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We study the effect of the Rashba spin-orbit interaction in the quantum transport of carbon nanotubes with
arbitrary chiralities. For certain spin directions, we find a strong spin-polarized electrical current that depends
on the diameter of the tube, the length of the Rashba region, and on the tube chirality. Predictions for the
spin-dependent conductances are presented for different families of achiral and chiral tubes. We have found
that different symmetries acting on spatial and spin variables have to be considered in order to explain the
relations between spin-resolved conductances in carbon nanotubes. These symmetries are more general than
those employed in planar graphene systems. Our results indicate the possibility of having stable spin-polarized
electrical currents in absence of external magnetic fields or magnetic impurities in carbon nanotubes.
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I. INTRODUCTION

Spintronics relies on a sensitive manipulation of the
interaction between the particle spin and its environment to
produce spin currents [1]. At the nanoscale, the production
of strong polarized currents is being explored extensively in
different systems [2–4]. The most immediate approach is the
use of external magnetic fields, but they are hard to control
at the nanoscale. A promising way is to employ materials and
devices capable of producing spin-polarized electrical currents
without external magnetic fields, by means of strong spin-
orbit interactions (SOI), such as two-dimensional transition-
metal dichalcogenides [5,6] or semiconductors [3,7,8]. Novel
analogs of graphene, such as silicene, germanene, and
phosphorene, share many of its interesting properties, but
with more promising features in this respect [9–11]. These
materials have been additionally proposed for their use in
valleytronics, as well as for quantum-confined structures
exhibiting interesting spin-dependent transport properties [12].
Indeed, the exploitation of spin-orbit effects for electronic
applications has resulted in the greatly active research field
of spin orbitronics [13].

Graphene, a material that presents a wealth of groundbreak-
ing applications, was seminally proposed in this spintronics
scenario as a possible quantum spin Hall insulator [14].
However, due to its small intrinsic SOI, it is unlikely to observe
the quantum spin Hall effect in graphene edges. Rather, it
presents characteristic long spin-diffusion lengths observed
at room temperature [15]. In fact, active routes to modify
graphene by hybridization [16–18] or by strain [19,20] exist.
In general, carbon nanostructures show an enhanced SOI effect
when the atoms are arranged in a cylindrical fashion such as
in carbon nanotubes (CNTs). Since the pioneering work of
Ando [21], several theoretical works have explored the role
of spin-orbit interactions in the electronic structure of carbon
nanotubes and curved carbon systems, such as bent and folded
graphene ribbons, in which the effects are enhanced because
of curvature [22–27]. Due to this increase, spin-orbit effects

could be measured in carbon nanotubes [28–30], opening the
way for their application in quantum computation [31,32] and
spintronic devices [33].

The Rashba spin-orbit (RSO) effect is expected when a
structural inversion asymmetry is produced [1,34,35]. There
are several ways to achieve such asymmetry in carbon nanos-
tructures. A successful route is to consider heavy adatoms
randomly spread on a graphene lattice [36]. In this line,
spin angle-resolved photoemission spectroscopy experiments
suggest that a large Rashba-type SOI can be tuned in graphene
over metals such as Au or Ni [16,37]. Likewise, the presence of
adatoms [38] or adsorbed molecules in the surface of CNTs,
such as DNA strands [39], enhances the Rashba interaction
due to the combined effect of rehybridization and breaking
inversion asymmetry. Recently, it has been experimentally
verified that DNA-wrapped CNTs act as spin filters due to
Rashba spin-orbit interaction [40].

In pure graphene, intrinsic spin-orbit effects are negli-
gible [41]. As mentioned above, curvature effects increase
spin-orbit splittings in carbon nanotubes to the meV range,
allowing their measurement [28,29]. Other strategies, such
as hydrogenation, proximity effects, or chemical functional-
ization, have been experimentally shown to boost the values
of spin-orbit interaction in graphene [17,42,43]. For instance,
in graphene grown by chemical vapor deposition spin-orbit
splittings around 20 meV were measured, due to the presence
of Cu atoms [42]. Intercalation of Au in graphene grown on Ni
has been reported to produce splittings up to 100 meV due to
hybridization with Au atoms [17], and even larger values have
been attributed to the presence of Pb in graphene samples [43].
It is reasonable to expect that such hybridization and proximity
effects can enhance the strength of spin-orbit interaction in
carbon nanotubes, rendering values of interest for spintronics.

However, the increase of SOI effects in order to allow
all-electrical control of spin currents conveys an important
drawback: it also affects the spin lifetime. One possible
strategy to correct this problem is to lower the dimension of
these systems, given that in one-dimensional structures spin
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scattering is reduced. For example, semiconductor quantum
wires have been proved to present an enhanced and tunable
Rashba effect in different experimental setups [44]. In this
regard, CNTs emerge as interesting candidates that, similarly
to quantum wires, have a nonplanar geometry. Therefore, a
plausible alternative to get structural inversion asymmetry and
the subsequent Rashba splitting in carbon nanotubes is to apply
an electric field perpendicular to the tube axis [45,46].

