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Thermomechanical analysis of two-dimensional boron monolayers
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Using density functional theory calculations (both perturbed and unperturbed) as well as thermodynamic and
ballistic transport equations, what follows investigates thermal and mechanical properties of two-dimensional
boron monolayers (δ6, α, δ5, and χ3 sheets with respective vacancy densities η = 0, 1/9, 1/7, 1/5) as they
relate to the vacancy density. The triangular (δ6) sheet’s room-temperature phonon and electron thermal
conductances are found, respectively, to be roughly 2.06 times and 6.60 times greater than those of graphene.
The Young’s moduli, calculated from longitudinal and transverse sound velocities are in good agreement with
those obtained from elastic constants. Values range from 171 to 619 N/m, two of which (619 N/m for α sheet
and 546 N/m for δ5 sheet) exceed graphene’s Young’s modulus (∼340 N/m). It is determined that the vacancy
density has a diminishing effect on both the phonon heat capacity at constant volume and the phonon ballistic
thermal conductance, but no regular correlation on the electron heat capacity and electron ballistic thermal
conductance.
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I. INTRODUCTION

Like carbon, boron is one of the few elements with
pure, freestanding, and single-layer structures. Starting from a
bidimensional repetition of equilateral triangles, a plethora of
such two-dimensional (2D) structures has been predicted [1–5]
by increasing the ratio of hexagon holes to the number of
atomic sites in the original triangular sheet within one unit cell,
namely, the hexagonal vacancy density η. Plus, a relationship
among the vacancy density, the stability, and the morphology
of boron sheets has been abduced [1–6]. Stable boron sheets
with η between and including 0 and 1/9 are buckled. Those
with η between 1/9 and 1/5 (excluding the former and
including the latter) are flat. Those with η greater than, and
excluding 1/5, are unstable.

Among all the predicted boron sheets, the synthesis of
δ6 (η = 0), β12 (η = 1/6), and χ3 (η = 1/5) has recently
been reported [7–9], albeit weakly bounded to the substrate.
The synthesis of δ6 [9] was done under ultrahigh-vacuum
conditions using a solid boron atomic source as a precursor
and atomic scale characterization to confirm its predicted
anisotropic buckling. The synthesis of β12 [8] and χ3 [8]
was done on Ag(111) surface in ultrahigh-vacuum chamber
employing molecular beam epitaxy (MBE) thereby confirming
their flat morphology. Earlier [10] and subsequent computa-
tional studies [9] further confirmed the anisotropic nature of
elastic moduli of δ6.

Given the relevance of the vacancy density to the stability
and shape of 2D boron sheets, its impact on thermal properties
is not only to be expected but is also worth exploring, which
is what the present investigation purports to do. The phonon
and electron heat capacity at constant volume per unit area
along with the phonon and electron thermal conductances
are calculated on the basis of the previously calculated
phonon spectra and electronic band structures for four boron
sheets: δ6, α, δ5, and χ3 (with vacancy densities η = 0,
1/9, 1/7, and 1/5, respectively). The lattice and electronic
band structures are calculated using the density functional
perturbation theory (DFPT) and the density functional theory

(DFT) implemented in the QUANTUM ESPRESSO package [11],
whereas thermal properties are computed using well-known
thermal equations [12,13]. The lattice and electronic thermal
conductances are computed implementing ballistic trans-
port equations [14,15] for 2D materials. Longitudinal and
transverse sound velocities, extracted as slopes of acoustic
branches, are used to estimate the Young’s modulus and
Poisson’s ratio of hexagonal and nonhexagonal 2D boron
lattices.

The previous properties are also compared and contrasted
with the same properties calculated for graphene in view of
its high lattice thermal conductance. A more minute rendition
of the theoretical and computational framework is laid out in
the next section. The presentation of, the comments on, the
discussions about, and the conclusions from the results will
ensue in the successive section.

