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Energy levels of hybrid monolayer-bilayer graphene quantum dots
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Often real samples of graphene consist of islands of both monolayer and bilayer graphene. Bound states in such
hybrid quantum dots are investigated for (i) a circular single-layer graphene quantum dot surrounded by an infinite
bilayer graphene sheet and (ii) a circular bilayer graphene quantum dot surrounded by an infinite single-layer
graphene. Using the continuum model and applying zigzag boundary conditions at the single-layer–bilayer
graphene interface, we obtain analytical results for the energy levels and the corresponding wave spinors. Their
dependence on perpendicular magnetic and electric fields are studied for both types of quantum dots. The energy
levels exhibit characteristics of interface states, and we find anticrossings and closing of the energy gap in the
presence of a bias potential.
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I. INTRODUCTION

Quantum dots (QDs) in both single-layer and bilayer
graphene have been the subject of intensive research during the
last few years, owning to their unique electronic and optical
properties [1–14]. Single-layer graphene (SLG) QDs are small
flakes cut out from graphene in which carrier confinement is
due to the quantum size effect. The electronic and optical
properties of such QDs depend on the shape and edges of the
dot. For example, in the presence of zigzag edges, the energy
spectrum of SLG QDs exhibits zero-energy levels, while with
armchair edges the spectrum displays an energy gap [2,8,16].
Electrostatic confinement of electrons in integrable graphene
QDs was also proposed in which the effect of edges is no
longer important [15].

Bilayer graphene (BLG) consists of two van der Waals
(vdW) coupled layers of SLG and has a gapless and parabolic-
like spectrum at low energies [17]. Unlike SLG, an external
electric field, realized by external gate potentials, can induce a
tunable band gap in the energy spectrum of BLG. Engendering
this gap using nanostructured gates led to the realization of
electrostatic defined BLG QDs [5,18]. In such BLG QDs, the
confinement is due to the electrostatic potentials and therefore
the effect of edges are no longer important. Such QDs were
recently realized by two different experimental groups [19,20].

Most graphene samples exfoliated from graphite consist
of islands of one or few layers of graphene [21–23]. In these
samples, the influence of junctions between different graphene
regions play a significant role in their transport and electronic
properties. It was shown that SLG-BLG hybrid systems exhibit
unusual transport properties due to the different quantum
Hall (QH) states in the SLG and BLG regions [24]. An
unconventional Landau quantization was recently observed at
the interface of such hybrid systems [25]. The Landau levels
of an infinite SLG-BLG system were theoretically studied
for both zigzag and armchair boundary conditions at the 1D
interface [26].
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Here, we investigate a very different geometry and demon-
strate that carriers can be confined in SLG and BLG islands
in a hybrid QD-like structure made of SLG-BLG junctions.
This novel type of QDs can be realized by the (accidental)
nanostructuring of one of the graphene layers in bilayer
graphene. For convenience, we will restrict ourselves to
circular QDs. This will allow us to present analytical results,
which we will compare with a pure numerical approach. We
propose the following two types of hybrid QDs: SLG-infinite
BLG—a circular SLG QD surrounded by an infinite BLG sheet
[see Fig. 1(a)] and BLG-infinite SLG—a circular BLG QD
surrounded by an infinite SLG sheet [see Fig. 1(b)].

Taking the circular geometry with radius R for the QDs,
we employ the continuum model, i.e., solving the Dirac-Weyl
equation, and obtain analytical results for the energy levels
and corresponding wave functions. We study the effect of both
perpendicular electric and magnetic fields on the energy levels.
For zero-magnetic field, we demonstrate that SLG-infinite
BLG, in contrast to the BLG-infinite SLG QD, exhibit confined
states in the presence of an external electric field. If such a
circular QD is cut out of BLG, one will have both armchair
and zigzag edges. However, in order to obtain analytical
results for the energy levels and to observe features brought
by the zigzag edges in the spectrum, we will implement the
zigzag boundary condition at the SLG-BLG junction in our
continuum approach. Breaking the inversion symmetry due to
the interface and breaking the time reversal symmetry with
a magnetic field, the two Dirac valleys K and K ′, should be
studied separately.