If a spin-polarized current from a ferromagnetic electrode is
injected in the nanotube, it will operate as a Datta-Das transis-
tor [47]: depending on the strength of the applied electric field,
the spin direction of the output current can be changed [45].
Another possibility is to exploit the Rashba interaction to
obtain a spin filter, i.e., a spin-polarized conductance from an
unpolarized input current without the use of magnetic fields or
ferromagnetic electrodes, by all-electrical means.

We explore this route for the obtention of spin-polarized
currents in carbon nanotubes. In a previous work, we have stud-
ied the role of symmetries in the spin-resolved conductance of
planar systems, particularly for graphene nanoribbons [48].
Here we extend our study to the nonplanar geometries of
carbon nanotubes, analyzing different tube chiralities and
extending our symmetry analysis to the corresponding three-
dimensional geometries. Our main results are the following:

(i) We show that for the optimal configuration which
maximizes the spin polarization of the conductance, namely,
with the electric field, the current and the spin projection
direction in perpendicular directions, all CNTs present a
remarkable spin-polarized current irrespectively of chirality.
This effect is robust with respect to the length of the Rashba
region and the radius of the nanotube.

(ii) We have checked that the one-orbital tight-binding
approximation gives a very good description of the spin-
resolved conductances, with minor numerical differences with
respect to the four-orbital tight-binding model.

(iii) We find that more general symmetries than those
applied in graphene nanoribbons are needed to account for the
relations between the spin-resolved conductances in carbon
nanotubes. In the case of planar systems, it was sufficient to
consider symmetry operations acting simultaneously in spatial
and spin spaces, whereas for carbon nanotubes we find that
the relevant symmetries may act in spatial and spin variables
independently.

(iv) Besides suggesting a possible path for spin devices
without magnetic fields based in carbon nanotubes, our
symmetry reasoning might be of use for other systems with
Rashba spin-orbit interaction, in which these symmetries can
play a role.

This work is organized as follows. In Sec. II we describe
the geometry of the system, the model employed for the
carbon nanotubes, and the computation of the spin transport
properties. Section III presents the results for spin-polarized
conductances in the optimal geometry, with the electric field,
the current, and the spin projection direction in perpendicular
directions. Section IV details the symmetry relations for
the spin-resolved conductances in carbon nanotubes with a
Rashba term for all spin-polarization directions. In Sec. V
we summarize our results and draw our conclusions. Finally,
the Appendix presents the spatial symmetries of finite-sized
carbon nanotubes.

contact L contact RElectric field z
y x

L

E

FIG. 1. Schematic view of the device geometry. Left (L) and right
(R) contacts are pristine CNTs without RSO interaction. The central
part of the device is a conducting CNT of length L, with Rashba
spin-orbit interaction induced by the presence of an electric field in
the z direction (red arrows) generated by two capacitor layers. The
directions x, y, and z are defined in the right part of the figure.

II. SYSTEM AND MODEL

A. Description of the system

The proposed system to obtain spin-polarized currents is
composed of a pristine carbon nanotube with a finite central
region of length L placed between two metallic gates which
can apply an external electric field, which produces a tunable
RSO interaction in this part of the nanotube. A schematic
view of the CNT device is shown in Fig. 1. The electric field
E inducing the Rashba spin-orbit interaction is taken in the
direction perpendicular to the tube axis (z direction), and it is
indicated by red arrows. Thus, the Rashba region corresponds
to the portion of the tube under the effect of the electric field.

We study several CNTs of different chiralities, radii,
and length of the Rashba region, considering different spin-
polarization directions (x, y, and z). As we are interested in
transport properties, we concentrate on metallic nanotubes,
with nanotube indices (n,m) verifying n − m = 3q, with q

integer including 0.

For an (n,m) CNT, its radius R is given by R =
√

3ac

2π
(n2 +

m2 + nm)1/2, where ac is the carbon bond length in graphene.
We give the length of the Rashba region in translational unit
cells, so that L = NT , with T = 3ac and

√
3ac for zigzag and

armchair tubes, respectively. For chiral nanotubes, L can be
substantially larger [49].

B. Model and method

Most of our calculations are performed within the one-
orbital tight-binding model employed in Ref. [48]. The
Hamiltonian of an undoped CNT with Rashba spin-orbit
coupling in the nearest-neighbor hopping tight-binding ap-
proximation [50,51] can be written as H = H0 + HR , where
H0 is the kinetic energy term, H0 = −γ0

∑
c
†
iαcjα , with

γ0 being the nearest-neighbor hopping and ciα and c
†
jα the

destruction and creation operators for an electron with spin
projection α in site i and j , respectively. The RSO contribution
is given by

HR = iλR

ac

∑

〈i,j 〉
α,β

c
†
iα[(σ × dij ) · ez]αβcjβ, (1)

with σ being the Pauli spin matrices, dij the position vector
between sites i and j , and α,β are the spin projection indices.
The electric field is along the unit vector ez. The Rashba
spin-orbit strength λR is given by the electric field intensity,
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its sign defined by the sense of the field. A value λR = 0.1γ0

will be used in this work, the same as in Ref. [48]. Note
that, although this value is very large with respect to the
SOI of a pristine carbon nanotube, the enhancements reported
for functionalized or decorated graphene [17,42,43] discussed
above indicate that similar values may be achieved in carbon
nanotubes with analogous techniques.

