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Permeability and kinetic coefficients for mesoscale BCF surface step dynamics: Discrete
two-dimensional deposition-diffusion equation analysis
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(Received 15 December 2015; revised manuscript received 15 March 2016; published 8 April 2016)

A discrete version of deposition-diffusion equations appropriate for description of step flow on a vicinal
surface is analyzed for a two-dimensional grid of adsorption sites representing the stepped surface and explicitly
incorporating kinks along the step edges. Model energetics and kinetics appropriately account for binding of
adatoms at steps and kinks, distinct terrace and edge diffusion rates, and possible additional barriers for attachment
to steps. Analysis of adatom attachment fluxes as well as limiting values of adatom densities at step edges for
nonuniform deposition scenarios allows determination of both permeability and kinetic coefficients. Behavior
of these quantities is assessed as a function of key system parameters including kink density, step attachment
barriers, and the step edge diffusion rate.
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I. INTRODUCTION

In 1951, Burton, Cabrera, and Frank (BCF) introduced a
strategy to describe the evolution of surface morphologies
based upon coarse graining of an atomistic-level treatment
[1]. This BCF formulation applies for crystalline surfaces or
epitaxial thin films with a well-defined terrace-step structure
and with characteristic lateral lengths on the mesoscale. It
describes step edges by continuous curves and uses appropriate
evolution laws to track their motion [2,3]. This approach can
be applied to analyze step flow during deposition on vicinal
surfaces; nucleation and growth of two-dimensional (2D)
monolayer islands during deposition on flat surfaces where
islands have a mesoscale lateral dimension due to facile sur-
face diffusion; subsequent mound formation during unstable
multilayer growth; and post-deposition island coarsening and
mound decay [2,4,5].

The BCF prescription of step propagation is based on
determination of fluxes of deposited atoms attaching to step
edges. These fluxes in turn follow from analysis of the
deposition-diffusion equations for the densities of diffusing
adatoms on each of the terraces in a quasi-steady-state regime
after imposing suitable boundary conditions (BC) at the step
edges [1,2]. The original Dirichlet BC implemented by BCF
treated steps as perfect traps for diffusing adatoms at which
their density adopts its equilibrium value. This prescription
was extended in 1961 by Chernov to incorporate possible
inhibition in attachment of diffusing adatoms to steps, as
characterized by kinetic coefficients K± for ascending (+)
and descending (−) steps [6]. Lower K values correspond to
greater inhibition, so K measures the ease of attachment. There
exist extensive analyses of step dynamics in both the diffusion-
limited regime with high K, and the attachment-limited regime
with low K [2,3].

In 1992, Ozdemir and Zangwill introduced the concept
of step permeability or step transparency associated with
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direct transport across steps between terraces (without in-
corporation), the propensity for which is characterized by a
permeability P [7]. For P > 0, deposition-diffusion equations
on different terraces are coupled. Previous BCF type analyses
incorporating step permeability have explored the transition
to step flow [8] and step bunching or step instability on
vicinal surfaces [3,9–11] during deposition. Other studies have
explored the effect of permeability on second-layer nucleation
during deposition [12,13], and on mound slope selection
during unstable multilayer film growth [14]. In addition, the
influence of permeability on post-deposition mound decay
has been analyzed [15]. Analysis of experimental data has
indicated significant permeability on Si(100) surfaces [16],
but not on Si(111) surfaces [17]. In this study, our focus is not
in BCF analyses of morphological evolution incorporating P,
but rather on systematic derivation of P (and of the K±) from
an atomistic-level model. Furthermore, we will elucidate the
dependence of P on key system parameters.

Next, we review theoretical formulations and analyses
for K± and P. Some understanding has traditionally come
from a steady-state analysis of discrete one-dimensional (1D)
deposition-diffusion equation (DDE) models with the caveat
that these models cannot account for step structure [4,5,18].
The classic analysis in the absence of permeability quantifies
the decrease in K with increasing strength of an additional
barrier for attachment to steps [19]. Permeability has also
been incorporated into these 1D DDE models, at least in
a simplistic fashion [18,20]. We will refine this treatment,
thereby obtaining additional insight into the form of P. An
important feature already apparent from these 1D analyses is
the lack of a unique procedure to connect the discrete model to
continuum formulation, and thereby to extract associated K’s
and P.

In this study we improve substantially upon the above
1D treatments by implementing steady-state analyses based
on appropriate discrete 2D deposition-diffusion equations
(DDEs) [18,21]. This formulation can directly incorporate
basic features of step structure, in contrast to discrete 1D
DDEs, thereby more realistically assessing K± and P. For
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uniform deposition on a perfect vicinal surface with a single
type of step having symmetric attachment barriers (or no
barriers), permeability does not affect behavior (see Sec. II),
and one can directly determine the single K (but not P) [18].
However, if the single type of step has asymmetric attachment
barriers, then one can obtain two relationships between the
two distinct K± and P, but one cannot separately determine
these quantities. Thus, to avoid this deficiency and enable
determination of both K’s and P, in the current study, we
also explore behavior for nonuniform deposition on vicinal
surfaces. Specifically, we allow different deposition rates on
different terraces. Note that in the absence of the deposition on
a specific terrace, a nonzero adatom density on that terrace can
only develop due to step permeability. Just as for the discrete
1D DDE approach, there will be some nonuniqueness in the
definition and extraction of K± and P from this formalism.

For comparison with our analysis based on discrete 2D
DDE, it is appropriate to remark on other strategies for
assessing P (and K±) incorporating 2D surface geometries. A
quite distinct approach is based on continuum models for step
dynamics incorporating multiple density fields. Specifically,
these approaches include separate density fields for edge and
terrace adatoms, and also include additional information about
step structure such as the mean kink density or even a kink
density field [22–24]. Such analyses typically require some
approximations, but they do provide expressions both for
the kinetic coefficients, and for the step permeability P. The
predicted behavior for K± and P is intuitively reasonable. For
example, P should decrease with increasing step attachment
barrier, and with increasing step edge diffusivity allowing
efficient transport to and incorporation at kink sites [22,23].

Lastly, we mention one targeted kinetic Monte Carlo
simulation study of a stochastic lattice-gas model which
assessed the propensity for step crossing as a function of
step attachment barriers and kink separation [25]. Clearly
this crossing propensity is closely related to permeability, and
these simulations indicated a qualitative dependence on model
parameters consistent with previous studies.

In Sec. II we review continuum and discrete DDE model
formalisms, and present new results for a refined 1D DDE
model. We present explicit results for K± and P from extensive
numerical analysis of the discrete 2D DDE for symmetric
(or zero) attachment barriers in Sec. III, and for asymmetric
attachment barriers in Sec. IV. Application of the results to
specific systems is discussed, and conclusions are presented in
Sec. V.

II. DISCRETE DEPOSITION-DIFFUSION EQUATION
(DDE) FORMALISMS

First in Sec. II A, to provide further background on the
BCF formulation, we briefly review the continuum BCF
formulation. This formulation considers the adatom density
per unit area ρ(x−,t) at lateral position x− = (x,y), where in

our analysis steps on the vicinal surface will be aligned with
the x direction. The kinetic coefficients K± for attachment to
ascending (+) and descending (−) steps and the permeability
P appear in the boundary conditions to the continuum
deposition-diffusion equations for ρ(x−,t). The basic model

includes uniform deposition rate per unit area F. Refined
models will include different deposition rates Ft1 and Ft2
on alternating terraces. Another key parameter is the terrace
diffusion coefficient D.

Next, we review discrete 1D DDE formulation in Secs. II B
and II C, and the 2D DDE formulation in Secs. II D and II E,
as well as the procedure for obtaining K± and P. The 1D
formulation will correspond to a reduced version of the 2D
formulation. Thus here we highlight some basic features of
the discrete 2D DDE formulation. Adatoms reside at a square
array of adsorption sites labeled (i, j ) with lattice constant a

and with steps on the vicinal surface aligned with the i axis.
The adatom density at these sites is denoted by n(i, j ), leaving
implicit the t dependence, and corresponds to the probability
that site (i, j ) is occupied. One has n(i, j ) � 1 under typical
conditions. The basic model includes uniform deposition at
rate F per site, and refined models include different rates Ft1

and Ft2 on alternating terraces. Terrace diffusion corresponds
to hopping to nearest-neighbor (NN) empty sites at rate h per
direction. Diffusive dynamics at step edges differs from that
on terraces, we comment on some key aspects below.