The paper is organized as follows. In Sec. II, we consider
SLG-infinite BLG QDs in the (A) absence and (B) presence
of a perpendicular magnetic field. In both cases, the effect
of an external electric field is studied. Section III concerns
numerical results for BLG-infinite SLG QDs. We conclude
the manuscript in Sec. IV.

II. SLG-INFINITE BLG QUANTUM DOTS

A. Zero magnetic field

First, we investigate the energy levels of a circular SLG QD
embedded in infinite BLG [see Fig. 1(a)]. This system can be
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FIG. 1. Schematic pictures of the proposed circular SLG-BLG
hybrid QDs with radius R. (a) SLG-infinite BLG QD: circular SLG
dot surrounded by an infinite BLG. (b) BLG-infinite SLG QD: circular
BLG dot surrounded by an infinite SLG. The upper pictures show a
side view of the systems.

considered as an infinite BLG sheet where a circle of radius R

is cut out from its upper graphene layer. So we assume that one
layer of BLG, containing A1 and B1 sublattices, seamlessly
continues to the SLG with A and B sublattices, while the other
graphene layer composed of A2 and B2 sublattices is sharply
cut at the boundary r = R.

We obtain the corresponding Hamiltonian in both SLG and
BLG regions and by implementing zigzag boundary conditions
to one of the graphene layers at the SLG-BLG interface, we
calculate the energy levels. The dynamics of carriers in the
honeycomb lattice of covalent-bond carbon atoms of single
layer graphene can be described by the following Hamiltonian,
which in zero magnetic field is given by [27]

H = vF p · σ + U1I, (1)

where vF ≈ 106 m/s is the Fermi velocity, p = (px,py) is
the two-dimensional momentum operator, σ denotes the Pauli
matrices, and U1 is the potential applied to SLG. We assume
that the carriers are confined in a circular area of radius R,
with zigzag boundary. In polar coordinates and dimensionless
units, the Hamiltonian (1) reduces to the form

H =
(

u1 π+
π− u1

)
, (2)

with the momentum operator

π± = −ie±iτϕ

[
∂

∂ρ
± iτ

ρ

∂

∂ϕ

]
, (3)

where the dimensionless variables are ρ = r/R and u1 =
U1R/�vF . r and ϕ are the radial and azimuthal coordinates
of the cylindrical coordinate system, respectively. The two
valleys are labeled by the quantum number τ , which is τ = +1
for the K valley and τ = −1 for the K ′ valley.

The Schrödinger equation becomes

H�(ρ,ϕ) = ε�(ρ,ϕ), (4)

where the carrier energy E, is written in dimensionless units
as ε = ER/�vF . The two-component wave function has the

form [28]

�τ (ρ,ϕ) = eimϕ

(
φτ

A(ρ)
ie−iτϕφτ

B(ρ)

)
, (5)

where m = 0,±1,±2, . . . denotes the angular momentum
label. The components φA and φB correspond to different
sublattices A and B, respectively. Solving Eq. (4), the radial
dependence of the spinor components is described by[

d

dρ
− mτ − 1

ρ

]
φτ

B(ρ) = (ε − u1)φτ
A(ρ),

[
d

dρ
+ τm

ρ

]
φτ

A(ρ) = −(ε − u1)φτ
B(ρ). (6)

Decoupling the above equations, we arrive at the Bessel
differential equation for φτ

A:

ρ2 d2φτ
A(ρ)

dρ2
+ ρ

dφτ
A(ρ)

ρ
+ [(ε − u1)2ρ2 − m2]φτ

A(ρ) = 0,

(7)
with the solution

φτ
A(ρ) = CτJm(aρ), (8)

where a = ε − u1 and Cτ is the normalization constant. The
second component of the wave function can be obtained from
Eq. (6) as