The conductance GLR
σσ ′(E) is calculated in the Landauer ap-

proach, in the zero-bias approximation, where it is proportional
to the probability that one electron with spin σ and energy E

in electrode L reaches electrode R with spin σ ′, by using
the Green’s function formalism [38,39]. The spin-resolved
conductance along the nanotube axis (x direction) is then
given by

GLR
σσ ′(E) = e2

h
Tr

[
�L

σ gr
σσ ′�

R
σ ′g

a
σ ′σ

]
. (2)

Here g
r(a)
σσ ′ is the retarded (advanced) Green’s function of the

conductor and �L(R)
σ = i[

∑r
L(R)σ −∑a

L(R)σ ] is written in terms

of the left (right) lead self-energies 	
r(a)
L(R)σ .

Assuming left to right conduction, we define the spin
polarization of the conductance in the i direction (i = x, y,

and z) as

Pi(E) = GLR
σiσi

− GLR
σi σ̄i

+ GLR
σ̄iσi

− GLR
σ̄i σ̄i

, (3)

where σ̄i stands for −σi . Note that i is the direction into
which the spin is projected. In the small-bias limit, this
magnitude is proportional to the i component of the spin
current. Other authors employ a normalized adimensional
polarization factor [39,52]; we choose this definition which
is directly related to the most commonly measured transport
quantity in low-dimensional systems, the conductance.

We suppose that an unpolarized charge current flows from
the left electrode through the Rashba region towards the
right electrode. In the Rashba region, spin scattering takes
place, giving rise to a spin-polarized current for certain spin
projection directions and system symmetries. Note that due to
the analytical expression for HR , if λR changes sign (i.e., when
inverting the sense of the electric field) the spin polarizations
on the x and y directions also change their sign, whereas
the polarization in the perpendicular direction (z axis) is
unaffected.

We will also use a four-orbital Hamiltonian able to take into
account the effects of curvature, in order to verify whether it
has any relevant contribution when compared to the simpler
one-orbital model.

III. SPIN-POLARIZED CURRENTS
IN CARBON NANOTUBES

For planar devices composed of graphene nanoribbons, and
just from symmetry considerations it is possible to conclude in
which spin direction a nonzero spin-polarized current can be
obtained [48]. Moreover, it can be also deduced that the optimal
spin projection direction to achieve the largest spin-polarized
current is perpendicular to both the current direction and the
external electric field, as can be inferred from the Rashba term
written in the continuum approximation, HR ∝ (σ × k) · E ,
where k is the wave vector of the carrier [35].

So, we start by studying the spin projection direction for
which the spin-polarized current is expected to be largest:
y for our choice of axes, as shown in Fig. 1. For this spin
projection direction, we always obtain a nonzero polarization
irrespectively of the geometry of the nanotube, as also happens
for planar systems [48].

A. Rashba spin-orbit interaction and chirality

Figure 2 shows the spin-dependent conductance and spin
polarization as functions of the energy of the carriers of three
instances of carbon nanotubes with different chiralities but
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FIG. 2. Spin-dependent conductances (top panels) and spin polar-
ization of the conductances as functions of the carrier energy (bottom
panels) of (a) armchair (9,9) CNT with N = 16 central unit cells under
RSO interaction; (b) zigzag (15,0) CNT with N = 9; and (c) chiral
(12,3) CNT with N = 6. The electric field (z) and spin-polarization
(y) directions are shown in the insets.
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similar radii and Rashba region lengths: an armchair (9,9)
and a zigzag (15,0) achiral CNTs, and a chiral tube (12,3).
It is noteworthy that for all tubes the polarization is null for
energies close to zero. This is because for this range of energies
there is only one open channel in the output (right) lead, so the
SOI does not produce any polarization due to symmetry and
current conservation reasons [52]. When the second valence
or conduction band of the nanotube leads enters, a sharp spin
polarization of the conductance is produced. The details of the
positions and the number of maxima of the spin polarizations
can be related to the onset of the specific conductance channels,
and therefore to the CNT chirality, as can be inferred from
the spin-resolved conductance panels. The polarization results
show electron-hole symmetry; Py(E) = −Py(−E).