In general, we include possibly asymmetric step attachment
barriers leading to reduced rates h± for hopping to a straight
step edge relative to the terrace hop rate h. We will write
h± = exp(−βδ±)h, where δ± denote additional attachment
barriers, assuming a common prefactor for all hops. Here + (−)
corresponds to attachment to ascending (descending) steps,
and we set β = 1/(kBT ) where T is the surface temperature
and kB is the Boltzmann’s constant. The extra barrier δ+
to attach to a descending step is described as the Ehrlich-
Schwoebel barrier. Processes occurring at the step edge such
as detachment, edge diffusion, equilibration, or incorporation,
will be described in more detail below.

In our discrete DDE models, we will also allow the
possibility of anisotropic NN lateral interactions mimicking,
e.g., a fcc(110) versus a fcc(100) surface. However, for
simplicity, we will retain isotropic terrace diffusion. NN
attractions in the direction orthogonal (parallel) to the step
will have strength φ⊥ > 0 (φ|| > 0). Consequently, step edge
adatoms are bonded to the straight step by a NN attraction
of strength φ⊥ > 0 orthogonal to the step, and the rates for
detachment from straight steps are given by exp(−βφ⊥)h±
according to detailed balance. Adatoms at kink sites have an
additional bond of strength φ|| > 0 parallel to the step, and
thus a total bonding of φb = φ⊥ + φ||. Naturally setting the
density of atoms at kink sites as n(kink) = 1, it follows that
the equilibrium densities in the absence of deposition are

neq(edge) = exp(−βφ||)n(kink) = exp(−βφ||) (1)

and

neq(terrace) = exp(−βφ⊥)neq(edge)

= exp(−βφb)n(kink)

= exp(−βφb) ≡ neq, (2)

for step edge and terrace adatoms, respectively.
In coarse graining from discrete to continuous models,

it is natural to make the correspondence x− = (ai,aj ) for
the lateral position, and ρ(x−,t) = a−2n(i,j ) for the adatom
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density. More specifically, the rescaled spatially continuous
density field a2ρ(x−,t) should be regarded as passing smoothly

through the discrete densities n(i,j ). Thus, one has that
the continuum equilibrium density satisfies ρeq = a−2neq,
with neq defined by (2). Sometimes it will be instructive
to introduce “excess densities” δρ = ρ − ρeq or equivalently
δn(i,j ) = n(i, j ) − neq. In this mapping between discrete and
continuous models, the deposition rate per unit area in the
continuum model is given by F = a−2F , or Ft i = a−2Fti , and
the terrace diffusion rate satisfies D = a2h. Below we shall see
that there is some ambiguity or flexibility in mapping discrete
onto continuous models which result in slightly different
expressions for K± and P. Also, in the discrete model, there
is potentially a significant contribution to step propagation
velocity from adatoms depositing directly at the step edge
(i.e., at the row of sites directly adjacent to the step edge) [21].
The precise form of this contribution is tied to the definition
of K±. Such a contribution is clearly absent in the continuum
formulation.

A. Review of continuum BCF formulation

The traditional continuum BCF formulation considers
uniform deposition where again F denotes the deposition
flux per unit area, and D is the terrace diffusion coefficient.
One performs a quasi-steady-state analysis of the continuum
deposition-diffusion equation for the adatom density ρ(x−,t) of

the form

∂/∂t ρ(x−, t) = F + D∇2ρ(x−,t) ≈ 0. (3)

General Chernov-type BCs at permeable step edges have
the form

J± = ±D ∇nρ|± = JK± + JP ,

where JK± = K±(ρ± − ρeq) (4)

and JP = P (ρ± − ρ∓).

Here J± denote the net diffusion fluxes for attachment
to an ascending step from the terrace below (+), and to
a descending step from the terrace above (−), respectively.
J± incorporate two types of contributions. JK± denote those
associated with step attachment and detachment, where K± are
the corresponding Chernov kinetic coefficients. JP denotes
the contribution from step crossing, where P is the step
permeability. ∇n denotes the gradient normal to the step. ρ± are
the limiting values of the terrace adatom density approaching
the step on the lower (+) and upper (−) terrace, respectively,
and ρeq denotes the equilibrium adatom density at the step.
See Fig. 1. It is common to set K± = D/�±, where �± denote
the attachment lengths, and P = D/�p, where �p denotes
the permeability length. Then, large �’s implying difficult
attachment or step crossing. The sign convention is chosen
for a vicinal surface descending to the right and where we
define net attachment fluxes to be positive, J± > 0.

Next, we discuss one example of behavior for a nonuniform
deposition flux, specifically for flux switching between a larger
value Ft1 and smaller value Ft2 on alternating terraces, and
where there is a symmetric attachment barrier so that K+ =
K− = K . As illustrated in Fig. 2, the density profile has mirror
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FIG. 1. 1D schematic of adatom density and diffusion flux
behavior at a step with asymmetric attachment. The total diffu-
sion fluxes J+ = K+(ρ+ − ρeq) + P (ρ+ − ρ−) and J− = K−(ρ− −
ρeq) + P (ρ− − ρ+) reaching the ascending and descending steps,
respectively, and the flux across the step due to permeability Jp =
P (ρ− − ρ+) are indicated.

symmetry about the center of each terrace, so the attachment
flux has the same value on both sides of each terrace. We
can readily extract some basic information about the density
profile by balancing deposition and attachment fluxes on each
terrace, i.e., Ji = 1/2Ft iW . Let ρi denote the adatom density at
the edge of terrace i = 1 or 2, and δρi = ρi − ρeq denote the
corresponding excess density. Then, by adding and subtracting
the expressions for J1 and J2 and rearranging the results, we
obtain the following relations:

δρ1 − δρ2 = 1/2(Ft1 − Ft2)W/(K + 2P )
(5)

and δρ1 + δρ2 = 1/2(Ft1 + Ft2)W/K.

A particularly instructive case is when Ft2 = 0, so then the
adatom density is uniform on terrace 2, and the associated
excess density satisfies

δρ2 = 1/2W Ft1P/[K(K + 2P )]. (6)

Thus, the excess density on terrace 2 in the absence of
deposition is only nonzero if P > 0, and its magnitude provides
a measure of P.

B. Discrete 1D DDE model: Basic formulation

For a vicinal surface with straight parallel steps aligned with
the i axis (i.e., the x direction), the simplest picture anticipates
that the adatom density is independent of position along the
step, but varies across the terrace. Thus, n(i,j ) = n(j ) depends

STEP 

(x) 

+ = -

J1 J2

eq
2 

1 

x = (0,y) 

o o o o 
o o o o 

J2 J1

t2t1 t1

terrace type 1 
terrace type 1 

terrace type 2 

JP JP

FIG. 2. 1D schematic of adatom density and diffusion flux
behavior on a vicinal surface where the flux has different values
(Ft1 > Ft2) on alternating terraces, and with a symmetric step
attachment barrier.
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FIG. 3. Schematic of our discrete 1D DDE model. n(j ) denotes
the adatom density on row j of sites, where j = 0 corresponds
to the step edge. Note that step detachment contributions are
d/dt n(±1)|detach = exp(−βφ⊥)h±n(0) = h±n∗(0). Note that n∗(0)
coincides with n(0+) [n(0−)] in the case of zero attachment barrier
δ+[δ−].

only on the label j of the rows of sites parallel to the step and,
equivalently, ρ(x−,t) = ρ(y,t) in the continuum formulation.
This feature reduces the discrete 2D DDE formulation to a
discrete 1D DDE formulation. The specific form of the discrete
1D DDE for the adatom density at rows of sites away from the
step edges is

d/dt n(j ) = F + h �j n(j ),
(7)

where �jn(j ) = n(j + 1) − 2n(j ) + n(j − 1),

where again h is the terrace hop rate. Separate equations are
needed for the adatom density at or adjacent to steps, where
the rates for hopping might be impacted by step attachment
barriers, and by distinct processes at the step edge. See
Appendix A.