II. MODELS AND METHODS

A. Phonon and electronic spectra

Both DFT and DFPT calculations were performed using
their numerical implementations in QUANTUM ESPRESSO [11].
Initial lattice parameters, angles, atomic positions, and sym-
metries for δ6, δ5, and χ3 sheets are taken from Kunstmann
et al. [10] and Wu et al. [6] (see Table I for relaxed structural
parameters). The geometry optimization was done setting
the plane-wave cutoff energy to 500 eV, the total energy
convergence criterion to 5.0 μeV/atom, the criterion for
the force on all atoms to less than 2.0 meV/atom, and the
vacuum distance to 30 Å. The ultrasoft pseudopotentials and
the exchange-correlation functionals in the form of Perdew-
Burke-Ernzerhof (PBE) within the generalized gradient ap-
proximation (GGA) [16] are used in all calculations.

Wu et al. [6] used first-principles particle swarm optimiza-
tion (PSO) to stabilize the originally unstable α sheet resulting
in a structure with every two adjacent atoms (with coordination
number 6) moving upward and downward outside of the plane
by the same amount, 0.17 Å. In the said study, the lattice
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TABLE I. Relaxed structural parameters. Lattice constants (a, b), angle (γ ) between �a and �b, buckling, and space groups for δ6, α, δ5,
and χ3.

δ6 α δ5 χ3

a (Å) 3.30 2.82a 5.10 5.046b 4.54 4.47b 2.97 2.90b

b (Å) 1.61 1.60a 5.10 5.044b 4.54 4.47b 4.54 4.44b

γ (º) 59.24 90.00a 120.00 59.99b 60.00 120.00b 70.89 70.95b

Buckling (Å) 0.89 0.82a 0.14 0.17b 0.00 0.00b 0.00 0.00b

Space group p1 pma p3 p3b p3 p3b p1 p1b

aKunstmann et al. (Ref. [10]).
bWu et al. (Ref. [6]).

constants are slightly different, 5.046 vs 5.044 Å. The approach
used in this investigation entailed (1) relaxing randomly and
slightly buckled α sheets, and (2) selecting the structure
with the minimum energy. Unlike the α′ sheet proposed by
Wu et al. [6], the previous approach resulted in a structure
similar to the original α sheet with the lattice constants being
equal (5.10 Å), and adjacent boron atoms (with coordination
number 6) moving outside of the plane upward and downward
by the same amount (0.14 Å). The resulting phonon spectrum
is more symmetric than that of the α′ sheet proposed by Wu
et al. [6]. For the sake of simplicity, the buckled α sheet will
be referred to as the α sheet. The relaxed δ6 boron sheet shows
a buckling of ∼0.89 Å in line with 0.82 Å obtained using
the local density approximation (LDA) [10]. Boron sheets δ5

and χ3 are found to be flat (no buckling) in accordance with
comparable studies in the literature [5,6]. For the geometry
optimization process as well as the wave function calculation, a
uniform k-point grid of 50×70×1, 30×30×1, 20×20×1, and
30×50×1 for δ6, α, δ5, and χ3 boron sheets, respectively, were
used. The dynamical matrix for the calculation of phonon fre-
quencies are computed on a uniform q-point mesh of 7×10×1,
8×8×1, 5×5×1, and 5×5×1 for δ6, α, δ5, and χ3 boron sheets,
respectively.

B. Heat capacity and ballistic thermal conductance

The phonon or electronic heat capacity at constant
volume per unit area, Cphn/el(T ) = 1

A(�a,�b)
( ∂Ephn/el (T )

