of an inci-
dent wave, are the features that make this phenomenon of such
interest for use in the various applications alluded to above.

The manifestation of FRs in physical systems may be
strongly enhanced under nonequilibrium conditions, with
good examples being provided by the phenomenon of the
Raman scattering in doped semiconductors [22] and in carbon
nanostructures [23]. In these materials, the interference scheme
of Fig. 1(a) is realized when a photon flux establishes a
two-path transition from an initial state to a continuum:
the first path involves the direct transmission between these
states, while the second is mediated by a one-phonon Raman
emission. In another example, a “nonlinear Fano effect” has
been demonstrated in studies of the near-infrared absorption
of self-assembled quantum dots [24]. In these experiments,
strong optical illumination was used to couple discrete states
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FIG. 1. (a) Shown left is a schematic representation of the
standard two-path FR, while on the right we represent the possible
variation of transmission as a function of energy (E) for such a
system. The line shape of the resonance reflects the relative values of
the matrix elements w and v, which in this case are shown to yield a
weakly asymmetric peak. (b) The schematic on the left indicates the
situation in which the Fano system of (a) is coupled to an additional,
intruder, continuum (I ). On the right, we sketch the expected variation
of T (E) for this system. The dotted line represents the FR in the
absence of the intruder, while the solid line indicates the line shape
distortion that can be induced by the coupling to I . (c) The left panel
is a schematic representation of the energy alignment in the standard
FR. The host continuum connects points A and B and is coupled to
the discrete level (D) by the matrix element v. An FR results when
monoenergetic waves are injected into the system with an energy close
to Eo. The right panel shows the corresponding alignment relevant
to discussions of the NEFR. Here, the host is coupled to the discrete
level and the intruder (I ), with respective matrix elements v and t .
The NEFR occurs when waves with a spread of energies, ranging
from Eo to Eo + �, are simultaneously injected into the system to
access both D and I . The dotted line in the figure indicates the energy
alignment of the intruder.

in the quantum dots to a two-dimensional continuum, resulting
in pronounced distortions of their photoabsorption peaks from
a simple Lorentzian form. These resonances were instead well
described by a model of Fano interference, in which the q

parameter could be parametrically varied by means of the
incident laser power.

In the two examples discussed above, nonlinear optical
excitation is used to establish the two-path geometry required

for Fano interference. In this work, however, we describe a
different form of nonequilibrium Fano resonance (NEFR),
which we observe in a mesoscopic system in which the
two-path Fano interferometer is already established under
equilibrium conditions. By monitoring the distortions of
its FR that arise when the system is subjected to strong
nonequilibrium electrical driving [see Fig. 1(b), right panel],
we are able to infer the presence of coupling between
the Fano interferometer and an additional continuum. The
realization of this phenomenon in an all-electrically controlled
scenario provides a useful contrast to prior demonstrations of
optically driven nonequilibrium Fano phenomena [22–24], and
confirms the capacity [25] to coherently manipulate carriers in
mesoscopic devices under strongly nonlinear conditions.

The generalized concept of the NEFR is indicated schemat-
ically in Fig. 1(b). In this relatively-straightforward extension
of Fig. 1(a), the usual two-path Fano interferometer [see, also,
the left schematic of Fig. 1(c)] is modified by coupling it
(with matrix element t) to an additional continuum (I ). As we
indicate in the right schematic of Fig. 1(c), this intruder [26]
continuum is taken to be separated energetically from the
discrete level by an energy detuning �. In a situation in
which monoenergetic waves are injected into the system to
realize an equilibrium FR (at E = Eo), the intruder will
therefore be energetically inaccessible and will consequently
not participate in the resonant interference. However, if waves
are injected into the same system with a spread of energy,
chosen such that it matches the value of the detuning (�),
transmission via both the discrete level and the intruder
can be activated simultaneously [see Fig. 1(c)]. Under such
conditions, a three-path interferometer is established and it
is this modification to the Fano geometry that results in the
distortion of the resonance that we indicate schematically in
Fig. 1(b). The NEFR therefore provides a means to detect the
coupling of the host to the intruder; put more simply, it allows
us to detect the presence of hidden components within a Fano
system, even when they are undetectable in near-equilibrium
transmission.

B. Experimental implementation of the NEFR

In our specific implementation of the NEFR, we implement
the three-path interferometer of Fig. 1(b) by exploiting the
unusual properties of mesoscopic quantum point contacts [27]
(QPCs) near pinch-off. QPCs are tunable electron waveguides
that are typically realized by electrostatic gating [27] of a
high-mobility two-dimensional electron gas (2DEG). In this
approach, split-metal gates, separated by a nanoscale gap, are
formed on top of the 2DEG substrate. By applying a suitable
voltage to the gates, the electrons directly underneath them can
be depleted, leaving a narrow conducting channel within their
gap. With the gate voltage adjusted such that the QPC is close
to pinch-off, the charge within this channel can be reduced
to the level of just a few electrons. In this ultralow density
limit, it has been argued theoretically that strong electron
interactions can modify the self-consistent potential of the
QPC, causing a natural quantum dot to spontaneously develop
at its center [28–32]. While the existence of this self-consistent
feature remains subject to debate (see the discussion at the end
of this paper), a number of experiments nonetheless suggest
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FIG. 2. (a) False color micrograph of a coupled-QPC device, in which the lighter-colored gates are held at ground potential (G), while the
gold-colored gates are used to form the coupled QPCs. Vs and Vd represent the (dc) voltages applied the gates of the swept- and detector-QPCs,
respectively. The white circle represents the natural quantum dot formed in the swept-QPC at pinch off, which is tunnel coupled (white dotted
line) to electrons injected (solid white line with arrow) from the source of the detector. In measurements of the NEFR, the detector conductance
is measured by superimposing a nonzero dc voltage (VD) on top of a smaller ac component (vD). (b) A schematic illustration of the density of
states (DoS) in a QPC. This structure is only expected to be valid near pinch-off, where a spontaneously-formed discrete level (D) is present
inside the QPC. The 1D subbands of the QPC represent the intruder and are separated from D by an energy detuning �. (c) Concept of the
QPC-based intruder scheme. The Fano interferometer is created by coupling the DoS in (b) to the different reservoirs of the device (the source,
drain, and floating regions, at electrochemical potentials μS , μD , and μF , respectively).