A detailed schematic of behavior in our discrete 1D DDE
model is provided in Fig. 3. In this prescription, n(j �=
0) denote the densities of terrace adatoms, and n(j = 0)
denotes the density of step edge adatoms. As indicated in the
introduction to Sec. II, our model includes reduced attachment
rates h± for hopping to the step edge (j = 0) relative to h,
and detachment rates exp(−βφ⊥)h± reflecting bonding of
edge adatoms to the step with attraction φ⊥. In addition, our
model incorporates the feature that adatoms which hop to the
step edge are not immediately incorporated into the growing
crystal. This, in turn, reflects the feature that in realistic 2D
models, adatom incorporation effectively only occurs at kink
sites which can be rare on close-packed steps. The rate of
incorporation or equilibration in our 1D model is denoted by
an additional parameter ν defined through the relation

d/dt n(0)|relax = −ν[n(0) − neq(0)]. (8)

Below we will introduce a naturally rescaled relaxation rate
r and relate r and ν to permeability. We note that our model is

similar in spirit, but different in detail from a model of Zhao
et al. [20].

Given the feature that our discrete 1D DDE model should
mimic the more realistic 2D DDE model, the equilibrium edge
adatom density neq(0) = neq(edge) in the 1D model should be
enhanced by a factor of exp(βφ⊥) relative to the equilibrium
terrace density neq = exp(−βφb). Similar enhancement should
persist in the presence of deposition. This suggests that the
edge atom density n(0) = n(edge) is naturally rescaled to
n∗(0) = n∗(edge) = exp(−βφ⊥)n(0) making it comparable
in magnitude to terrace densities. Using this notation, one
has d/dt n(0)|relax = −r[n∗(0) − neq] with the rescaled rate
r = exp(+βφ⊥)ν.

C. Discrete 1D DDE model: Extraction of K± and P

Analysis involves obtaining expressions relating diffusion
fluxes to the step edge J± and adatom densities at the step
edges ρ± and from these extract K± and P. However, there is
some flexibility in the identification of both J± and ρ±. The 1D
DDE diffusion fluxes are most naturally identified from sites
j = ±1 to the step edge. Significantly, results depend upon the
identification of ρ±. These could most simply be taken as the
densities a−2n(±1), at sites adjacent to the step site j = 0
(labeled as the “nonextrapolation” case N). Alternatively,
they can be chosen as a−2n(0±), where n(0±) are obtained
by suitably “analytically extending” terrace adatom densities
n(j ) to the site j = 0 (labeled as case E for “extrapolate”
or “extend”). We also note the nontrivial result for uniform
deposition that the rescaled density at the step edge n∗(0)
corresponds to the extrapolated density n(0+) [n(0−)] in the
case of no additional attachment barrier δ+[δ−]. Different
choices produce slightly different results for K± and P. We
note that the same applies for other formulations which are also
possible, e.g., determining the fluxes between sites j = ±2 and
j = ±1, a choice denoted by M. See Appendix A for further
discussion.

Here we just report the results of the above analysis for cases
N and E. For case N, where ρ± are identified as a−2n(±1), one
obtains

K±(N ) = arh±/(h+ + h− + r),
(9)

so �±(N ) = ah(h+ + h− + r)/(rh±)

and

P (N ) = ah+h−/(h+ + h− + r),
(10)

so �p(N ) = ah(h+ + h− + r)/(h+h−).

For the case E, where ρ± are identified as the analytically
extended a−2 n(±0), one obtains

K±(E) = ar(h/h± − 1)−1/[(h/h+ − 1)−1

+ (h/h− − 1)−1 + (r/h)] (11)

and

P (E) = ah(h/h+ − 1)−1(h/h− − 1)−1/[(h/h+ − 1)−1

+ (h/h− − 1)−1 + (r/h)], (12)

from which one can obtain corresponding expressions for
�±(E) and �p(E).
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Next, we discuss behavior in key limiting regimes, and
also compare results of the E and N treatments. In the limit
of instantaneous incorporation or equilibration at step edges
r → ∞, one obtains K±(N ) → ah± so �±(N ) → ah/h±,
and K±(E) → ah/(h/h± − 1) so �±(E) → a(h/h± − 1).
One also naturally obtains P(N) → 0, so �p(N ) → ∞,
and P (E) → 0, so �p(E) → ∞. In the limit of vanishing
attachment barriers h+ = h− → h, one obtains �±(N ) →
a(2 + r/h)/(r/h) and �p(N ) → a(2 + r/h), versus �±(E) ∼
2a/(r/h) and �p(E) → 0. Thus, for general h± �= h, we find
that values of �±(N ) and �±(E) differing by a as r → ∞.
Similarly, for h± = h, we find that �±(N ) → a but �±(E) →
0, as r/h → ∞. In both cases, values of �±(N ) and �±(E),
or difference between them, are far below the terrace width
W, and so solution of the appropriate boundary value problem
continuum deposition-diffusion equations will produce similar
behavior. Finally, we note that in the regime of strong inhibition
of attachment to steps h± � h or βδ±  1, expressions from
both formulations agree and reduce to K± ≈ ah exp(−βδ±)
and P ≈ ah exp(−βδ+ − βδ−)/(r/h).

We note some similarity between the forms in (11) and (12),
and the corresponding expressions in Zhao et al. [20] who
also applied a discrete 1D DDE approach which incorporated
extrapolation of terrace densities to step edges. In particular,
the combinations (h/h± − 1) naturally appear as a result of
analytic extension or extrapolation. However, Zhao et al.
introduce a probability pinc for incorporation of any atom
reaching a step. There is not a simple mapping between r and
pinc, although one has pinc → 1 (0), as r/h → ∞ (0) [26]. It is
also appropriate to note that (9) and (10) match the correspond-
ing expressions obtained by Pierre-Louis [22] from a quite
different continuum approach with multiple diffusion fields.

An additional question of particular relevance is how ν

or r , and thus P and K’s, are related to additional physical
parameters in a realistic 2D model, such as the edge diffusion
rate and kink density. Such parameters do not appear explicitly
in our 1D model. Consider systems with facile edge diffusion
associated with hop rate he > h, and steps with a mean kink
separation Lk = lka. Then, the characteristic time for edge
diffusion mediated incorporation of a mobile edge atom at
a kink should scale like τ ∼ (lk)2/he based on the Einstein
diffusion relation. The relaxation rate ν should then be given
by ν = 1/τ so that r ∼ exp(+βφ⊥)he/(lk)2. This form for ν

was suggested previously in Ref. [22]. It produces the scaling
K± ∼ (ah)/(lk)2, as lk → ∞. Note this latter scaling applies
more generally than in the case of facile edge diffusion as
demonstrated previously from analysis of the discrete 2D DDE
for symmetric attachment barriers h+ = h− [21].

Finally, we mention that conventional versions of discrete
1D DDE models set r = ∞ corresponding to instantaneous
equilibration or incorporation at the step edge [4,5]. Then,
permeability can still be incorporated (somewhat artificially)
by modifying the model to introduce direct hopping across
steps, e.g., between sites j = 1 and j = −1 at rate hp. See
Appendix A for the associated K± and P.