∂T
)v , can be

obtained from the phonon, Ephn(T ) = ∑
�q,s[nBE(ωs(�q),T ) +

1
2 ]�ωs(�q), or electronic, Eel(T ) = 2

∑
�k,n nFD[εn(�k),T ]εn(�k),

energy where �q is the phonon wave vector, s is the
phonon mode index, �k is the electron wave vector, n is

electron band index, nBE[ωs(�q),T ] = (e
�ωs (�q)
kB T − 1)−1 is the

Bose-Einstein distribution, nFD[εn(�k),T ] = (e
εn (�k)−εF

kB T + 1)−1

is the Fermi-Dirac distribution, and A(�a,�b) = N�q/�k‖�a×�b‖
is the sample area, N�q/�k being the number of phonon or
electron wave vectors in the Brillouin zone. This number is
chosen as the number of points in the k-point sampling for
the geometry optimization (see Sec. II A). It also represents
the total number of unit cells. The area of a single unit cell is
‖�a×�b‖ where �a and �b are the vectors whose magnitudes are
the lattice constants (see Sec. II A). Ballistic thermal transport
equations [14,15] sum up the individual contributions of the
two heat carriers involved in the chosen thermal processes,

namely, phonons [see Eq. (1)] and electrons [see Eq. (2)].

κphn,�α(T ) = 1

8π2

∑
s

∫
dqx

∫
dqy�ω(�q)|v�α,s(�q)|∂nBE

∂T
,

(1)

κel,�α(T ) = 2

8π2

∑
n

∫
dkx

∫
dky(ε − εF )|v�α,n(�k)|∂nFD

∂T
,

(2)

where the phonon, v�α,s(�q) = ∂ωs (�q)
∂q�α

, and electron, v�α,n(�k) =
1
�

∂εn(�k)
∂k�α

, velocities determine the direction, �α, of the transport
x (horizontal) or y (vertical). The phonon and electron heat
capacities as well as the phonon and electron ballistic thermal
conductances were calculated for graphene as well.

C. Young’s modulus and Poisson’s ratio

Two-dimensional (2D) elastic moduli calculated through
Eq. (3) are obtained combining the relations of longitudinal
(cL) and transverse (cT ) speeds of sound to 2D bulk (K) and
shear (G) moduli [17] with the relations of 2D bulk and shear
moduli to the Young’s modulus (E) and the Poisson’s ratio
(ν) [18].

να/δ5 = 1 − (
cT

cL

)2

νδ6/χ3 =
(

cL

cT

)2
−2(

cL

cT

)2
+2

⎫⎪⎪⎬
⎪⎪⎭

⇒ E = 2(1 + ν)σc2
T . (3)

In Eq. (3), the expression for να/δ5 is chosen because of α,
and δ5 sheets’ hexagonal symmetry. The expression for νδ6/χ3

is chosen because of δ6 and χ3 sheets’ rectangular symmetry
and better ability to reproduce similar calculations through
elastic constants [9]. cL and cT are obtained by finding the
best fitting coefficients, cn, for the longitudinal and transverse,
ωLA/TA(|�q|) = c0 + cL/T |�q| + ∑6

n=2 cn|�q|n, acoustic disper-
sion relations around �. The surface density, σ = Natm

‖�a×�b‖ , is

expressed in terms of the unit cell area, ‖�a×�b‖, the number of
atoms per unit cell, Nat , and the mass of the boron atom, m.

III. RESULTS AND DISCUSSION

A. Phonon and electronic spectra

The crystal structure of the phonon and electronic spectra
for δ6 [Fig. 1(a)], α [Fig. 1(b)], δ5 [Fig. 1(c)], and χ3 [Fig. 1(d)]
are evincive of their stability (no imaginary frequencies) and
metallicity (no gap around the Fermi energy level). While δ6
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FIG. 1. Boron sheets’ phonon spectra and electronic band structures. Top view and Brillouin zone, phonon spectrum, electronic band
structure for (a) δ6 boron sheet (η = 0), (b) α boron sheet (η = 1/9), (c) δ5 boron sheet (η = 1/7), (d) χ3 boron sheet (η = 1/5). Black
frames indicate the extent of the primitive cell, red circles atoms sticking out of the plane upward, blue circles atoms sticking out of the plane
downward. The dashed red line is the Fermi energy level. Acoustic branches near �, longitudinal (LA), transverse (TA), and flexural (ZA) are
zoomed into the insets of the phonon spectra.