that this scenario is correct [26,33–41]. Among these, our
own work is included [26,38–41], in which evidence for
localized-state formation in pinched-off QPCs was provided
by using this state to generate a FR in the (linear) conductance
of a nearby (“detector-”) QPC. The measurement scheme used
in these experiments is indicated in Fig. 2(a), which shows
two QPCs, separated by a few hundred nanometers, which
are nonlocally coupled to one another through an intervening
region of 2DEG. This latter region serves as a continuum of
states and mediates coupling between the QPCs by means of
wave-function overlap [39,41,42]. To induce the FR in the
detector, the gate voltage (Vs) applied to the other (“swept-”)
QPC is adjusted to align the discrete level of its quantum
dot with the Fermi level in the common continuum. Under
such conditions, a measurement of the linear conductance of
the detector (i.e., a measurement performed by applying a
vanishingly-small voltage across this QPC) exhibits a FR that
results [26,42] from the interference of electron waves that are
injected from the detector to the drain [solid line with arrow in
Fig. 2(a)], with those that reach the drain after first tunneling
to and from the discrete level [dotted line in Fig. 2(a)].

To introduce the role of the intruder into the above scenario
for an equilibrium FR, it is necessary to consider somewhat
more carefully the form of the density of states in the
swept-QPC. Prior to pinch-off, where the QPC potential is
well understood to be described by a parabolic saddlelike
form [27], the density of states consists of a set of (equally
spaced) quasicontinua. These correspond to the different
one-dimensional (1D) subbands that mediate transport when
the QPC is open, and which are responsible for the observation
of its quantized conductance [27]. At pinch-off, however, the
structure of the density of states should be markedly different,
as we indicate in Fig. 2(b). Due to the formation of a localized
state, the lowest feature in the spectrum should correspond to
a narrow peak. At the same time, the quasicontinua associated
with the 1D subbands should be pushed above the Fermi level.
Given this description, the connection to the intruder scheme
of Fig. 1(b) should be immediately apparent; the localized
state formed within the QPC may serve as the discrete level

(D) of a Fano scheme while the 1D subbands, separated
from the discrete level by an energy detuning �, play the
role of the intruder. With the swept-QPC configured near
pinch-off, and under near-equilibrium conditions, its localized
state will lie near the Fermi level while the quasi1D intruder
will be energetically inaccessible at low temperatures. As we
demonstrate here, however, a NEFR may be realized in this
system by applying a suitable (nonlinear) source bias across
the detector-QPC. Rather than probing the properties of the
conductance near the Fermi level, as is done in small-signal
transport studies, this allows us to simultaneously gain access
both D and I [see Fig. 2(c)] as required for the NEFR.

II. EXPERIMENTAL METHODS

Coupled QPCs were realized [26,39–41] by electrostatic
gating of high-quality GaAs/AlGaAs heterostructures (Sandia
samples EA750 and VA0284, referred to hereafter as devices
1 and 2). A 2DEG was formed in a 30-nm wide quantum
well in these wafers, with a carrier density of ∼2 × 1011 cm−2

and mobility of ∼3 × 106 cm2/V s. All experiments were
performed at 4.2 K, a sufficiently low temperature to ensure
coherent overlap between the coupled QPCs. AC conductance
of the detector-QPC was measured with an RMS bias vD <

100 μV. The multigate geometry used to demonstrate the
NEFR is indicated in Fig. 2(a). By biasing specific pairs of
gates, and leaving others grounded, coupled QPCs could be
implemented in different configurations [Fig. 3(a)]. The line
shape of the FR exhibited in the linear conductance of the
detector is known to be strongly configuration dependent [40],
indicating that varying the spatial arrangement of the two QPCs
allows us to systematically manipulate the coupling elements
(w and v) appearing in the Fano problem. In previous work, we
have largely focused on studies in which a small ac bias [vD

in Fig. 2(a)] was applied across the detector to determine its
conductance near equilibrium. Here, however, we superimpose
a larger dc voltage (VD) upon vD , thereby defining a nonzero
energy window for transport (that gives rise to the NEFR when
it contains both the discrete level and the intruder). While the
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FIG. 3. The main panel shows measurements of the linear
conductance (VD = 0) of the detector QPC for the two coupled-QPC
geometries identified as configurations 1 and 2 in the false-color
electron micrographs that form the upper insets to the figure. Red
data correspond to the geometry identified as configuration 1, while
blue data correspond to configuration 2. Dotted lines through the data
represent the background subtracted from the raw conductance to
obtain the resonant component. The schematic at the bottom of the
panel represents the realization of the intruder scenario in the coupled
QPCs. The intruder and the discrete level are formed within the same
QPC, as indicated by the red dotted line enclosing these two entities.

voltages were actually applied to ohmic contacts at the edge of
a 2DEG mesa [not indicated in Fig. 1(b)], the small resistance
(∼20 �) of these ungated regions ensured that the voltages
were largely dropped across the detector QPC. Consequently,
heating of the ungated 2DEG [43,44] was not expected to be
significant.