φτ
B(ρ) = −τCτJm−τ (aρ). (9)

Thus the wave function becomes

�τ (ρ,ϕ) = eimϕ

(
CτJm(aρ)

ieiτϕτCτJm+τ (aρ)

)
. (10)

The BLG region can be described in terms of four
sublattices, labeled A1, B1, for the lower layer and A2, B2, for
the upper layer [see Fig. 1(a)]. The A1 and B2 sites are coupled
via a nearest-neighbor interlayer hopping term t ≈ 0.4 eV. The
BLG Hamiltonian in the vicinity of the K point, is given by
(in dimensionless units) [18,29]

HK = HK
0 + (�u/2)σz, (11)

with

HK
0 =

⎛
⎜⎝

u0 π+ t ′ 0
π− u0 0 0
t ′ 0 u0 π−
0 0 π+ u0

⎞
⎟⎠, (12)

where t ′ = tR/�vF , u0 = (u1 + u2)/2, �u = u1 − u2, and
u1,2 = U1,2R/�vF , with U1 and U2 the potentials at the two
layers. The operator σz is defined as

σz =
(

I 0
0 −I

)
, (13)

where I is the 2 × 2 identity matrix. The Hamiltonian at the
K ′ point is obtained by interchanging π+ and π− in Eq. (12).

The eigenstates of Hamiltonian (11) are four-component
spinors [30]

�K (ρ,ϕ) =

⎛
⎜⎜⎜⎝

φK
A1(ρ)eimϕ

iφK
B1(ρ)ei(m−1)ϕ

φK
B2(ρ)eimϕ

iφK
A2(ρ)ei(m+1)ϕ

⎞
⎟⎟⎟⎠, (14)
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where m is the angular momentum label. Solving the
Schrödinger equation, the radial dependence of the spinor
components are described by[

d

dρ
− m − 1

ρ

]
φK

B1(ρ) = (α − δ)φK
A1(ρ) − t ′φK

B2,[
d

dρ
+ m

ρ

]
φK

A1(ρ) = −(α − δ)φK
B1(ρ),

[
d

dρ
+ m + 1

ρ

]
φK

A2(ρ) = (α + δ)φK
B2(ρ) − t ′φK

A1(ρ),

[
d

dρ
− m

ρ

]
φK

B2(ρ) = −(α + δ)φK
A2(ρ), (15)

where α = ε − u0 and δ = (u1 − u2)/2. These equations can
be decoupled and we obtain for φK

A1:[
d2

dρ2
+ 1

ρ

d

dρ
− m2

ρ2

]
φK

A1(ρ) = γ 2
±φK

A1(ρ), (16)

where the potential-dependent eigenvalues are

γ± = {−(α2 + δ2) ± [(α2 − δ2)t ′2 + 4α2δ2]1/2}1/2. (17)

The differential equation (16) is the known modified Bessel
equation. Here we choose the modified Bessel function of the
second kind Km(γ±), as the appropriate solutions vanishing at
r → ∞. Thus we have

φK
A1(ρ) = CK

1 Km(γ+ρ) + CK
2 Km(γ−ρ). (18)

Using Eqs. (15), we obtain the other spinor components:

φK
B1(ρ) = 1

α − δ

[
CK

1 γ+Km−1(γ+ρ) + CK
2 γ−Km−1(γ−ρ)

]
,

φK
B2(ρ) = 1

(α − δ)t ′
[
CK

1 ((α − δ)2 + γ 2
+)Km(γ+ρ)

+CK
2 ((α − δ)2 + γ 2

−
)
Km(γ−ρ)

]
,

φK
A2(ρ) = 1

(α2 − δ2)t ′
[
CK

1 γ+((α − δ)2 + γ 2
+)Km+1(γ+ρ)