and α sheets are buckled in a manner described in Sec. II
and drawn in Figs. 1(a) and 1(b) with red (up) and blue
(down) circles, δ5 and χ3 sheets are flat in their most stable
configurations. The anisotropy of δ6 and χ3 sheets is observed

through the difference in the dispersion relation around �

between [� → X0] and [� → X2] for δ6 sheet and between
[� → Y0] and [� → Y2] for χ3 sheet. Longitudinal (LA),
transverse (TA), and flexural (ZA) acoustic branches are

165434-3



THIERRY TSAFACK AND BORIS I. YAKOBSON PHYSICAL REVIEW B 93, 165434 (2016)

FIG. 2. Boron sheets’ thermal properties. Effect of the vacancy
density, η, on the (a) phonon heat capacity at constant volume per
unit area, (b) ballistic phonon thermal conductance, (c) electron heat
capacity at constant volume per unit area, (d) ballistic phonon thermal
conductance. The inset in (c) indicates graphene’s electron heat
capacity per unit area roughly three orders of magnitude lower than
that of boron sheets. In (b,d), solid lines refer to the x direction and
dashed lines refer to the y direction. For graphene, α, and δ5, solid and
dashed black lines are overlapped. The inset in (d) further elucidates
the difference of electron thermal conductance for χ3 depending on
the direction.

zoomed into the insets in the phonon spectra of Figs. 2(a)–2(d)
to highlight the area used in the polynomial fitting (Sec. II C)
from which sound velocities are extracted.

B. Heat capacity and ballistic thermal conductance

The detrimental effect of the vacancy density on boron
sheets is observed in the phonon contribution to the heat
capacity at constant volume per unit area [Fig. 2(a)] and
the phonon contribution to the ballistic thermal conductance
[Fig. 2(b)] where both x (solid lines) and y (dashed lines)
directions are considered. In fact, from δ6 (η = 0 blue lines)
and α (η = 1/9 green line) to δ5 (η = 1/7 red line) and χ3

(η = 1/5 turquoise lines), the phonon heat capacity and the
phonon thermal conductance tend to decrease as the vacancy
density increases.

The calculated phonon and electron heat capacities as well
as phonon and electron ballistic thermal conductances for
graphene [Figs. 2(a)–2(d)] were found to be in agreement
with similar calculations in the literature [19–22]. In both
phonon heat capacity at constant volume per unit area and
phonon ballistic thermal conductance, while graphene is
outperformed only by δ6 (in the x direction), an increase in the
vacancy density coincides with a decrease in the lattice thermal
properties. Such a behavior is related to the average interatomic
distance partly responsible for the vibrational frequencies that
decrease as the sheets become less dense.

Being directly proportional to the vibrational frequencies,
the internal energy will decrease with the vacancy density
thereby transferring the same dependence on related quantities
such as the lattice heat capacity and the lattice thermal

conductance, the latter being additionally contributed to by
the phonon velocities. An analogical detrimental impact of the
defect concentration on the thermal conductivity of silicene
was revealed by a molecular dynamic study [23]. To be
additionally noted is a further confirmation of the anisotropic
nature of δ6 and χ3 as well as the isotropic nature of α and
δ5. The ratio of the x-direction phonon thermal conductance
to the y-direction phonon thermal conductance in the high-
temperature regime (T > 1500 K) is roughly 1.55 and 1.10 for
δ6 and χ3, respectively, and nearly 1.0 for α, δ5, and graphene.
The anisotropic behavior of δ6 (1.55) appears to be chiefly
ascribed to its profound buckling (0.89 Å) responsible for the
mixing of in-plane sp2 orbitals with out-of-plane pz orbitals
in the x direction [4], thus favoring the phonon propagation
in the said direction. The anisotropic behavior of χ3 (1.10)
can be explained in terms of the directionality of its vacancy
arrangement. Looking at the χ3 sheet in the x direction, atoms
are more densely packed than they are looking at the same sheet
in the y direction, which is an indication of the heat flowing
more in the former direction than in the latter direction. It is
worth observing that the vacancy arrangement in both x and y

directions is almost identical in α, δ5, and graphene, hence the
isotropic ballistic thermal conductance observed thereof.