Important for the discussion that follows will be an
understanding of the key energy scales associated with our
system. Using the 2DEG density quoted above, we determine
a Fermi energy of ∼6 meV in the ungated regions of the device.
Separate bias-spectroscopy studies, on the other hand, indicate
the energy spacing of the different 1D subbands that comprise
the intruder to be in the range of 1–3 meV at pinch-off [45].
Finally, an important parameter in Fig. 2(b) is the energy
detuning (�) between the discrete level and the edge of
the intruder band. Self-consistent calculations based on spin-
density functional theory [28] suggest that this energy, also,
should be in the range of a few meV. We return to address this
last point further below, in the light of our experimental results.

III. RESULTS

A. Experimental observations

In Fig. 3, we demonstrate the form of the detector resonance
obtained under conditions of linear transport (i.e., VD = 0)
for two different coupled-QPC geometries that we refer to
hereafter as configurations 1 and 2 (see the upper insets to

the figure). In both experiments, the variation of the detector
conductance (Gd ) is measured as the gate voltage (Vs) applied
to the swept-QPC is used to pinch-off that structure. The
resonant feature present in both curves is the FR of interest
here and is superimposed upon a background (dotted lines
in the main panel) that represents the direction electrostatic
action of the swept-QPC gates on the detector [40]. In all
subsequent analysis, this background is removed from the raw
data, leaving only the resonant feature (�Gd ) in the detector
conductance.

Turning to the issue of the line shape of the resonances in
Fig. 3, these exhibit a pronounced influence of the specific
coupled-QPC geometry. Specifically, in configuration 1, the
two QPCs are relatively far apart from one another and the
FR is only weakly asymmetric. In configuration 2, in contrast,
the two QPCs are much closer to one another and form a
stubtuner-like geometry that generates an antiresonance in the
detector. This strongly configuration-dependent character of
the detector resonance is consistent with the results of our
previous, near-equilibrium, investigations [40]. The essential
point is that, by varying the separation between the swept-
and detector-QPC, we are essentially controlling the relative
magnitude of the matrix elements w and v, with direct
consequences for the Fano asymmetry parameter [40] Indeed,
it is also worth noting that the antiresonance exhibited for
configuration 2 in Fig. 3 is reminiscent of that observed
in studies in which such features have been induced in
the conductance of narrow wires, by side-coupling them to
intentionally formed quantum dots [46].

In Fig. 4, we present our observations of the NEFR in
configurations 1 and 2, illustrating how the detector resonance
is affected as VD is increased from zero. In both configurations,
we see that [Fig. 4(a)], regardless of its initial form, the
detector resonance develops a sharp dip on its less-negative
gate-voltage side, the relative amplitude of which grows more
pronounced as VD is increased. Recognizing the capacity of
Vs to act as a “plunger” that may sweep the local density of
states of the QPC past the Fermi level, the presence of the dip
at less-negative gate voltage than the main resonance indicates
that this dip should be associated with a structure at higher
energy than the discrete level. In fact, we will see shortly
below that this structure is due to the edge of the 1D subbands
indicated in Fig. 2(b).

Figure 4(b) shows the evolution of the detector resonance
more systematically for configuration 2, as a function of the
two control voltages (Vs and VD). There are several noteworthy
features of this contour, the first of which is the emergence
of the additional dip [identified already in Fig. 4(a)] on the
“high-energy” flank of the original FR. This feature grows so
strong by the maximal bias of 10 mV that it almost obscures the
original resonance completely. Secondly, it is clear that, with
increase of the bias VD , both of these features (as indicated by
the dotted and dashed lines) shift steadily to more-negative gate
voltage. We have established previously [39,40] that the FR
exhibited in the linear conductance of the detector (at VD = 0)
occurs soon after the swept-QPC pinches-off. The systematic
shift of the white dashed line in Fig. 4(b) therefore reflects the
fact that, with larger source bias applied across a QPC, stronger
(i.e., more-negative) gate biasing is needed to pinch it off [47].
The white dotted line in Fig. 4(b) denotes the corresponding
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FIG. 4. (a) Measurements of the NEFR in the two different configurations. The red curves were measured in Device 1 in Configuration 1,
while the blue curves were obtained in configuration 2 for Device 2. (i) Red data: VD = 0 mV. Blue data: VD = 0 mV. (ii) Red data: VD = 3 mV.
Blue data: VD = 2 mV. (iii) Red data: VD = 4 mV. Blue data: VD = 3 mV. (iv) Red data: VD = 5 mV. Blue data: VD = 4 mV. (v) Red data:
VD = 6 mV. Blue data: VD = 5 mV. (b) Contour plot revealing the full variation of detector conductance as a function of Vs and VD , for device 2 in
configuration 2. A monotonic background has been subtracted from Gd to construct the contour. The white dashed line shows the evolution of
the original antiresonance, present at VD = 0, while the white dotted line represents the signature of the intruder that emerges for nonzero VD .