Note that for this spin projection direction, the sign of the
polarization at a fixed electronic energy can be changed by
flipping the electric field, because the analytical expression
for HR in (1) makes the spin polarization on the y direction
change sign, suggesting another way for the application of
Rashba CNT systems.

All the polarizations of the conductances presented in
Fig. 2 mainly stem from the difference between G↑↑ and G↓↓
conductances, but the difference G↑↓ − G↓↑ is exactly zero
in the (9,9) and (15,0) cases, whereas it is negligible for the
(12,3) CNT. As is known from previous works [48,52], these
results should be ultimately related to the symmetries of the
systems, but we postpone the discussion for the next section.

Figure 2 also shows that the maximum values of the spin
conductance polarizations are similar for the three nanotubes
chosen, a hint that chirality does not play a crucial role for
this spin projection direction in this respect. In order to check
this observation more carefully, we present in Fig. 3 the spin
polarization of several tubes with various chiralities but with
similar radii and length of the Rashba region. The geometric
details of the tubes considered are presented in Table I. The
values of the maxima and their energy positions are quite close
for all the CNTs considered. The most important difference for
the bumps closer to the Fermi level of the pristine tube (zero
energy) is that they evolve into two split maxima when the
chirality of the tubes varies from θ = 30◦ [(8,8) CNT] to θ =
0◦ [(15,0) CNT]. This splitting is related to the appearance of
new channels in the pristine conductance of the corresponding
tubes, which obviously depend on the chirality. In all the results
we have found that the beginning of each bump coincides
with the entrance of a new electronic band of the pristine
nanotube constituting the leads. This fact is illustrated in Fig. 4,
which presents the band structures of three tubes with different
chiralities (the corresponding radii are given in Table I). The
spin polarizations of the conductances are also drawn in the
right panels as a color map, Py(E,L). These panels clearly
show that Py(E,L) is much greater when the energy coincides
with a new band of the pristine system, that is, when a new
conductance channel opens. The second and third bands above
(or below) the Fermi level of both zigzag and chiral CNTs
are very close in energy, giving rise to a double peak in the
polarization. The maximum values are around Py ∼ 4 e2/h.

For fixed energies between the maxima of Py(E), Fig. 4
shows an oscillating behavior of the polarization in terms of
the length of the Rashba region, Py(L). These oscillations are
related to the coupling between the electronic states inside
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FIG. 3. Spin-dependent polarization currents (for spins projected
in the y direction) for several carbon nanotubes with different
chiralities but with comparable radii and very similar Rashba lengths
L, as given in Table I.

the RSO region and the electronic states of the leads, where
no SOI is considered. For all the CNTs considered, the spin
scattering Rashba region could behave like a spin polarizer,
especially for the energies of the polarization bumps. In
these energy intervals, it can be possible to obtain a strongly
polarized output current from a nonpolarized input current in
a pristine CNT.

B. Radius dependence

As discussed above, an important parameter to be taken
into account is the CNT radius. A detailed analysis of the

TABLE I. Nanotube indices, chiral angle, radius (R), and length
of the Rashba region (L) for the set of nanotubes presented in Fig. 3.

(n,m) θ (deg) R (Å) L (Å)

(9,9) 30 6.10 39.36
(8,8) 30 5.42 39.36
(10,7) 24.2 5.79 42.04
(11,5) 17.8 5.55 40.28
(12,3) 10.9 5.38 39.06
(13,1) 3.7 5.30 38.40
(15,0) 0 5.87 38.34
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FIG. 4. Electronic band structures of (a) (15,0), (b) (9,9), and
(c) (12,3) CNTs without RSO interaction effects (left panels) and
with RSO (center panels). The right panels show spin-dependent
polarization maps, Py(E,L), as functions of the energy and the Rashba
region length. The spin-polarization intensity in units of e2/h is
plotted in a color scale.

dependence of the polarization on the tube radius is given in
Fig. 5 for the two families of achiral CNTs, (n,n) armchair
and (n,0) metallic zigzag (n = 3q) tubes. A color polarization
map, Py(E,R), explicitly shows the spin polarization as a
function of the energy and the tube radius. In the calculations
we have considered similar Rashba region lengths to compare
the spin-polarization features in the two families. The figure
shows how stronger polarization values are attained as the
CNT radius increases, as well as how the maxima get closer
to the Fermi energy. This is because for increasing radius, the
second conduction band (valence band for negative energies)
moves closer to the Fermi energy, providing the second channel
needed for the obtention of a polarized spin current. Thus, for
tubes with larger radii, spin polarization is more accessible.
Note that the values of the spin-polarized current do not
diminish in the plotted energy range, showing that the effect
is robust with respect to increasing tube radius. This is at
variance with the curvature-induced SOI, that diminishes for
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FIG. 5. Spin-dependent polarization maps, Py(E,R), as functions
of the energy and the tube radius for achiral armchair (left panel) and
metallic zigzag (right panel) families. Similar fixed Rashba region
lengths are considered, L = 4.92 nm and L = 5.12 nm for armchair
and zigzag tubes, respectively.

larger diameter nanotubes. Comparison to flat geometries,
i.e., graphene nanoribbons [48], shows that flat and curved
systems behave similarly under Rashba interaction for this
particular projection direction, which maximizes the effect.
Obvious differences arise due to the appearance of bands at
different energies, but the maximum values of Py are of the
same magnitude, and in both cases occur at the onset of new
conductance channels.