D. Discrete 2D DDE model: Formulation, definition of K± and P

Figure 4 shows a schematic of our discrete 2D DDE model.
We consider a perfect vicinal surface with straight parallel

kink kink

kink kink

(0,0)   (lk,0) 

(0,w)                                                      (lk,w) 

j 

i 

h             h 
h 

h 

exp(- - +)h

exp(- - -)h

exp(- b- -)h

exp(- ||)he

exp(- +)h

exp(- -)h

exp(- b- +)h

STEP EDGE SITES 

Ft1

(i,j)

UPPER TERRACE 2 

LOWER TERRACE 2 

MIDDLE 
   TERRACE 1 

he he

he

Ft2

Ft2

Fe1

Fe2

FIG. 4. Schematic of our discrete 2D DDE model, indicating the
rates for various hopping processes and depositions. Solution of the
DDE equations just require analysis of densities in a periodic unit
cell of sites, 0 � i < lk and 0 � j < 2w. The unit cell consists of a
strip between adjacent kink sites spanning two adjacent terraces.

steps aligned with the i direction and separated by terraces
of equal width W = w a (for integer w). We identify rows
j = 0, j = ±w, j = ±2w, etc., as step edge rows, and rows
0 � j < w,w � j < 2w, etc. as being on the same terrace.
The vicinal surface descends with increasing j . Kink sites
are specified to be periodically distributed along step edge
rows with separation Lk = lka, so kinks are located at (i,j ) =
(nlk,mw) for integer n and m. Thus, all steps are equivalent.
The discrete 2D DDE model accounts for variation of the
adatom density n(i, j ) at site (i, j ), both along the steps as
well as across the terraces. Away from the step edges, the 2D
DDE have the form

d/dt n(i,j ) = F + h �i,j n(i,j ), (13)

where �i,j is the discrete 2D Laplacian, so that �i,j

n(i, j ) = n(i + 1, j )+ n(i, j + 1)+n(i−1, j )+n(i, j − 1) −
4n(i,j ). As discussed further below, refined equations are
needed at and adjacent to step edges and at kink sites where the
hop rates are modified reflecting possible attachment barriers
at steps and binding at step edges. Kink sites constitute both
a source and a sink for adatoms and the density of adatoms at
kink sites is set to unity (as described above).

In our model with nearest-neighbor (NN) adatom attrac-
tions, the interaction φ|| parallel to the steps controls the kink
separation Lk ≈ 1/2a exp(1/2βφ||) [2]. Model behavior will
depend on φ|| only through kink separation as demonstrated
in Ref. [18] by analysis of the discrete 2D DDEs for suitably
rescaled adatom densities at step edges and kink sites. Model
behavior also depends on the NN interaction φ⊥ controlling
edge adatom bonding to the step and the rate he for diffusion
along a straight step. Interestingly, from an analysis of rescaled
2D DDEs, it is possible to show that these parameters always
appear in the combination exp(βφ⊥)he/h. Therefore, selecting
he = exp(−βφ⊥)h makes the model independent of φ⊥. In
some sense, the steps are “invisible” for this choice, since the
effect of binding to the steps is compensated for by the effect
of slower edge diffusion than terrace diffusion. We use this
choice for most results presented in the following sections.
In the general case with independent φ⊥ and he, for isotropic
interactions φ|| = φ⊥ as for fcc(100) homoepitaxy, Lk is tied
to the value of φ⊥(= φ||).
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Rates h± for attachment to and detachment from straight
steps have been described in the introduction to Sec. II. For
completeness, we note that while direct attachment to kinks
from terraces occurs at rate h± = exp(−βδ±)h, detachment
from kinks directly to terraces occurs at rate exp(−βφ⊥ −
βφ|| − βδ±)h. Also, direct attachment of an edge adatom to a
kink occurs at rate he (as we do not include a separate kink
attachment barrier along steps), and detachment from the kink
to an edge site occurs at rate exp(−βφ||)he. See Refs. [18,21]
for further discussion.

For schematics of the 2D steady-state density profiles
n(i, j ) from solving the 2D DDE, we refer the reader to
Refs. [18,21]. Naturally these tend to have a global maxima
in the center of the terraces furthest away from the kink sites
which act as sinks for the excess adatom density. Along the
step edge, the excess adatom density has maximum in between
kink sites, i.e., δn(i,0) = n(i, 0) − neq > 0 is maximized in
between kink sites.

For extraction of K± and P, our strategy is again to
make a connection with the quasi-1D continuum formulation
of Sec. II A. To this end, it is appropriate to consider the
average along the step of the density profile n(i,j ) in the
discrete 2D DDE model. This average operation has the form
〈n(j )〉 = (1/lk)

∑
0�i<lk

n(i,j ). In perhaps the most natural
formulation, one also calculates the average fluxes 〈J+〉 from
row j = 1 to the step j = 0, and 〈J−〉 from row j = −1 to
the step j = 0. Adatom densities at the step edge 〈n±〉 can
be identified with either 〈n(±1)〉 or they can be obtained by
extrapolating terrace densities to the step edges denoted by
〈n(0±)〉. The former is the nonextrapolation case N in the
notation of Sec. II B, and the latter is the extrapolation case
E. Then, for a uniform deposition flux F, the K± and P are
defined to satisfy

〈J±〉 = a−2 K±(〈n±〉 − neq) + a−2 P (〈n±〉 − 〈n∓〉). (14)

Since both 〈J±〉 and averaged densities are directly pro-
portional to F, the K± and P are independent of F. We
should emphasize that there is additional flexibility in the
identification of 〈J+〉. An alternative to the above prescription
might determine 〈J+〉 from the average flux from row j = 2
to j = 1, and 〈J−〉 from row j = −2 to j = −1. This choice,
together with the identification of 〈n±〉 as 〈n(±1)〉, will be
denoted by M for modified flux choice. See also Appendix A
for a discussion for the corresponding 1D DDE models.

Finally, we note that for the 2D DDE model, we can directly
calculate the adatom density at the step edge, and thus extract
the averaged quantity 〈n(0)〉. As in the discussion of the 1D
DDE, we claim that it is natural to consider the rescaled version
of this density 〈n∗(0)〉 = exp(−βφ⊥)〈n(0)〉 for comparison
with adatom densities on the terrace. Of particular relevance
for the analysis in Secs. III A–III C for uniform deposition
is the nontrivial result that the rescaled density at the
step edge 〈n∗(0)〉 corresponds to the extrapolated density
〈n(0+)〉[〈n(0−)〉] in the case of no additional attachment
barrier δ+[δ−]. This behavior is analogous to that discussed
for the 1D DDE.

E. Discrete 2D DDE model: Extraction of K± and P

Once the averaged fluxes 〈J±〉 and the averaged densities
〈n±〉 are determined from analysis of the 2D DDE model,

(14) for uniform deposition only yields two relations for
three quantities. Consequently, K± and P cannot be uniquely
determined in this way. One exception to this scenario is when
the steps have symmetric attachment barriers (or no attachment
barriers), and as a consequence one has 〈n+〉 = 〈n−〉 so
the permeability term is absent in (14). Then 〈J+〉 = 〈J−〉
and K = K+ = K− is determined from the single relation
(14) which becomes 〈J±〉 = a−2 K〈δn±〉, but here P is still
undetermined [18]. Another exception is when just h+ = 0
since δ+ = ∞ (infinite Ehrlich-Schwoebel barrier) and thus
K+ = 0 (or just h− = 0 since δ− = ∞ so K− = 0). Now
P = 0 and again (14) reduces to a single relation for a single
nonzero K [18].

To determine the individual K± and P in the general case,
and also to determine P for symmetric barriers, an alternative
analysis is required. To this end we consider situations with
nonuniform deposition. A default choice is to select different
deposition rates Fti , for i = 1 or 2, on alternating terraces.
More precisely, the rate Ft1 (Ft2) will apply for nonstep edge
sites nw < j < (n + 1)w for even (odd) n. For step edge
rows, it is convenient to have the flexibility to separately
specify deposition rates Fei , for i = 1 or 2, where Fe1 (Fe2)
applies for j = nw with even (odd) n. One could set Fe1 = Ft1

and Fe2 = Ft2 corresponding to uniform deposition on each
terrace. See Appendix B. However, it will be more convenient
to set Fe1 = Fe2 = Ft1 (or Ft2) as this choice ensures symmetry
of the density profiles for symmetric attachment barriers (as
discussed further below).

The feature that nonuniform deposition provides a natural
vehicle to assess permeability is best illustrated by considering
the special case for the “extreme” choice with no deposition
on type 2 terraces, so Ft1 = F and Ft2 = 0. With symmetric
attachment barriers described by a single K, the excess density
on type 2 terraces is uniform by symmetry, and should adopt
the value

δn2 = n2 − neq ≈ 1/2WFP/[K(K + 2P )], (15)

based on the continuum analysis (6). Thus, δn2 only has
significant nonzero values in the presence of permeability
P > 0. Asymmetric attachment barriers produce a more
complicated scenario given the linear variation in adatom
density across the type 2 terrace. See Sec. IV.