shift of the additional dip that appears on the high-energy side
of the original FR and it is clear that this shows a similar
dispersion to this original resonance. This is quite consistent
with the picture of the density of states presented in Fig. 2(b)
and allows us to interpret the separation between the two dips
with the energy detuning (�) between the discrete level and
the 1D subbands. In a simple (non-self-consistent) picture of a
“rigid” QPC potential, we might expect the Vs separation of the
two dips to remain constant as VD is increased. That this is not
in fact the case indicates that the form of the self-consistent
potential near pinch-off is modified by the detector bias. A
description of this problem is beyond the scope of the current
work. Nonetheless, it must be emphasized that the behavior
shown in Figs. 3(b) and 3(c) was not limited to these illustrative
examples, but was reproduced in measurements performed on
equivalent combinations of coupled QPCs, in both devices. It
was also unaffected by varying detector conductance over a
wide range (1 × 2e2/h � Gd � 11 × 2e2/h), confirming the
idea that the resonance is driven by processes occurring within
the swept-QPC.

A couple of further aspects of Fig. 4(b) are worthy of
clarification. Firstly, we note that the dispersion of the main
resonance and its high-energy dip should not be confused with
some kind of avoided crossing. Rather, as we have noted
already, the separation between these features is reflective
of the detuning (�) between the discrete level and the 1D
subbands. Even at VD = 0, this separation is not expected
to vanish but rather to remain nonzero. Secondly, and more
importantly, in the paragraph above we have emphasized the
capacity of the nonlinear bias to influence the QPC potential. In
our experiment, however, the bias in question (VD) is applied
to the detector-QPC, while the swept-QPC is actually the one
responsible for the observed resonance. In order to explain
this apparent contradiction, it is necessary to consider the
role of the “floating region” indicated in Fig. 2(a). While
this reservoir cannot draw any net current from the supply,

carriers may be injected into it from the detector as they exit
it ballistically [48,49]. This process results in the appearance
of a potential difference between the floating reservoir and the
drain, which increases to reach a value sufficient to ensure
that no net charge is injected into the floating region. That
is, application of voltage VD to the detector will result in the
appearance of a potential drop across the swept-QPC, and it is
this latter voltage that is responsible for the dispersion of the
two resonances in Fig. 4(b).

In order to investigate the nature of the voltage that
develops across the floating reservoir, we have performed a
separate experiment using the configuration shown in Fig. 5.
As indicated in the inset to the figure, in this experiment we
apply an ac voltage (vD) of varying amplitude (RMS values
are indicated in the figure) across the detector, and measure the
resulting ac voltage (vF ) that develops at the floating electrode
as Vs is varied. Also shown for comparison in the figure is
the dependence of the swept-QPC conductance (Gs) on Vs .
Comparing the variation of vF with that of Gs , it is clear
that a significant voltage develops at the floating reservoir as
the swept-QPC approaches pinch-off. The maximum value
of this voltage increases with increasing vD , but it should be
noted that it always remains less than the value of the supply
voltage. As the swept-QPC pinches off, the reservoir voltage
also decreases (although we are unable to observe its complete
quenching due to the limited input impedance of our lock-in
amplifier). Near pinch-off we therefore see that biasing of the
detector can lead to the appearance of a significant voltage
across the swept-QPC.

B. Theoretical modeling of experiment

The detailed variations of the detector resonance in Fig. 3
are reproduced well by a theoretical model that we have
developed, and which attributes them to a form of NEFR.
While the detailed derivation of this model is provided in the
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FIG. 5. Measurements of the floating-reservoir voltage (vF ) as a
function of Vs , in the configuration indicated in the inset to the figure.
The different curves were obtained by applying various ac voltages
(vD , RMS values indicated in the figure) across the detector, and then
measuring the voltage of the floating reservoir relative to ground.
Also shown is the corresponding variation of Gs(Vs).

appendix to this paper, the essential idea of our approach is to
model the system as a localized state and a 1D band, embedded
in a junction formed by three separate regions of 2DEG.
These are distinguished by their electrochemical potentials
μS , μD , and μF , in the source, drain, and floating reservoirs,
respectively [refer to Figs. 2(a) and 2(c)]. The Hamiltonian
for this system is solved by introducing appropriate matrix
elements to describe the coupling between the different
components of the system. In this way, we are able to compute
the dependence of the detector conductance on both energy and
applied source bias (VD), and to therefore model the behavior
in experiment.

In Fig. 6(a), we present the results of calculations of the
detector conductance as a function of energy (equivalent to
variation of Vs) and VD . The resulting figures clearly capture
the essential features of our experiment [see the corresponding
panels of Fig. 3(b)], reproducing the sharp dip that appears on
the lower-energy side of the resonance when VD is applied.
The amplitude of the resonances obtained from the model is
roughly half that of those observed in experiment. Given the
relative simplicity of our model, which does not attempt to treat
the specific microscopic details of our experimental system,
we consider this degree of agreement to be satisfactory. The
correspondence between experiment and theory allows us to
attribute our observations to a NEFR, involving a mechanism
that is indicated in Fig. 6(b). Here we indicate the influence
of using a variation of the swept-QPC gate voltage (Vs) to
scan the local density of states of this QPC past μS and