C. Multiorbital model

In order to assess the previous results, we have compared to
a more realistic tight-binding description. We have calculated
the band structure and the spin-polarized current of chiral
CNTs described by a four-orbital model employing the
Tománek-Louie parametrization [53]. As in this model the
tight-binding energy hoppings between two adjacent carbon
atoms depend on their positions, the effect of the tube curvature
is included.

The results for a (9,0) armchair CNT are shown in Fig. 6.
Close to Fermi energy, leaving aside the gap opening, the
electronic structure with a four-orbital model has no important
changes with respect to the one-orbital model. However,
some other differences appear, namely: (i) the electron-hole
symmetry is broken, as expected; (ii) when compared with the
one-orbital results, some bands move with respect to the Fermi
level.

With respect to the spin polarization, the most remarkable
difference in the energy interval studied here is the shift in
energy and the height of the peaks or bumps. In any case, the
spin-polarization gap is smaller within the four-orbital model.
This effect has been found for all chiralities, and not only for
those presented in Fig. 6.

As we have corroborated the nonzero polarization results
in the energy range of interest using the multiorbital model
with only some small quantitative differences, we conclude
that the more realistic model validates the main features of the
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shows the spin-dependent current polarizations calculated with the
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single-orbital approximation, which will be used in the rest of
this work.

IV. SYMMETRY CONSIDERATIONS

A. Symmetry analysis of the spin-resolved conductances

Up to this point, we have focused on the configurations that
maximize the spin-polarized current, without discussing the
symmetry considerations which could allow for the absence or
existence of spin-polarized currents for all spin projections. In
principle, one could expect that the same reasoning employed
for planar systems [48] should apply in this situation, namely,
to put the focus on symmetry operations acting simultaneously
on spatial and spin variables that leave the system (the
nanotube plus the direction of the electric field) invariant. This
would be equivalent to the planar geometry studied in previous
works [48,52].

In particular, if the nanotube unit cell is misaligned with
respect to the electric field, so it does not coincide with a
symmetry axis nor is included in any mirror plane, we expected
no symmetry relations for the spin-resolved conductances.
This was the case for the calculation presented in Fig. 2(a) for
an armchair (9,9) nanotube, because the applied electric field
was not contained in any of the nanotube symmetry planes, the
mirror plane My . However, the results for the conductances
found the difference GRL

↑↓ − GRL
↓↑ to be exactly zero (within

our numerical accuracy) for all rotation angles φ around the
nanotube axis, i.e., no matter if the mirror symmetry My is
present or not.

This assertion is illustrated in Fig. 7(a), in which we show
the difference between the spin-conserved �c = GLR

↑↑ − GLR
↓↓

(blue curve) and spin-flip �f = GLR
↑↓ − GLR

↓↑ (green dashed
curve) conductances in the y direction for a (9,9) CNT with
a Rashba region of 16 unit cells as a function of φ, at a fixed
energy E = −0.983γ0. The spin-flip conductances are equal
and independent of the rotation angle for this spin projection
direction. This equality points towards the existence of at least
one symmetry that we have not considered yet. We should
therefore look for more general symmetries, such as those
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FIG. 7. Difference between projected spin-conserved and spin-

flip conductances, �c and �f , as functions of the rotation angle for
an armchair (9,9) CNT with Rashba region length equal to 16 unit
cells, for a fixed energy E = −0.983γ0. The differences for the three
spin projection directions y, z, and x are labeled �y , �z, and �x ,
respectively.

operating independently in spatial and spin spaces [54,55]. On
the other side, the values of �c or �f for other spin-projection
directions oscillate, as presented in panels (b) and (c) of Fig. 7.
We must remark that the amplitudes of these oscillations are
much smaller than the difference between �c and �f in the y

direction.
Figure 8 shows the unit cells of the four instances of achiral

carbon nanotube unit cells with different symmetries, (n,n)
and (n,0), with n odd and even. The unit cells are oriented
in a symmetrical fashion with respect to the electric field
Ez. We first discuss the armchair (7,7) CNT, which has the
same symmetry operations as the previously discussed (9,9)
case. We detail the three main symmetries of this nanotube, of
interest for the Rashba Hamiltonian [from now on we use (r)
and (s) superscripts to label a symmetry operation performed
in real and spin spaces, respectively]. First, we notice in
Fig. 8(a) a mirror plane, xz; the corresponding mirror reflection
operation in spatial coordinates is labeled M (r)

y . Associated to
this M (r)

y symmetry there is a perpendicular C2 axis in the y

direction. This operation is denoted C
(r)
2y ; it changes the sign of

the spatial part of the Rashba term. In general, an (n,n) CNT
in an electric field along z, with n odd, has n mirror planes that
coincide with the electric field when rotating the tube around its
axis; these symmetry planes would yield an oscillating pattern
in the conductance differences as a function of the rotation
angle φ, as seen in Figs. 7(b) and 7(c). It should also be noted
that in the absence of an electric field, the spatial inversion I (r)

leaves the nanotube invariant for any rotation angle.
We can combine spatial and spin symmetry operations to

keep invariant the Rashba Hamiltonian. With respect to the
inversion operation, here is a change of sign of HR under