The regular correlation between the vacancy concentration,
η, and the phonon heat capacity and thermal conductance does
not occur in their electronic counterparts. Indeed, Figs. 2(c)
and 2(d) do not display a regular pattern of behavior between
the electronic contribution to the heat capacity or thermal
conductance and the vacancy density. Unlike the case of
lattice vibrations, the availability and speed of conductive
electrons is independent of the vacancy density which is
the reason why a regular correlation with the electron heat
capacity and the electron ballistic thermal conductance has
been found. It is nonetheless striking that the δ6-boron sheet
has a much higher electronic heat capacity and electronic
thermal conductance than all other sheets including graphene
(expectedly not as metallic as boron sheets). This observation
may have an explanation in terms of the morphology of the
triangular sheet where, because of the very small interatomic
distances, in-plane sp2 orbitals overlap much more than
they do in other sheets, thereby contributing to a greater
orbital delocalization, itself partly responsible for both a
greater number of conductive electrons and a higher electron
velocity [4]. The previous considerations thus conspire to the
triangular sheet’s superior electron heat capacity and electron
ballistic thermal conductance. It is also to be remarked that
δ6 and χ3 preserve their anisotropic nature (see difference
between solid and dashed lines) while α, δ5, and graphene
preserve their isotropic nature. This is supported by the
ratio of the x-direction electron thermal conductance to
the y-direction electron thermal conductance at room temper-
ature being roughly 0.75 and 1.32 for δ6 and χ3, respectively,
and nearly 1.0 for α, δ5, and graphene [see Figs. 2(c) and 2(d)].

C. Young’s modulus and Poisson’s ratio

A correlation has been found between the vacancy-density
dependence of the binding energy (Table II, row 2, taken from
Tang et al. [5]) and the calculated vacancy-density dependence
of the Young’s modulus and speeds of sound (Table II, rows
3, 5, and 6 considering soft directions). Indeed, the Young’s
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TABLE II. Mechanical properties. Binding energies (EBinding), Young’s modulus (E), Poisson’s ratio (ν), longitudinal speed of sound (cL),
and transverse speed of sound (cT ) for δ6, α, δ5, and χ3.

δ6(η = 0) α(η = 1/9) δ5(η = 1/7) χ3(η = 1/5)

EBinding (eV) 6.75a 6.85a 6.80a 6.58a

E (N/m) 171.03b 194.20c 618.93 545.617 259.98d 738.26e

ν 1.71×10−17b 6.05×10−16c 0. 562 0.578 3.55×10−18d 4.83×10−18e

cL (km/s) 10.52b 11.21c 17.65 16.91 15.18d 25.58e

cT (km/s) 7.65b 5.54c 11.68 10.98 10.50d 15.42e

aTang et al. (Ref. [5]).
bδ6’s soft direction, [� → X0] in Fig. 1(a).
cδ6’s hard direction, [� → X2] in Fig. 1(a).
dχ3’s soft direction, [� → Y0] in Fig. 1(d).
eχ3’s hard direction, [� → Y2] in Fig. 1(d).

modulus as well as the longitudinal and transverse speeds of
sound tend to relate to the vacancy density the same way
the binding energy relates to the vacancy density. Besides the
case of a buckled triangular sheet, they all tend to decrease
as the vacancy density increases. This correlation may be
expected because the binding energy informs the stability
and consequently the mechanical responses of the sheets. A
comparable study was done by Jing et al. [24] on graphene
where an increase of the defect concentration produces a
decrease in the Young’s modulus, the trend of which is
indicated by the binding energy.

The Young’s moduli in Table II (second row) for δ6

(171.03 N/m) and χ3 sheets (256.0 N/m) in the soft directions
([� → X0] and [� → Y0] for δ6 and χ3, respectively) appear to
be lower than those (194.20 N/m for δ6 and 738.26 N/m for χ3)
in the hard directions ([� → X2] and [� → Y2], respectively).
The aforementioned observation, although quantitatively par-
tially in line with calculations from elastic constants [7] in the
case of δ6 (170 and 398 N/m), confirms the strong anisotropy
of the said sheets, from a mechanical perspective.