μD (compare the left and center panels). Close to thermal
equilibrium (vD = VD = 0), and at the low temperatures that
we consider here, this alignment may be achieved separately
for either the localized state [Fig. 6(b), left panel] or the 1D
continuum (center panel), but not simultaneously for both
features. This situation is overcome at nonzero VD , which
allows μS and μD to be separately aligned with I and D,
for an appropriate bias that matches �/e [Fig. 6(b), right
panel]. In other words, the nonequilibrium conditions allow us
to complete the three-path Fano interferometer, revealing the
coupling to the intruder. This point is made clear by comparing
the influence of nonequilibrium biasing on the usual two-path
[Fig. 6(c)] and three-path [Fig. 6(d)] FR. Figure 4(c) was
obtained for an intruder coupling t = 0 (i.e., no intruder
influence) and shows only a rigid shift in the position of the
detector resonance as VD is varied, without the appearance
of any dip. As we have described already, a similar shift is
also seen in experiment [see Fig. 4(b), for example], in which
the position of the detector resonance shifts to more-negative
Vs as VD is similarly increased. The shift is apparent again
in the results of Fig. 6(d), obtained this time with nonzero
coupling to the intruder, although the most dramatic feature
here is a strong distortion of the FR due to the presence of
the intruder. The distortion appears on the high-energy side
of the resonance, in agreement with the results of experiment
and consistent with the idea that the source of the intruder is
indeed the 1D subbands of the pinched-off (swept-) QPC.

While the good agreement between experiment and theory
in Figs. 4 and 6 provides strong support for our interpretation
of the NEFR, this agreement is dependent upon the choice
of model parameters (most notably t and v) whose values
cannot be determined from first principles. For this reason, it
is important to provide some kind of justification for the values
used for these parameters in the various curves in Fig. 6. The
essential point here is that, in order to fit the results obtained in
configuration 1, we require smaller parameter values (t = v =
30 meV) than those needed to fit the data for configuration 2.
This appears to at least be reasonable, since in configuration 1
the two QPCs are farther apart than in configuration 2 and
so the matrix elements t and v should be smaller in this
case. The other point that must be emphasized is that the
various nonlinear resonances in Figs. 4 and 6 cannot be fitted
using the usual Fano asymmetry (q) parameter. This is clearly
obvious for the data obtained in configuration 2, in which
the NEFR exhibits a “double-dip” structure that is completely
inconsistent with any known Fano form [5]. Even the nonlinear
data obtained in configuration 1, which appear reminiscent of
the classic q ∼ 1 line shape, however, do not conform to the
universal Fano form. This point was emphasized previously in
our earlier study of the “magnetically tuned” FR [26], where
we showed that the dip that develops due to the intruder cannot
be fitted by the same q value needed to describe the peak due to
the discrete level. In the context of the nonlinear experiment of
interest here, this point can be understood by appealing to the
results of our theoretical model. Most notably, in Eqs. (A20a)
and (A20b) of the appendix, we present expressions for the
separate contributions to the NEFR from the discrete level and
the intruder, respectively. While the former contains a term
that resembles the usual Fano line shape, the latter modifies
this line shape under nonequilibrium conditions, so that the
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FIG. 6. (a) Model calculations of the NEFR for different system parameters. The top panels assume t = 30 meV and v = 30 meV, and are
intended to reproduce the top set of panels of Fig. 4(a). The lower panels, on the other hand, assume t = v = 40 meV, and capture the behavior
for the bottom set of panels of Fig. 4(a). (b) Schematic illustrations showing the level alignments in the system under different conditions. The
left and center panels are for thermal equilibrium (vD = VD = 0), where either the localized state (D, left) or the edge of the 1D subbands
(center) is aligned with the reservoir chemical potentials. Shown right, however, is the nonequilibrium situation, where the applied voltage (VD)
opens up an effective energy window that may be used to simultaneously couple to both D and I . (c) NEFR computed for t = 0, corresponding
to the usual two-path FR shown in the upper schematic of Fig. 1(a). The calculations assume v = 30 meV and are performed for different VD

(values indicated). (d) Similar NEFR (v = 30 meV, values of VD again indicated), but for t = 30 meV.

overall resonance can no longer be expected to be described
by Fano’s universal form.

IV. DISCUSSION

A. Connection to earlier work on Fano-interference schemes

Recently, there has been much attention devoted to the
observation of a nonlinear FR, in studies of the near-infrared
photoabsorption in self-assembled quantum dots [24]. In this
experiment, strong mono-energetic laser excitation was used to
reveal clear evidence of Fano interference in the quantum-dot
absorption process. The interference arose from the presence
of two distinct pathways for excitonic transitions, the first
involving direct electron-hole excitation within the dot, while
the second involved a process in which this transition was
mediated by an intervening continuum. Physically, the source
of the continuum was a wetting layer in close proximity to the
quantum dot, and the matrix element for transmission through
it could be increased by increasing the laser power. In other
words, the role of the nonlinear excitation in this experiment
was to form the usual two-path Fano geometry. More recently,
a similarly-tunable nonlinear FR has been considered [50] for
hybrid nanostructures, comprised of semiconductor quantum
dots coupled to metallic nanoparticles. In such systems, the
excitonic modes of the quantum dots and the plasmonic ones
of the nanoparticles correspond, respectively, to the discrete
and continuum states of a Fano scheme. These components are
then again coupled to one another through nonlinear excitation
to give rise to the FR. Both of these examples [24,50] are
therefore different to the NEFR discussed here, in which the

Fano system is already formed under equilibrium and the
nonlinear electrical excitation (with nonmonoenergetic waves)
is instead used to reveal its coupling to an additional system
(i.e., the intruder).