165424-6
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FIG. 8. Schematic plot of CNT unit cells with the symmetry mir-
ror planes, rotation axes, and inversion center I—when applicable—
for different achiral tubes: (a) (7,7) and (b) (6,6) armchair CNTs,
and (c) (11,0) and (d) (12,0) armchair tubes. The mirror planes with
normal vectors in x, y, and z directions are labeled Mx , My , and Mz,
respectively. The rotation symmetry operations, named as C2 x,y,z, are
also indicated.

spatial inversion I (r). This is better visualized by resorting
to the equivalent continuum form, HR ∝ (σxky − σykx). By
performing a spatial inversion I (r) and a rotation of 180◦ in
spin space around the z axis, C

(s)
2z , the Rashba Hamiltonian

remains invariant. When the M (r)
y symmetry is present, we

need a C
(s)
2y rotation in order to leave the Hamiltonian invariant;

and finally, the C
(r)
2y axis changes the sign of the Rashba term,

so a related C
(s)
2x rotation in spin space is needed.

Let us now analyze the relations that can be inferred
from the symmetry I (r) ⊗ C

(s)
2z upon the spin-resolved conduc-

tances: spatial inversion I (r) yields (x,y,z) → (−x,−y,−z),
whereas C

(s)
2z implies the spin transformation (σx,σy,σz) →

(−σx,−σy,σz). So if the spin projection direction is along
x or y, we have GLR

σσ ′ = GRL
σ̄ σ̄ ′ . Then, considering time-

reversal symmetry , GLR
σσ ′ = GRL

σ̄ ′σ̄ , we have GLR
σσ ′ = GLR

σ ′σ ,
i.e., GLR

↑↓ = GLR
↓↑ , as we obtained numerically [remember

Figs. 7(a) and 7(c), which have �f = 0 for all φ]. For the z spin
direction, we have GLR

σσ ′ = GRL
σσ ′ , which leads to GLR

↑↑ = GLR
↓↓

for all tube orientations φ. This is also clearly seen in Fig. 7(b),
which shows �c = 0 for all φ.

As we already mentioned, besides the symmetry I (r) ⊗ C
(s)
2z ,

always present in (n,n) tubes with odd n, irrespectively of the

CNT orientation, there are other symmetries which appear
for certain rotation angles, that is, every 360◦/n. These are
My acting in real and spin spaces, that can be also written as
M (r)

y ⊗ C
(s)
2y , and the spatial rotation C

(r)
2y complemented with

the rotation in spin space C
(s)
2x , i.e., C

(r)
2y ⊗ C

(s)
2x . These two

symmetries occur simultaneously. It can be verified that they
yield a zero spin polarization when the electric field coincides
with the mirror plane, but not so for intermediate angles, giving
rise to the oscillating behavior of �f for spin projection in the
z direction and that of �c for spin in the x direction, as can be
seen in Figs. 7(b) and 7(c), respectively.

We can apply this line of reasoning to all the possible
symmetries present in finite-size carbon nanotubes and spin
projection directions. Notice that not all the symmetry oper-
ations of the finite-size unit cell in the absence of an electric
field are valid; only those that either leave the electric field
term invariant or with a minus sign change are acceptable.
This rules out improper rotations S2n in achiral nanotubes. In
the appendix we give a list of the symmetries of finite-sized
CNTs.

In Fig. 8 we present all the symmetry operations in real
space for achiral CNTs for all even and odd indices, with
a Rashba field that either leave the Rashba term invariant or
produce a sign change in it (we have shown how to compensate
with a rotation in spin space). For example, for a zigzag (n,0)
CNT with n even [Fig. 8(c)], we can find a mirror Mx operation
acting in both spatial and spin spaces, i.e., M (r)

x ⊗ C
(s)
2x , but also

a C
(r)
2y sign-changing rotation appearing every 360◦/n, which

leads to the symmetry C
(r)
2y ⊗ C

(s)
2x .

All these symmetries have been included in Table II, where
we show the final outcome for the conductance relations
and the values of spin polarizations, invoking time-reversal
symmetry when needed. This is necessary when the spatial
symmetry interchanges the role of the left and right electrodes.