Longitudinal and transverse sound velocities (Table II, rows
5 and 6) calculated as described in Sec. II and fed into Eq. (3) to
obtain the Young’s modulus and the Poisson’s ratio, also follow
the trend indicated by the binding energies of the sheets. In δ6’s
and χ3’s hard directions, the longitudinal and transverse speeds
of sound were different from those in the soft directions.

The very low Poisson’s ratio for the δ6 sheet in Table II
(row 4) also appears to be in qualitative agreement with calcu-
lations from elastic constants [9]. The mechanical information
about boron sheets obtained from vibrational spectra, although
expectedly less quantitatively accurate than a more rigorous ab
initio approach based on derivatives of the total energy of the
layers with respect to their lattice constants, shows nonetheless
a sound qualitative insight into the mechanical behavior of the
sheets in relation to their intrinsic vacancy concentrations.

Overall, the correlation of the vacancy density to the
mechanical and thermal properties appears directly due to
the correlation between the vacancy density and the bonding
arrangement discussed in the physics literature [4]: The
structures whose valence electrons most effectively fill in-
plane sp2 orbitals do form a stronger network of σ bonds
than the structures whose electrons partially fill weaker out-
of-plane pz orbitals [4]. Since the distribution of hexagonal
holes (vacancies) and triangles determines the effectiveness of

in-plane sp2 orbital filling, it therefore further determines the
stiffness/modulus of the sheet, E. The direction dependence
of orbital filling on the basis of symmetry, vacancy density,
and buckling originates the mechanical anisotropy observed
in δ6 and χ3. The speed of sound is controlled by the stiffness
and the mass density σ , as c ∝ (E

σ
)1/2 and σ varies by only

20%, and therefore c’s behavior mostly tracks the stiffness, as
direct computations confirm (Table II, row 3). It is also worth
noting that isotropic sheets α and δ5 appear to be roughly
1.7 times stiffer than graphene because the stiffness is a direct
combination of the square of the transverse speed of sound
and the surface density [see Eq. (3)]. While the transverse
speeds of sound (∼11 km/s) for isotropic boron sheets (α
and δ5) are only 0.81 times that of graphene (13.6 km/s),
their surface densities (∼0.61 mg/m2) are ∼10 times that
of graphene (0.063 mg/m2) thereby leading to an expected
superior stiffness. Therefore, on the basis of small variations
on the transverse speed of sound, the atomic packing, related to
the vacancy concentration, is an indication of the interatomic
bond strength as well as the material’s stiffness.

Turning once more to the thermal conductance, we note
that the dense packing of the δ6 triangular sheet logically
(and per calculations) makes interatomic vibrations more
rigid. This leads to higher phonon group velocities and,
accordingly, greater integral transport [Eq. (1)], as we see
indeed in the highest δ6 curve of Fig. 2(b). Regarding electronic
contribution, again the ∼3 times higher density of states in the
triangular (δ6) than in the α sheet [4] is apparently responsible
for a noticeably higher electron heat capacity and electron
thermal conductance seen in Figs. 2(c) and 2(d).

While noting that most of our analysis revolves around
ballistic transport (which is in fact very relevant in the context
of modern nanoscale devices and measurements, often in the
submicron range—that is likely below the mean-free path),
it can be complemented by at least an estimate in the other
limit of very short mean-free path. In this case, the high-
temperature minimum phonon conductivity [25]—κmin =
1
2 (π

6 )1/3kB( Nat

h‖�a×�b‖ )2/3(cLA + 2cTA), h = 3.84 Å is the boron
van der Waals diameter—provides a lower bound usually
achieved in the high-temperature regime. The same estimate
for α and δ5 yields greater high-T phonon conductivity (4.61
and 4.23 W/mK, respectively) than for δ6 (3.32 W/mK) and χ3