Our demonstration of the NEFR represents another example
of a double-continuum FR, with strong conceptual overlap
with recent work on plasmonic Fano systems [51]. There,
the possibility of “continuum-state competition” has been
discussed, in which one continuum can significantly influence
the Fano interference exhibited by another. This possibility
was actually established in our earlier experimental study [26],
in which we demonstrated the capacity of our coupled-QPC
scheme to provide a realization of the intruder. To observe
the influence of this feature in near-equilibrium transport, it
was necessary in that work to apply a strong magnetic field
perpendicular to the plane of the device. By causing wave-
function compression of the different QPC states, this allowed
us to reduce the detuning between the discrete level and the
intruder, thereby allowing the signature of the latter to emerge
in the detector conductance. The approach here, in contrast, is
very different, making use of nonequilibrium biasing to reveal
the coupling to the intruder, without the need for a magnetic
field. This capacity to implement the NEFR by all-electrical
means moreover provides us with a useful scheme to perform
spectroscopy of the intruder system (see below), something
that was not directly possible in the magnetic-field studies.

Finally, we note that, in recent theoretical work [52], a
generalized description of FRs in the presence of dissipation
was developed. The essential conclusion reached by the
authors of that work was that the dissipation results in a
modified FR, whose line shape now features an additional
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Lorentzian contribution. The situation in our experiment is
very different, since we consider how the FR line shape is
modified by the introduction of the intruder, when it provides
an additional path for coherent interference in the system. The
resulting line shape in this case reflects the specific form of the
density of the states of the one-dimensional intruder, and we do
not treat the role of dissipation at all in our theoretical model.
The essential agreement that we achieve between experiment
and our more-restricted theory suggests that, at least in the
low-temperature regime that we consider, dissipation does not
play a primary role in influencing the line shape of the NEFR.

B. Does a localized state really form in QPCs?

While the emphasis in this study has been on the use
of coupled QPCs to demonstrate the NEFR, our results
also have additional impact in terms of their relevance to
ongoing discussions, as to whether a localized state can in
fact form spontaneously in a QPC at pinch-off. The most
recent contribution to this debate has come in the form of
measurements of the electronic magnetization of QPCs from
nuclear magnetic resonance [53]. In that work, the authors
inferred a smooth change in magnetization as a function of
QPC barrier height and used this result to conclude that no
localized state is formed within the QPC. Our experiments
clearly contradict this interpretation; most notably, the NEFR
relies at its core on the existence of a discrete level in the
pinched-off QPC. From our prior work [26,39,40], which
has shown that the quantitative features of the detector
resonance are reproduced systematically in multiple QPCs,
fabricated in different heterostructures, we can moreover rule
out a “chance” impurity as the source of this localized state.
We also emphasize an important difference between our
nonlocal transport investigations and the local measurements
of QPC conductance that are usually made in any experiment
(including that of Ref. [53]). Specifically, we have established
previously [26,39–41] that the FR exhibited by the detector
is observed immediately after the swept-QPC pinches-off. As
such, our measurements of coupled systems provide us with a
means to access information on the QPC electronic structure
in a regime where the conductance has vanished and which
is therefore inaccessible in local investigations of individual
QPCs.

Finally, we point out that our measurements of the NEFR
provide us with a technique to perform a spectroscopy of
the local density of states of the pinched-off QPC. More
specifically, our numerical simulations of the NEFR indicate
(see Fig. 4) that the nonlinear distortion of the FR should
onset once the energy window opened by the nonlinear bias
(VD) becomes comparable to the detuning [�, see Fig. 2(b)]
between the discrete level and the intruder. From the data of
Fig. 3, it would appear that the relevant value for this detuning
is in the range of a few meV. As noted earlier, this estimate is
consistent with the results of self-consistent calculations based
on spin-density functional theory [28].

V. CONCLUSIONS

In conclusion, we have demonstrated an approach to detect
weak (tunnel) coupling between quantum systems by making

use of a nonequilibrium Fano resonance that differs from the
usual implementations of this phenomenon. The essential idea
of this approach is to exploit the strong sensitivity of the
Fano resonance to the presence of additional transmission
pathways, as a means to identify the coupling of some host
to an intruder. Crucially, our nonequilibrium scheme allows us
to detect the presence of “hidden” components within some
system, even while they remain “invisible” in near-equilibrium
transport. For a proof-of-concept demonstration of this phe-
nomenon, we implemented an electron-wave interferometer
from mesoscopic quantum point contacts. Against a backdrop
of continued theoretical interest [52,54] in the potential
applications of FRs, our experiment serves to demonstrate
the rich physical behavior that can be realized by extending
the Fano interferometer beyond its usual two-path form.
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APPENDIX: MODELING THE NONEQUILIBRIUM
FANO RESONANCE

We model the system by considering a localized state
(LS) and a 1D band, embedded in the junction formed
by three separate regions of two-dimensional electron gas
(2DEG). These three reservoirs are distinguished by their
electrochemical potentials μS , μD , and μF , corresponding
to the source, drain, and floating reservoirs, respectively.
Electrons in the source and drain reservoirs are connected
directly to each other via the rate w. They are also coupled to
the LS with rates vS and vD , and to the 1D band via rates tS and
tD . The LS and 1D band are also coupled to the third reservoir
(F) with rates vF and tF , respectively. The Hamiltonian for
this setup is written as

H =
∑
k∈χ

Eχknχk + ε0n +
∑

q

εqnq

+
⎡
⎣ ∑

k∈L,k′∈R

wc
†
kck′ +

∑
k∈χ

c
†
k(vχd + tχaq) + H.c.