Notice that in Table II we have grouped the symmetries
which give rise to the same conductance relations; they happen
to appear in pairs. For each case, the first row corresponds to a
nontrivial symmetry, in the sense that different operations are
performed in spatial and spin variables. These are C

(r)
2x ⊗ C

(s)
2y ,

I (r) ⊗ C
(s)
2z , and C

(r)
2y ⊗ C

(s)
2x , which are necessary to explain

the CNT results. The second row corresponds to symmetries
that were already discussed in the planar case: for example,
M (r)

x ⊗ C
(s)
2x is just the mirror reflection Mx considered both in

TABLE II. Symmetry, conductance, and polarization relations for
nanotube systems with Rashba spin-orbit interaction.

Symmetries Conductance Spin polarization

(r ⊗ s) (x,y,z) G↑↑ − G↓↓ G↑↓ − G↓↑

C
(r)
2x ⊗ C

(s)
2y (x,z) GLR

σσ ′ = GLR
σ̄ σ̄ ′ 0 0

M (r)
y ⊗ C

(s)
2y (y) GLR

σσ ′ = GLR
σσ ′ = 0 = 0

I (r) ⊗ C
(s)
2z (x,y) GLR

σσ ′ = GLR
σ ′σ = 0 0

C
(r)
2z ⊗ C

(s)
2z (z) GLR

σσ ′ = GLR
σ̄ ′ σ̄ 0 = 0

C
(r)
2y ⊗ C

(s)
2x (y,z) GLR

σσ ′ = GLR
σ ′σ = 0 0

M (r)
x ⊗ C

(s)
2x (x) GLR

σσ ′ = GLR
σ̄ ′ σ̄ 0 = 0

165424-7
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FIG. 9. (a) Spin-dependent conductances for a (15,3) CNT with
Rashba region length equal to 6 unit cells and considering the spin
on the y direction. (b), (c), and (d) correspond to spin polarization
of the conductances, with spin projection direction in the y, z, and
x directions, respectively, shown in the insets. Note the different
polarization scales used in each panel.

real and spin spaces, and a rotation has trivially the same effect
in spin and spatial variables. Planar systems such as graphene
ribbons may also have some of these nontrivial symmetries. We
have checked that they are consistent with our previous results,
yielding the same conductance relations already reported in
Ref. [48].

B. Chiral carbon nanotubes

Chiral nanotubes have fewer symmetries than the achiral
ones, especially for the finite-size regions considered in this
work. If the nanotube indices (n,m) have a common divisor p,
then the CNT is invariant under 360◦/p rotations around the
tube axis, C(r)

px , leaving the Rashba term invariant or changed
by a minus sign depending both on the value of p and the CNT
orientation with respect to the electric field. It has also pC

(r)
2

rotation axes perpendicular to the CNT axis x.
In order to illustrate these symmetries with an example,

we choose the (15,3) CNT. This nanotube has three C
(r)
2 axes

perpendicular to the tube at 120◦. Figure 9 shows in panel
(a) the spin-dependent conductances in the y direction, and
the current polarization of the (15,3) tube for the three spin
projection directions in panels (b)–(d), considering the same
Rashba region with N = 6. Differently from the results found
for the achiral tubes, net polarized currents are now possible for
the three spin directions, x, y, and z. But as already discussed

FIG. 10. Difference between spin-conserved and spin-flip con-
ductances as functions of the rotation angle for a (15,3) nanotube
with Rashba region length equal to 6 unit cells, for a fixed energy
E = −0.425γ0. The y, z, and x spin projection directions are
considered in panels (a), (b), and (c), respectively. (d) Schematic
drawings of the three C

(r)
2 axis for different rotation angles.

in the previous section, the greatest spin-polarized current is
obtained in the y direction, perpendicular to the applied field
and to the tube axis. The values are two orders of magnitude
larger than in the x and z directions, and of the same order of
magnitude as those observed for achiral tubes (see Fig. 2).

We see in panels (b) and (c) of Fig. 9 that in principle
no relation between the spin-flip and spin-conserved conduc-
tances hold; however, the spin-flip term seems to be zero for
the y spin projection direction shown in panel (a). In order
to clarify this, we proceed as in the armchair case. We pick
a fixed energy and study the dependence of the conductances
on the rotation angle φ around the CNT axis. The differences
in the spin-flip and spin-conserved conductances as functions
of the rotation angle for the three spin projection directions are
shown in Fig. 10. When compared with the results presented
in Fig. 7, we see that all �c and �f along the x, y, and z

directions oscillate, and for the x and z directions the values
are about two orders of magnitude greater.