Naturally, density profiles for any choice of Ft1 �= Ft2

will incorporate information on P. For the general case of
Ft1 > Ft2, we now describe the strategy to extract K’s and
P, but also comment on additional perhaps unanticipated
complications with this analysis. In general, there is distinct
behavior at ascending and descending steps on each terrace.
We initially assign distinct kinetic coefficients K1± (K2±) for
the type 1 (type 2) terrace, where physically one would expect
that K1+ = K2+ and K1− = K2− since there is only a single
type of step in the model. Behavior of fluxes and densities
at the step edges give four relations determining these K’s
in terms of P. We can for example use these relations to
obtain K1± = K1±(P ) and K2± = K2±(P ) as functions of an
unknown P. We can then demand that the K+ agree on both
terraces, i.e., K1+(P ) = K2+(P ) yielding P = P+. However,
instead one could demand that the K− agree on both terraces,
i.e., K1−(P ) = K2−(P ) yielding P = P−. In a fully consistent
theory, one would have P+ = P−, and also the K’s and P
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from this analysis would be consistent with the relationships
determined from the density profiles. However, while P+ and
P− are generally close, they are not exactly equal.

We emphasize, however, that it is not reasonable to expect
that unique consistent K± and P can be extracted from the
discrete 2D DDE model for arbitrary choices of parameters.
Such 2D atomistic-level models cannot be exactly described
within a 1D continuum formalism. Even in simple cases where
P is not relevant, K± values depend upon the interpretation of
the adatom density at step edges. In contrast to the traditional
continuum picture, we also know that K± depend on numerous
details of the system such as terrace widths and in fact on the
entire terrace distribution [18].

One exception avoiding the above inconsistency is
the case with symmetric attachment barriers and where
Fe1 = Fe2 = Ft1 or Ft2. Then, by symmetry of the adatom
profile about the center of the terraces, one has that
K1+(P ) = K1−(P ) and K2+(P ) = K2−(P ) and consequently
that P = P+ = P− is uniquely determined. Notwithstanding,
we still find slightly different values of K’s and P depending
on whether we select Fe1 = Fe2 = Ft1 or Fe1 = Fe2 = Ft2.
However, one can argue that it is most appropriate to utilize
limiting values as Ft2/Ft1 → 1 corresponding to physical
uniform deposition where the discrepancy disappears. In the
asymmetric case, a slight difference persists in K’s and P’s
even after taking this limit.

III. PERMEABILITY AND KINETIC COEFFICIENTS FOR
SYMMETRIC ATTACHMENT

In this case, one has that K+ = K− = K . Our goal is
to determine not just this single K, but also P. Again, we
use E [N] to denote the case where ρ± are interpreted as
the extrapolated 〈n(0±)〉 [as the nonextrapolated 〈n(±1)〉],
and where fluxes 〈J±〉 are from rows j = ±1 to the step
edge. M denotes a modified treatment where 〈J±〉 are from
rows j = ±2 to j = ±1 and ρ± are interpreted as 〈n(±1)〉.
Various simple relationships between K± for these different
formulations are described in Appendix C. Again, for uniform
deposition, we recall that K = a2〈J±〉/〈δn±〉, where 〈J+〉 =
〈J−〉 and 〈δn+〉 = 〈δn−〉.

A. Basic behavior for zero attachment barriers

Our default analysis will involve steps with substantial
kink separation Lk = 24a corresponding to βφ|| = 7.66. We
also set φ⊥ = φ|| and choose “slow” edge diffusion with rate
he = exp(−βφ⊥)h (so that results are independent of φ⊥) and
terrace width W = 40a. We consider deposition with differing
rates Ft1 > Ft2 on alternating terraces. For the extreme case
of Ft2 = 0, the averaged adatom density profile is shown in
Fig. 5, and one obtains for the nonextrapolation approach (in
units of ah)

P (N ) = 0.479 80 (or 0.478 81)
(16)

and K(N ) = 0.040 40 (or 0.042 38),

setting step edge deposition rates as Fe1 = Fe2 =
Ft1 (or Fe1 = Fe2 = Ft2). The high value of P and low value
of K (despite the lack of step attachment barriers) reflects the
large kink separation which inhibits incorporation at kink sites.
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FIG. 5. Average adatom density profile 〈δn〉 rescaled by flux Ft1

as a function of terrace position j . Data for h = 1, W = 40a, Lk =
24a, δ− = δ+ = 0 and deposition fluxes Ft1 > 0 and Ft2 = 0. The
arrows pointing right (left) indicate the diffusive fluxes for descending
(ascending) steps, at j = 0, 40, and 80. These show the cancellation
of flux on the right terrace 2.

The discrepancy in values of P and K for different choices
of edge deposition is eliminated by considering behavior as
Ft2/Ft1 → 1, as shown in Fig. 6. This yields the unique
limiting values P (N ) = 0.479 32 and K(N ) = 0.041 37, dif-
fering only slightly from the values for Ft2/Ft1 = 0. A similar
scenario applies using the modified (M) approach where
distinct limiting values of P (M) = 0.454 74 and K(M) =
0.039 25 are found. Significantly, all of these limiting K±
equal the ones found in a standard analysis [18] for uniform
deposition (Fe1 = Fe2 = Ft2 = Ft1), from which P cannot be
determined, so our methods to extract the K± are consistent.

For the extrapolation (E) approach, one finds that K(E) =
0.043 15 and P (E) = ∞, the latter result reflecting the feature
that 〈n(0+)〉 = 〈n(0−)〉, so that ρ+ = ρ− and any discrepancy
between J± and JK± forces infinite P. The feature that
P = ∞ might also be anticipated from our discrete 1D DDE
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FIG. 6. Dependence of (a) P(N) and (b) K(N) (from different
choices of deposition fluxes at step edges) on ratio Ft2/Ft1. These
data are for approach N with W = 40a, Lk = 24a, δ− = δ+ = 0, but
similar behavior is found for other approaches and parameters.
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FIG. 7. Variation of (a) P’s and (b) K’s (from different approaches M, N, and E) with the kink separation Lk . The insets show the differences
�P = P (N ) − P (M),K(E) − K(N ), and K(E) − K(M) versus Lk . Data for W = 60a, δ− = δ+ = 0, and Ft2/Ft1 → 1.

analysis for case E in Sec. II C. Thus, in Secs. III B and
III C for zero attachment barrier, we do not report values for
infinite P(E).

B. Dependence on kink separation for zero attachment barriers

Recalling the relation Lk ≈ 1/2 a exp(1/2βφ||) [2] for kink
separation, we adjust Lk by adjusting βφ||. First, let us consider
φ⊥ = φ||, as in Sec. III A, retaining an edge diffusion rate he =
exp(−βφ⊥)h so that behavior is independent of he and φ⊥. In
this analysis we set W = 60a. From previous analyses with
uniform deposition for zero or symmetric attachment barriers,
it was shown that K naturally decreases with increasing
kink separation Lk [18]. Here we extend this analysis using
nonuniform deposition to also assess behavior of P.

Results in the limit as Ft2/Ft1 → 1 for P and K versus
Lk are shown in Fig. 7. For cases N and M, one finds that P
increases with Lk but saturates. Values depend on the choice
of approach, the slight difference actually increasing with Lk .
Presumably an expected increase of P with increasing Lk is
counterbalanced by the effect of increasing φ⊥ to produce
saturation. We also find that K ∼ ah/(Lk/a)2, as Lk → ∞,
for any of the approaches N, M, or E [18]. This result can
be understood from a rough analysis noting that 〈J±〉 ≈
1/2a−2 F W , and that the rescaled excess adatom density at the
step edge follows from analysis of a 1D deposition-diffusion
equation with adatoms impinging at rate 〈J±〉 and diffusing
with hop rate h to sinks separated by Lk . Thus, analysis of this
1D problem yields 〈δn∗(0)〉 = 〈δn±(E)〉 ∼ 〈J±〉(Lk)2/(ah)
recovering the above form for K. Behavior of 〈δn±(E)〉 and
〈δn±(N )〉 should be similar in this case. A more complex
semicontinuous version of this analysis can be found in an
Appendix of Ref. [18]. The data shown in Fig. 7 for smaller
Lk does not show pure asymptotic 1/(Lk)2 scaling. However,
behavior in this regime can be reasonably described by the
more general form

K ∼ ah/[(Lk/a)2 + B(Lk/a) + C]. (17)

The decrease in K with increasing Lk is certainly expected
as capture at far-separated steps is inhibited.