(3.76 W/mK) in their respective soft directions, conforming
to the vacancy-density dependence in Table II.
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The previous ballistic-limit/small-distance analysis might
encounter some discrepancies for buckled sheets (δ6 and α)
because of their puckered nature. In fact, two-dimensional
out-of-plane modes (ZA) are expected to have a significant
contribution to the thermal conductivity both at long and small
distances as evinced in the case of graphene [26] (ZA mode
contributes roughly 75% of the total thermal conductivity).
However, buckled structures limit the out-of-plane vibrations
insofar as the umklapp phonon-phonon scattering time [27],
τZA
U ∝ exp( 3T

θZA
), is inversely proportional to the out-of-plane

Debye temperature, θZA, that tends to increase with the
buckling of the structure. As a result, the more buckled the
structure, the smaller the out-of-plane inelastic scattering time,
τZA
U ; the more diffusive the transport; and the lower the thermal

conductivity. The bucklings of stanene [28] (0.86–1.1 Å),
silicene [29] (0.44 Å), and phosphorene [30] (2.51 Å), just
to name a few, are greatly responsible for a significant
reduction in their thermal conductivities [31–33] in proportion
to the extent of the buckling. The buckling of α boron sheet
(0.14 Å) being very small compared to that of δ6 boron sheet
(0.89 Å), coupled with the binding energy difference between
the buckled α boron sheet and the flat α boron sheet [6]
(2 meV/atom) being very small compared to the binding
energy difference between the buckled δ6 boron sheet and
the flat δ6 boron sheet [10] (100 meV/atom), suggests that the
aforementioned high-T ballistic limit is more likely to apply
to α boron sheet but less likely to apply to δ6 boron sheet.
Moreover, δ6 boron sheet’s superior ballistic lattice thermal
conductance (roughly 2.06 times graphene lattice thermal
conductance at room temperature) is likely to translate into
a reduced thermal conductivity as well as a more diffusive
thermal transport.

IV. SUMMARY

A study of thermal and mechanical properties of boron
sheets has been presented. The study was performed feed-
ing thermodynamic equations, ballistic Boltzmann transport
formalism, and elasticity equations, the electronic and lattice
spectra. Electron and phonon spectra were obtained using den-

sity functional theory (DFT) as well as density functional per-
turbation theory (DFPT), both implemented in the QUANTUM

ESPRESSO package [11]. A diminishing effect of the vacancy
density on the heat capacity at constant volume and lattice bal-
listic thermal conductance is observed. A correlation between
the binding energy, the Young’s modulus, the Poisson’s ratio,
and the longitudinal and transverse speeds of sound in their
relationship to the vacancy density has been found. The elec-
tronic contribution to the thermal conductance was found not
to have a regular relationship with the vacancy density which
affects only the lattice vibrations, not the electron density.

Considering both heat carriers (phonons and electrons), the
present study reveals three outcomes: First, phonon thermal
quantities (heat capacity and thermal conductance) tend to
decrease with an increase in the intrinsic vacancy concentration
of boron sheets, while electron thermal counterparts appear
not to have a regular correlation with it. Second, the triangular
sheet’s (δ6) room-temperature phonon and electron ballistic
thermal conductances (in the x direction) are roughly 2.06
and 6.60 times greater than those of graphene, respectively.
Third, α sheet and δ5 sheet exhibit a higher (619 and 546 N/m)
in-plane stiffness (2D Young’s modulus) than graphene [34,35]
(∼340 N/m).

The remarkable thermal and mechanical responses of some
boron sheets raise additional questions as to not-yet revealed
mean free paths, scattering rates, and diffusive thermal
conductivity, as well as thermoelectric, magnetic, electrical,
and superconductive properties [36] and their dependence on
size (ribbons), morphology (sheet, cluster, tubes), chemical
doping, and functionalization. Answers to those questions
will certainly open the door to scientific and technological
breakthroughs to come.
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