The most conspicuous feature of the conductance differ-
ences �c and �f is that the oscillation period is different for
the y spin projection direction, being twice the period of x

or z directions. From the schematic drawings at the bottom
of Fig. 10, we see that at every 30◦ there is one C

(r)
2 axis

either aligned with the z or with the y direction, so that the
symmetry of the nanotube oscillates between C

(r)
2y ⊗ C

(s)
2x and

165424-8
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C
(r)
2z ⊗ C

(s)
2z . This oscillation implies that �c and �f are zero

and nonzero alternatively every 30◦ with varying φ for the
x and z spin projection directions, but it gives �f = 0 for
φ = 0◦,30◦,60◦... for spin projection direction y, giving twice
the period.

We should emphasize that the symmetry analysis gathered
in Table II can be applied to any CNT with a finite-size
RSO interaction in order to predict the occurrence of spin-
polarized currents in different directions, and also to explain
all the conductance conservation relations observed in our
calculations. We also expect that the analysis of spatial and
spin symmetries will be of interest for the study of spintronic
devices, and additionally in other problems where the interplay
of spin and spatial variables is relevant.

V. SUMMARY AND CONCLUSIONS

We have presented a detailed study of spin-resolved con-
ductances and spin-polarization currents in carbon nanotube
systems of different chiralities and under the effect of Rashba
SOI in a finite part of the tube. Similarly to graphene
nanoribbons, we have shown that the best geometry to achieve
a spin-polarized current in CNTs is when the electric field,
the spin-polarization direction, and the tube axis are all
perpendicular to each other.

However, there are important differences with respect to
planar systems. In the latter, such as graphene ribbons, it is suf-
ficient to consider symmetry operations acting simultaneously
on spatial and spin variables in order to predict the existence
of spin-polarized currents in different spin directions. But,
as shown in this paper, more general symmetries have to be
invoked to provide a correct description of carbon nanotubes.

We have demonstrated that different symmetries acting
independently in spatial and spin variables of the Rashba
CNT Hamiltonian are needed to explain and predict the spin
transport behavior of these systems. A full understanding of the
relevant symmetries allows us to elucidate the characteristics
of the spin-dependent conductance and polarization of CNTs.
Furthermore, we expect this symmetry analysis to be valuable
for the understanding of other systems for which spin and
spatial variables are related in a nontrivial way.

Our results open the possibility for the design of an
all-electrical spin valve based in CNTs driven by Rashba
coupling, provided that its value is enhanced by proximity
or hybridization effects. All these findings may be applied
to other materials with Rashba spin-orbit interaction, serv-

TABLE III. Spatial symmetries of finite-size CNTs composed of
an integer number N unit cells. Improper rotations, which do not play
any role for the Rashba Hamiltonian considered in this work, are in
parenthesis.

Finite Point Symmetry operations

CNT group n even n odd

N (n,n) Dnd Cnx , nC2⊥x , nMα⊥x , Cnx , nCn⊥x , nMα⊥x ,
(nS2n) I , (nS2n)

N (n,0) Dnh Cnx , nC2⊥x , nMα⊥x , Cnx , nC2⊥x , nMα⊥x ,
I , Mx , (nS2n) Mx , (nS2n)

N (n,m) Dp Cpx , pC2⊥x p = gcd(n,m)

ing a guide to maximize the spintronic response of the
devices.
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APPENDIX

In this Appendix we give a summary of the spatial
symmetries of finite-sized CNTs. For simplicity, we assume
the unit cell to be of the most symmetrical form, so that
the symmetries are in fact those of the point group of the
infinite CNT [56,57]. For achiral tubes, the chosen unit cells are
those shown in Fig. 8. For chiral CNTs, we pick a maximally
symmetric unit cell, with the symmetries of the infinite CNT
point group. Note that any differences in the results of the
conductances due to the choice of unit cells will clearly
diminish for large N , i.e., large Rashba regions.

Table III presents the symmetry operations for a finite-sized
nanotube with tube axis aligned with the x direction. We use the
following nomenclature: Cnx is a 360◦/n rotation around the x

axis; for even n the tube always presents a C2x rotation. nC2⊥x

corresponds to n C2 rotations perpendicular to the tube axis
(x). nMα⊥x specifies n mirror symmetry planes Mα , where α

is an axis perpendicular to x. If α points in the y or z directions
an My or Mz symmetry operation results, respectively. I is the
inversion operation and S2n corresponds to improper rotations.
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A. H. Castro Neto, and B. Özyilmaz, Nat. Commun. 5, 4748
(2014).

[43] F. Calleja, H. Ochoa, M. Garnica, S. Barja, J. J. Navarro,
A. Black, M. M. Otrokov, E. V. Chulkov, A. Arnau, A. L.
Vazquez de Parga, F. Guinea, and R. Miranda, Nat. Phys. 11, 43
(2015).

[44] D. Liang and X. P. Gao, Nano Lett. 12, 3263 (2012).
[45] A. De Martino and R. Egger, J. Phys.: Condens. Matter 17, 5523

(2005).
[46] J. Klinovaja, M. J. Schmidt, B. Braunecker, and D. Loss, Phys.

Rev. B 84, 085452 (2011).
[47] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
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