C. Dependence on he and βφ⊥ for zero attachment barriers

As already noted, defining he = exp(−βφ⊥)h makes P and
K independent of φ⊥, since only the combination exp(βφ⊥)he

appears in the rescaled 2D DDEs. However, in this section,
we explore the more general case where he and φ⊥ are
regarded as independent parameters. For uniform deposition,
behavior of K as a function of he can be assessed from
the relation K = a2〈J±〉/〈δn±〉. For this case where edge
diffusivity is decoupled from binding to the step edge, one
expects that the rescaled excess adatom density right at the
step edge satisfies 〈δn∗(0)〉 ∼ exp(−βφ⊥)h/he(a〈J±〉/h), for
large he/h or βφ⊥. This result reflects the feature that 〈δn*(0)〉
should scale inversely with he based on a simplified 1D
analysis. The first factor in 〈δn*(0)〉 reduces to unity for the
choice he = exp(−βφ⊥)h, thus recovering standard results for
that case. As noted above, for this case with zero attachment
one has that 〈δn±(E)〉 = 〈δn∗(0)〉. This result, together with
a relation in Appendix C allowing assessment of 〈δn±(N )〉,
yields

K(E) ∼ ahe exp(βφ⊥)
(18)

and K(N ) ∼ ahe exp(βφ⊥)/[c + (he/h)exp(βφ⊥)],

for c = O(1) so that K(N ) ∼ ah for large he/h or βφ⊥. This
behavior is confirmed by results in Fig. 8(b) for fixed φ⊥ and
different ratios he/h, and also in Fig. 9(b) for varying φ⊥
with he = h kept constant. Clearly enhanced edge diffusion
enhances capture at kink sites resulting in higher values of
K. Enhanced binding at step edges also naturally produces
enhanced adatom capture and enhanced K [provided that he

does not decrease like exp(−βφ⊥) as φ⊥ increases].
For the analysis of permeability (for the case N) based on

behavior for differing deposition fluxes on alternating terraces,
it is perhaps simplest to consider the extreme case of no de-
position on terrace 2. Then, the relation (15) together with the
assumption that P(N) � K(N) and 〈J1〉 ≈ 1/2FW a−2 yields
P (N ) ∼ a−2K(N )2〈δn2〉/〈J1〉. Then, using that K(N ) ∼ ah

for large he/h or large βφ⊥, and the relation 〈δn2〉 ∼
exp(−βφ⊥)h/he(a〈J1〉/h) mimicking behavior noted above
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FIG. 8. Main plots: dependence of (a) P’s and (b) K’s (for approaches M and N) with the ratio of edge on terrace hopping rates he/h. Insets:
(a) difference �P = P (N ) − P (M) and (b) K(E) versus he/h. Data for W = 60a, Lk = 30a, δ− = δ+ = 0, and Ft2/Ft1 → 1.

for 〈δn*(0)〉 for uniform deposition, one concludes that

P (N ) ∼ (ah) exp(−βφ⊥)h/he, for large he/h or βφ⊥.

(19)

See Appendix C for an alternative analysis. The behavior
predicted by (19) is confirmed in Figs. 8(a) and 9(a). Just as
enhanced edge diffusion enhances capture at kinks, it also
inhibits transport across steps (without capture). Likewise,
enhanced binding at step edges naturally inhibits transport
across steps.

D. Nonzero symmetric attachment barriers

Now P(E) is finite, as well as P(N) and P(M), and we will
see that these different formalisms produce similar behavior.
In this case we choose h± = exp(−βδ)h and again set he =
exp(−βφ⊥)h. It is intuitively clear that both K → 0 and P →
0, as βδ → �. Furthermore, for large attachment barriers, the
adatom density on the terrace becomes more uniform including
in the direction along the step. Thus, the discrete 1D DDE
model should more accurately describe behavior in the 2D

model, and the prediction from (9) or (11) that

K± ≈ ah exp(−βδ) (20)

should apply. Indeed, the results in Fig. 10 show that this
behavior is realized for the 2D model after a crossover from a
nonasymptotic regime for small βδ. To elucidate the behavior
of P, again the discrete 1D DDE model provides insights noting
that the relaxation rate describing incorporation of adatoms,
which have already reached the step edge, will not decrease
with increasing βδ as such adatoms have already surmounted
the step attachment barrier and just need to diffuse along the
step edge to reach kink sites. Thus, the result from (10) and
(12) that P ≈ ah2 exp(−2βδ)/r should be applicable. Even
though a precise expression for r is not available, this quantity
will not depend on βδ. Results in Fig. 10 confirm the variation

P ∼ ah exp(−2βδ). (21)

It is also appropriate to note that the behavior of K and
P is not sensitive to the detailed prescription (extrapolated,
nonextrapolated, or modified) of these quantities.
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IV. PERMEABILITY AND KINETIC COEFFICIENTS FOR
ASYMMETRIC ATTACHMENT

Again in analyzing K’s and P, case E [case N] indicates that
ρ± are obtained from extrapolated 〈n(±0)〉 [nonextrapolated
〈n(±1)〉], and fluxes 〈J±〉 are from rows j = ±1 to the step
edge. M indicates that 〈J±〉 are from j = ±2 to j = ±1
and ρ± are interpreted as 〈n(±1)〉. Our default analysis
will involve steps with substantial kink separation Lk = 24a

corresponding to βφ|| = 7.66, he = exp(−βφ⊥)h, and terrace
width W = 40a.
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FIG. 11. Average adatom density profile 〈δn〉 rescaled by flux
Ft1 as a function of terrace position j , for h = 1, W = 40a, Lk =
24a, δ+ = 0, δ− = 3.5, and deposition fluxes Ft1 > 0 and Ft2 = 0.
The arrows pointing right (left) indicate the diffusive fluxes for
descending (ascending) steps, located at j = 0, 40, and 80. Note
that the flux is constant across the right terrace 2.

A. Basic behavior for nonzero ES barrier (δ− > 0, δ+ = 0)

For the case δ− > 0 [corresponding to a nonzero Ehrlich-
Schwoebel (ES) barrier for downward transport at step edges]
and δ+ = 0 (facile attachment at ascending steps), it is clear
that K− < K+. We consider deposition with differing rates
Ft1 > Ft2 on alternating terraces. For the extreme case of
nonuniform deposition with Ft2 = 0, the averaged adatom
density profile is shown in Fig. 11. Again the nonzero
excess density of terrace 2 reflects the presence of a nonzero
permeability P > 0, and the linear variation across the terrace is
a simple consequence of the lack of deposition which implies
a constant diffusion flux across the terrace. Direction of the
net flux across terrace 2 is perhaps not obvious as it is in
the direction of the smaller of the two permeability fluxes
impinging on terrace 2. This behavior also relies on the feature
that K− � K+.

Next, we present results for K± and P’s based on an analysis
as described in Sec. II E for the limiting case of quasiuniform
deposition (Ft2/Ft1 → 1). Specifically, after determining the
relations K1±(P ) and K2±(P ) from analysis of fluxes to
step edges and excess adatom densities on both terraces, we
determine P+ and P− from the relations K1+(P+) = K2+(P+)
and K1−(P−) = K2−(P−). For each of the approaches E, N,
and M, one finds small differences in P+ and P−. See Table I
for some examples. For cases N and M, K− is about 40% of
K+ for βδ− = 0.8, and about 3% of K+ for βδ− = 3.5. P
values are significantly higher than K+ values for βδ− = 0.8,
but about 50% lower for βδ− = 3.5. For case E, one finds
somewhat higher values for K+ and P, but extremely small
values for K−.