⎤
⎦.

(A1)

Here, Eχk is the energy of an electron in reservoir χ = S,D,F ,
whereas ε0 and εq denote the energies of electrons in the LS
and the 1D band. The operators ck, d, and aq destroy electrons
in the reservoirs, the LS, and the 1D band, respectively, and n
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is the number operator. We omit any reference to spin in the
present case.

The expression for the stationary charge current flowing
between the source and drain can be written

I (V ) = ie

�

∑
k∈S

(fS(εk)Q>(εk) + fS(−εk)Q<(εk)), (A2)

where the lesser/greater form, Q</>(ω), of the propagator
Q(z) describes the physics of the electron bath in the drain and
of the electrons in the swept-QPC, as well as the interactions
in the model. fχ (ω) = f (ω − μχ ) is the Fermi function at the
chemical potential μχ .

1. Standard Fano resonance

Ignoring, for now, the presence of the propagating 1D states
in the swept-QPC, we can factorize Q</>(ω) according to

Q</> =
(

vS + wvD

∑
k

gr
k

)
Gr�</>Ga

(
v∗

S + w∗v∗
D

∑
k′

ga
k′

)

+
[
|w|2 + 2Re

{
wvD

[
v∗

S + w∗v∗
D

∑
k′

ga
k′

]
Ga

}]

×
∑

k

g
</>

k . (A3)

We introduce the notation

A = vS + wvD

∑
k∈D

1

ω − Ek
, (A4a)

B = πwvD

∑
k∈D

δ(ω − Ek), (A4b)

and define the Fano factor q = A/B. We further notice that

wvD

∑
k∈D

g
</>

k (ω) = (±i)2fD(±ω)B, (A5a)

|w|2
∑
k∈D

g
</>

k (ω) = (±i)2fD(±ω)
|B|2

D/2

. (A5b)

Finally, we also have Gr (ω)�</>(ω)Ga(ω) =
�</>(ω)|Gr (ω)|2, where

�</>(ω) = (±i)
∑

χ=S,D,F

fχ (±ω)
χ, (A6a)

|Gr (ω)|2 = 1

|ω − ε0 − �r (ω)|2 = 1

(
/2)2

1

ε2 + 1
. (A6b)

Here, we have defined ε = (ω − ε0 − Re�r )/(
/2), with

 = −2Im�r (ω) = ∑

χ 
χ and 
χ = 2π
∑

k∈χ |vχ |2δ(ω −
εk). In this way, we obtain

Gr (ω)�</>(ω)Ga(ω)

= (±i)
fS(±ω)
S + fD(±ω)
D + fF (±ω)
F

(
/2)2

1

ε2 + 1
.

(A7)

Substituting these expressions into that for the current, we find
that

I (V ) = 4
e

�
|B|2

∑
k∈S

(fS − fD)

(

D


2

q2 + 1

ε2 + 1
+ 1


D
+ 2




εq − 1

ε2 + 1

)

+ 4
e

�
|B|2

∑
k∈S

(fS − fF )

F


2

q2 + 1

ε2 + 1
. (A8)

In the limit 
S/
D � 1, 
F /
D � 1 where 
 ≈ 
D , the
current reduces to

I ≈ 4e

�

∑
k∈S

|B|2



(fS(εk) − fD(εk))
(ε + q)2

ε2 + 1
, (A9)

which gives the typical Fano interference formula for a single
LS in the propagating pathway. Using nonequilibrium Green
functions we have, hence, established a straightforward route
to obtain the classic expression [5,6] for the Fano resonance.

2. Nonequilibrium Fano resonance

To describe the nonequilibrium Fano resonance, we now
include the propagating states in the swept-QPC and employ
the same method as above to obtain

Q</> =
⎡
⎣|w|2 + |tS |2|tD|2

∣∣∣∣∣
∑

q

ar
q

∣∣∣∣∣
2
⎤
⎦ ∑

k∈D

g
</>

k

+ 2Re

{[
vS + wvD

∑
k∈R

gr
k + wtSt

∗
D

∑
q;k∈D

ar
qg

r
k

]

× Gr

[
w∗v∗

D + w∗t∗S tD
∑

q′
aa

q′

]} ∑
k′∈D

g
</>

k′

+
[
vS + wvD

∑
k∈D

gr
k + wtSt

∗
D

∑
q;k∈D

ar
qg

r
k

]

× G</>

[
v∗

S + w∗v∗
D

∑
k′∈D

ga
k′ + w∗t∗S tD

∑
q′;k′∈D

ga
k′a

a
q′

]

+ |tS |2
[

1 + 2|tD|2Re
∑

q;k∈D

gr
ka

r
q

] ∑
q′

a
</>

q′

+ 2Re

{[
vS + wvD

∑
k∈D

gr
k + wtSt

∗
D

∑
q;k∈D

ar
qg

r
k

]

× Grw∗t∗S tD
∑
k′∈D

gr
k′

} ∑
q′

a
</>

q′ . (A10)