A more complete description of how P+ depends on βδ− is
given in Fig. 12(a). As might be anticipated from our discrete
1D DDE analysis, one finds decay like P± ∼ (ah)exp(−βδ−)
for a broad range of large βδ−. The variation of the difference
between P+ and P− depends on the approach E, N, or M, but it
is always very small and tends to decrease for large βδ−. See
Fig. 12(b). Behavior of P+ for very large βδ− has an unusual
saturation feature which we will not discuss in detail here.
Finally, we describe results for the corresponding behavior of
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TABLE I. Permeabilities P± and kinetic coefficients K± = K1±(P±) = K2±(P±) for approaches M, N, and E. The slight difference between
P+ and P− is shown in the fifth column. Data are obtained for W = 40a, Lk = 24a, δ+ = 0, and Fe1 = Fe2 = Ft1 with Ft2/Ft1 → 1.

βδ− Approach aP+/D aP−/D a(P+ − P−)/D aK+/D aK−/D

0.8 M 0.279 54 0.278 98 0.000 56 0.048 13 0.021 55
N 0.294 46 0.294 26 0.000 20 0.050 66 0.022 76
E 0.816 51 0.815 97 0.000 55 0.077 36 �0

3.5 M 0.026 81 0.026 07 0.000 75 0.053 03 0.001 20
N 0.028 05 0.027 69 0.000 36 0.055 10 0.001 66
E 0.031 55 0.031 14 0.000 41 0.060 10 �0

K±. As expected from the discrete 1D DDE analysis, one finds
that K− ∼ (ah)exp(−βδ−), while K+ saturates for large βδ−.
See Fig. 13.

B. Behavior for asymmetric attachment barriers with
δ− = 2δ+ = 2δ

Again, as in Sec. III D, one expects that, for large barriers,
the discrete 1D DDE model should more accurately describe
behavior in the 2D model. Thus, (9) or (11) for K± and (10)
or (12) for P suggest

K± ≈ ah exp(−βδ±)
(22)

and P ∼ ah exp(−βδ+ − βδ−) = ah exp(−3βδ).

Results shown in Fig. 14 confirm these predictions. Note
that the behavior of K and P is not sensitive to the detailed
prescription (extrapolated, nonextrapolated, or modified) of
these quantities.

V. DISCUSSION AND CONCLUSIONS

Our analysis shows that the discrete 2D DDE formulation
is particularly effective at not just elucidating the general
behavior of permeability P and kinetic coefficients K±, but
also in quantifying these parameters. The latter is necessary
for application to the description of specific systems where
appropriate energetic and geometric parameters would provide
input to our 2D DDE formulation. Steady-state analysis of

nonuniform deposition scenarios allows determination of each
of P and K±. This is not possible just considering uniform
deposition. For the extreme case where there is no deposition
on alternating terraces, one gains immediate insight into the
extent of permeability from the nonzero excess adatom density
on those terraces.

To conclude, we review in more detail our results for the
dependence of P and K± on key parameters, and also discuss
how these results relate to behavior in specific systems:

(i) Dependence on kink separation Lk . The behavior K± ∼
a3h/(Lk)2 from (17) illustrating the decrease of K± with
increasing Lk , which is expected since incorporation at kinks
is naturally inhibited. This dependence is key to understanding
behavior during step flow on dimer-row reconstructed vicinal
Si(100) or Ge(100) surfaces which exhibits alternating rough
(or meandering) steps and smooth (or stiff steps) [18,21,27,28].
Rough (smooth) steps have low (high) Lk values, and thus high
(low) K± values. Another class of systems are fcc(110) metal
surfaces [29,30]. Here steps along the 〈110〉 direction (parallel
to rows of neighboring surface atoms) are smooth and stiff
with large Lk and low K±, but steps in the orthogonal 〈001〉
direction are rough with low Lk and higher K±.

Dependence of P on Lk depends on model details. If
edge diffusivity decreases as Lk increases, then P can saturate
as shown in Sec. III B. However, increasing Lk with other
parameters fixed would naturally lead to a increase in P as
suggested by (10) or (12) using r ∼ exp(+βφ⊥)he/(lk)2.
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FIG. 12. (a) Permeability P+ and (b) differences P+ − P−, for approaches M, N, and E, as functions of the ES barrier βδ−. Data for the
parameters W = 40a, Lk = 24a, δ+ = 0, and Ft2/Ft1 → 1.
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FIG. 13. Kinetic coefficients (a) K+ and (b) K− versus βδ−. In (b) the inset shows the same data of the main plot in log-linear scale. In (a),
horizontal lines indicate values obtained for standard calculation [18] considering an infinity ES barrier. Parameters are the same as in Fig. 12.

(ii) Dependence on edge diffusivity he. The behavior
K± ∼ ahe from (18), and P ∼ ah2/he from (19), reflect the
feature that facile edge diffusion enhances incorporation at
kinks sites and thus inhibits step crossing without capture.
From this perspective, one expects steps on fcc(100) metal
surfaces to have high K± and low P since he far exceeds h;
on the other hand, K± may be lower and P higher for fcc(111)
metal surfaces where generally he is far below h [5].

(iii) Dependence on binding to the step edge βφ⊥.
Generally one expects binding to the step edge to enhance
capture at kinks and thus enhance K±. However, if step edge
diffusivity is reduced with increased binding, as with the
choice he = exp(−βφ⊥)h, then K± and P are independent of
φ⊥, this “bond-breaking” specification is generally regarded
as being more realistic for semiconductor rather than metallic
surfaces [5].

(iv) Dependence on step attachment barriers δ±. The
traditional 1D DDE analysis (which assumes instantaneous
incorporation at steps and set r = ∞) successfully predict the
basic behavior K± ≈ (ah) exp(−βδ±), as confirmed by (9) and
(11) even for finite r . This behavior is also validated by our 2D

DDE analysis as given by (20) and (22). This behavior reflects
the traditional expectation that such additional attachment
barriers should inhibit capture at step edges and thus reduce
K±. Our refined 1D DDE analysis (10) and (12) indicated the
behavior of P ∼ ah exp(−βδ+ − βδ−), which was confirmed
by our 2D DDE analysis. See (21) and (22). These results
can be directly applied to metal surfaces where one generally
finds no barrier for attachment to ascending steps (δ+ = 0)
but a nonzero Ehrlich-Schwoebel barrier for attachment to de-
scending steps (δ− > 0). Generally, δ− is smaller for fcc(100)
surfaces which would enhance P, but this is counterbalanced
by a high he. On the other hand, δ− is generally higher for
fcc(111) surfaces which would reduce P, but a compensating
feature is that he is lower. For semiconductor surfaces, it is
sometimes suggested that there is a barrier for attachment to
ascending steps [28], which would imply a reduced K+.
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APPENDIX A: DISCRETE 1D DDE FORMULATIONS

The complete set of DDE for the 1D model of Sec. II B are
as follows:

d/dt n(j ) = F + h[n(j + 1) − 2n(j ) + n(j − 1)]

≈ 0, for j > 1, (A1)

d/dt n(1) = F + h[n(2) − n(1)]

+h+[exp(−βφ⊥)n(0) − n(1)]

≈ 0, (A2)

d/dt n(0) = F + h+[n(1) − exp(−βφ⊥)n(0)] + h−[n(−1)

− exp(−βφ⊥)n(0)] − ν[n(0) − neq(0)]

≈ 0, (A3)

with analogous equations for n(j < 0). The structure of the
above equations is simplified replacing n(0) by the rescaled
density via n∗(0) = exp(−βφ⊥)n(0), introduced in Sec. II B,
and using the identity ν[n(0) − neq(0)] = r[n∗(0) − neq]. If
necessary, we smoothly extrapolate or “analytically extend”
the n(j �= 0) to the values n(0±) at the step edge or step via
the defining relations

d/dt n(±1) ≡ F + h[n(±2) − 2n(±1) + n(0±)] ≈ 0.

(A4)

Exact expressions for the flux,

J+ = a−1h+[n(1) − exp(−βφ⊥)n(0)] between sites

j = 1 and j = 0 (A5)

and

J− = a−1h−[n(−1) − exp(−βφ⊥)n(0)] between sites

j = −1 and j = 0 (A6)

are rewritten using the above steady-state relations to have
the form (4). One then extracts the expressions for K± and P
given in (9) and (10) associating ρ± with nonextrapolated (N ) :
a−2n(±1), or in (11) and (12) associating ρ± with extrapolated
(E) : a−2n(0±).

As an aside, we note that instead that the modified
(M) approach identifying fluxes J± as those near to rather
than at the steps, e.g., choosing J+ = a−1h[n(2) − n(1)] and
J− = a−1h[n(−2) − n(−1)], would produce slightly different
expressions for K± and P from those given in Sec. II B.

We have also considered a modified discrete 1D DDE model
where we let r → ∞ (or ν → ∞) so that n(0) = neq(0) =
exp(−βφ||) is no longer a free variable, but we also include
direct hopping between sites j = −1 and j = +1 at rate hp.

In analysis of this model, if we identify J± as fluxes right at
the step, then one obtains

J+ = a−1h+[n(1) − neq] + a−1hp[n(1) − n(−1)] (A7)

and

J− = a−1h−[n(−1) − neq] + a−1hp[n(−1) − n(1)]. (A8)

For the case where ρ± are identified as a−2n(±1), (A7)
and (A8) already have exactly the form of (4), immediately
yielding

K± = ah± so �± = ah/h±
(A9)

and P = ahp so �p = ah/hp,

as reported previously [18]. For the case where ρ± are
identified as the analytically extended a−2n(±0), one obtains

K± = ah[h±(h − h∓) − hp(h+ + h−)]/[(h − h+)(h − h−)

−hp(2h − h+ − h−)] (A10)

and

P = ah2hp/[(h − h+)(h − h−) − hp(2h − h+ − h−)].

(A11)

Thus (A10) and (A11) show that both K± and P diverge
when h± = h, and these results reduce to the expected K± =
ah/(h/h± − 1) and P = 0 when hp = 0. Choosing J+ =
a−1h[n(2) − n(1)] and J− = a−1h[n(−2) − n(−1)] would
produce slightly different expressions for K± and P for either
treatment.

APPENDIX B: SYMMETRY-BREAKING STEP EDGE
DEPOSITION FOR δ+ = δ−

In a continuum model with different deposition rates Ft1
and Ft2 on alternating terraces for a perfect vicinal surface with
symmetric attachment barriers, one naturally finds reflection
symmetry about the center of each terrace in the adatom den-
sity averaged along the step edge. See Fig. 2. However, in the
discrete 2D DDE model, reasonably choosing deposition rates
at step edge rows as Fe1 = Ft1 and Fe2 = Ft2 (corresponding
to uniform deposition on each terrace) actually breaks the
above reflection symmetry. This is most clear in the extreme
case of no deposition on terrace 2 where Fe2 = Ft2 = 0 from
examination of the averaged adatom density profile across
terrace 2 which would be constant in the presence of reflection
symmetry. However, results for this case, shown in Fig. 15
where we focus on terrace 2, show a symmetry-breaking linear
variation in averaged density across the terrace. The density
is naturally bounded above (below) by the constant values
obtained by symmetry-preserving choices Fe1 = Fe2 = Ft1 >

0 (Fe1 = Fe2 = Ft2 = 0) which were utilized in Sec. II A.
The feature that reflection symmetry is broken means that

one must implement the general strategy to obtains K’s and P
accounting for distinct behavior at ascending and descending
step edges at both terraces. Indeed, in Sec. III (for symmetric
attachment barriers) one finds the same unique values for K±
and P in the limit of Ft2/Ft1 → 1. In contrast, considering
Fe1 = Ft1 and Fe2 = Ft2 similar but distinct P+ and P−
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FIG. 15. Average adatom density profile 〈δn〉 rescaled by flux
Ft1 as a function of terrace position j , for h = 1, W = 40a, Lk =
24a, δ− = δ+ = 0, and deposition fluxes Ft1 > 0 and Ft2 = 0.

are obtained, even for Ft2/Ft1 → 1. See case δ+ = δ− = 0
in Table II. For asymmetric attachment barriers δ+ = 0 and
δ− > 0, slightly different P+ and P− are found independent
of the choice of fluxes at the step edges. This happens
because the symmetry is naturally broken by the barriers.
Anyway, comparing the values of P+ and P− in Table I (for
Fe1 = Fe2 = Ft1 > 0) and in Table II one sees that they are
close, but in the former case the difference P+ − P− is in
general smaller. Thus, the strategy of considering identical
fluxes at step edges yields improved data also for asymmetric
barriers.

APPENDIX C: RELATIONSHIPS BETWEEN K± FOR
DIFFERENT FORMALISMS

We first describe various relationships between the K’s
for these different approaches which follow most directly
from analysis for uniform deposition at rate F per site.
For symmetric attachment barriers where 〈n+〉 = 〈n−〉,K =
K+ = K− is determined from K = a2〈J±〉/〈δn±〉 for excess
step edge densities 〈δn±〉 = 〈n±〉 − neq.

Note that K(N) and K(M) share the same 〈δn±〉. Also, by
symmetry, 〈J±(N )〉 for the same terrace must equally share the

total deposition flux on that terrace except for atoms deposited
directly at the step edge row. Given our specific definition of
〈J±(N )〉, this total flux is associated with atoms deposited on
w − 1 (w − 3) rows for N (M), so that

K(M)/K(N ) = 〈J±(M)〉/〈J±(N )〉 = (w − 3)/(w − 1).

(C1)

This relation also reflects the more general feature that K’s
and P depend on the terrace width W generally exhibiting
a 1/w type approach to limiting values as w → ∞ [18].
Another natural comparison comes from the feature that K(N)
and K(E) share the same 〈J±〉 = h±[〈δn±(N )〉 − 〈δn±(E)〉].
Solving this relation for 〈δn±(N )〉 in terms of 〈δn±(E)〉 and
substituting into K = a2〈J±〉/〈δn±〉 yields

K(N ) = h±K(E)/[h± + K(E)]. (C2)

This relation captures the feature seen in the 1D DDE
analysis that K(N) remains finite as K(E) diverges in the regime
of facile incorporation at step edges.

In analyzing permeability P we consider deposition with
fluxes Ft1 and Ft2 on alternating terraces. Symmetry implies
that average fluxes to both step edge on terrace 1 are equal so
that 〈J1+〉 = 〈J1−〉 = 〈J1〉, as are average excess densities at
both steps so that 〈δn1+〉 = 〈δn1−〉 = 〈δn1〉. The same applies
for terrace 2. Then, using (14) for both terraces (1 and 2) to
solve for P yields

P = a2[〈δn2〉〈J1〉 − 〈δn1〉〈J2〉]/[(〈δn1〉
− 〈δn2〉)(〈δn1〉 + 〈δn2〉)]. (C3)

As an aside, we note that if Ft2 = 0 so that 〈J2〉 = 0, and if
〈δn1〉  〈δn2〉, then (C3) reduces to

P (N ) ≈ a2〈δn2〉〈J1〉/(〈δn1〉)2. (C4)

This result matches the expression given in Sec. III C, which
leads to Eq. (19), by using 〈J1〉 ∼ a−2K〈δn1〉.

Finally, analogous to our derivation of (C1), it immediately
follows from (C3) that

P (M)/P (N ) = (w − 3)/(w − 1). (C5)

TABLE II. Permeabilities P± and kinetic coefficients K± = K1±(P±) = K2±(P±), for approaches M, N, and E. The difference between P+
and P− is shown in the fifth column. Data obtained for W = 40a, Lk = 24a, δ+ = 0, and Fe1 = Ft1 and Fe2 = Ft2 with Ft2/Ft1 → 1.

βδ− Approach aP+/D aP−/D a(P+ − P−)/D aK+/D aK−/D

0.0 M 0.442 86 0.466 61 −0.023 74 0.039 25 0.039 25
N 0.467 17 0.491 46 −0.024 29 0.041 37 0.041 37
E ∞ ∞ – 0.043 15 0.043 15

0.8 M 0.269 75 0.283 69 −0.01393 0.047 72 0.021 36
N 0.284 37 0.298 98 −0.014 60 0.050 24 0.022 57
E 0.776 11 0.815 97 −0.039 86 0.075 50 �0

3.5 M 0.025 37 0.026 16 −0.000 79 0.052 33 0.001 17
N 0.026 57 0.027 75 −0.001 18 0.054 38 0.001 64
E 0.029 81 0.031 14 −0.001 33 0.059 17 �0
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