Here we define the parameters

Ã = vS + wvD

∑
k∈D

Re gr
k + wtSt

∗
D

∑
q;k∈D

Re ar
qg

r
k, (A11a)

B̃ = − wvD

∑
k∈D

Im gr
k − wtSt

∗
D

∑
q;k∈D

Im ar
qg

r
k, (A11b)

and q̃ = Ã/B̃. Using G</> = �</>|Gr |2 with Gr and �</>

defined as in the previous case, we can write the third contri-
bution (second line) to Q</> as 4|B̃|2(|q̃|2 + 1)�</>/[(ε2 +
1)
2], which has the same functional appearance as the
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corresponding contribution to the standard Fano resonance.
Similarly, we can write the first contribution (first line) to
Q</> as

(±i)2fD(±ω)

∣∣−wvD

∑
k Im gr

k − wtSt
∗
D

∑
qk Im ar

qg
r
k

∣∣2

−∑
k |w|2Im gr

k

= (±i)4fD(±ω)
|B̃|2

D

, (A12)

under the condition that Re
∑

k gr
k ≈ 0, which holds for the

metallic state in the 2DEG. By the same token, we can then
also write the second contribution (first line) as

(±i)4fD(±ω)Re{B̃(q̃ − i)Gr B̃∗}

= (±i)8fD(±ω)
|B̃|2



εq̃ − 1

ε2 + 1
. (A13)

Inserting the first three contributions from Eq. (A10) into the
current, we obtain

ILS = 4
e

�
|B|2

∑
k∈S

(fS − fD)

(

D


2

q̃2 + 1

ε2 + 1
+ 1


D
+ 2




εq̃ − 1

ε2 + 1

)

+ 4
e

�
|B|2

∑
k∈S

(fS − fF )

F


2

q̃2 + 1

ε2 + 1
, (A14)

which is formally the same expression as that for the standard
Fano resonance in Eq. (A8).

Finally, the fourth and fifth terms (third line) in Eq. (A10)
can be written as

Re

[
|tS |2 + 2|tS |2|tD|2

∑
q;k∈D

gr
ka

r
q + 2B(q̃ − i)

×Grw∗t∗S tD
∑
k′∈D

gr
k′

] ∑
q′

a
</>

q′ = AS

∑
q

a</>
q . (A15)

Since the propagator aq for the propagating states in the
swept-QPC couples to electrons in both the source and drain
reservoirs we have

ar/a
q (ω) = 1

ω − εq ± iγ /2
, (A16a)

a</>
q (ω) = (±i)

∑
χ

fχ (±ω)γχ |ar
q(ω)|2, (A16b)

with γ = ∑
χ γχ and γχ = 2π

∑
k∈χ |tχ |2δ(ω − Ek). Sum-

ming over the momenta q, we obtain [setting κ2
± = 2N0(ω −

εsw ± iγ /2)]

∑
q

∣∣ar
q(ω)

∣∣2 =
∫ ∞

0

1

|ω − εq + iγ /2|2
dq

2π

= N0

γ

(
1

κ+
+ 1

κ−

)
. (A17)

The corresponding contribution to the current therefore be-
comes

I1D = e

�
AS

∑
qk∈S

[γD(fS − fD) + γF (fS − fF )]
∣∣ar

q

∣∣2
.

(A18)

3. Differential conductance

We assume that μS = μD + eV , μF = μD + αF eV , and
μD = 0, with 0 � αF � 1, so that the (differential) conduc-
tance from Eqs. (A14) and (A18) for can be written at low
temperatures as

dILS

dV
= 4

e2

�
|B|2

∑
k∈S

[(

D


2

q̃2 + 1

ε2 + 1
+ 1


D

+ 2




εq̃ − 1

ε2 + 1
+ 
F


2

q̃2 + 1

ε2 + 1

)
δ(εk − eV )

− αF δ(εk − αF eV )

F


2

q̃2 + 1

ε2 + 1

]
, (A19a)

dI1D

dV
= e2

�
AS

∑
qk∈S

[(γD + γF )δ(εk − eV )

− αF γF δ(εk − αF eV )]
∣∣ar

q(εk)
∣∣2

, (A19b)

respectively. Physically, the parameter αF accounts for the
voltage drop between the floating and right reservoirs, and
is dependent on charge accumulation around the swept-QPC.
In correspondence to to the experimental situation, we take
the limit 
S/
D � 1, 
F /
D � 1 where 
 ≈ 
D , and
γD/γF � 1. The conductances are then dominated by

dILS

dV
= 4

e2

�

∑
k∈S

|B|2



(ε + q̃)2

ε2 + 1
δ(εk − eV ), (A20a)

dI1D

dV
= e2

�
ASγF

∑
qk∈S

[δ(εk − eV )

− αF δ(εk − αF eV )]
∣∣ar

q(εk)
∣∣2

. (A20b)

This shows that the contribution from the LS generates
a standard Fano-resonance in the conductance when the ε0

is swept through the chemical potential, behavior described
by the ratio (ε + q̃)2/(ε2 + 1). The contribution from the
intruder generates, on the other hand, a signature with the
characteristic shape of the 1D density of electron states, as can
be seen from the presence of the integrated 1D Green function∑

q |ar
q(ω)|2 ∼ ∑

s=± 1/
√

ω − εsw + isγ /2. The difference
in the parentheses signifies that the 1D density of electron
states is available only when there is a finite voltage drop across
the swept-QPC, that is, when this QPC is in a nonequilibrium
state.
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