+CK
2 γ−((α − δ)2 + γ 2

−)Km+1(γ−ρ)
]
, (19)

where CK
j (j = 1,2) are the normalization constants. The wave

function for the K ′ valley can be written as

�K ′
(ρ,ϕ) =

⎛
⎜⎜⎜⎝

φK ′
A1(ρ)eimϕ

iφK ′
B1(ρ)ei(m+1)ϕ

φK ′
B2(ρ)eimϕ

iφK ′
A2(ρ)ei(m−1)ϕ

⎞
⎟⎟⎟⎠. (20)

Solving the Schrödinger equation (4) for the K ′ valley
and comparing with the differential equations (15), we find
(φK ′

A1,φ
K ′
B1,φ

K ′
B2,φ

K ′
A2) = (φK

B2,φ
K
A2,φ

K
A1,φ

K
B1).

Now, we apply zigzag boundary conditions [26] at the SLG-
BLG interface. These conditions yield

�τ
A(ρ,ϕ) = �τ

A1(ρ,ϕ)|ρ=1,

�τ
B(ρ,ϕ) = �τ

B1(ρ,ϕ)|ρ=1,

0 = �τ
B2(ρ,ϕ)|ρ=1, (21)

where τ = ±1, distinguishes the boundary conditions for the
two valleys. The above conditions lead to a system of equations
from which we obtain the eigenvalues. For the K point, with
the help of the wave functions (10), (14), (18), and (18), we
arrive at

MK

⎛
⎝CK

CK
1

CK
2

⎞
⎠ =

⎛
⎝−Jm(a) Km(γ+) Km(γ−)

Jm−1(a) b+ Km−1(γ+) b− Km−1(γ−)
0 c+ Km(γ+) c− Km(γ−)

⎞
⎠

×
⎛
⎝CK

CK
1

CK
2

⎞
⎠ = 0, (22)

where b± = γ±/(α − δ) and c± = ((α − δ)2 + γ 2
±)/(α − δ)t ′.

The corresponding calculations for the K ′ point leads to

MK ′

⎛
⎜⎝CK ′

CK ′
1

CK ′
2

⎞
⎟⎠ =

⎛
⎝ −Jm(a) c+ Km(γ+) c− Km(γ−)

−Jm+1(a) d+ Km+1(γ+) d− Km+1(γ−)
0 Km(γ+) Km(γ−)

⎞
⎠

×

⎛
⎜⎝CK ′

CK ′
1

CK ′
2

⎞
⎟⎠ = 0, (23)

where d± = c±γ±/(α + δ). The nonzero eigenenergies are the
solutions of det |MK | = 0 and det |MK ′ | = 0.
The zero-energy states can be investigated separately by
solving Eqs. (6) and (15) in the case of ε = 0 and U1 = U2 = 0.
Applying the boundary conditions (21), one finds zero-energy
states at the K (K ′) valley only for m � 0 (m � 0).
Returning to the nonzero eigenenergies for the unbiased
case U1 = U2 = 0, we find γ± = (−ε2 ±

√
ε2t ′2)1/2 which

is pure imaginary when |ε| > t ′. In the interval |ε| < t ′, γ+
is real while γ− is pure imaginary. Requiring det |MK | =
det |MK ′ | = 0, we find a continuum energy band with no

discrete levels and thus no confined states in the QD.
In the presence of bias, γ+ = γ ∗

− when |ε| < u1. For this
interval we can select the real (imaginary) part of the modified
Bessel functions Km(γ+) (Km(γ−)) as our solutions. Figure 2
shows the energy levels with the angular momenta m =
0,±1,±2,±3 as a function of the dot radius R, for the biased
potential U1 = −U2 = 0.1 eV. An energy gap appears between
the conduction and valence bands. Notice that the band gap is
given by [17] �g = |�U |t/

√
�U 2 + t2 (see the solid black

horizontal lines in Fig. 2), coming from the Mexican-hat
shaped low-energy dispersion in pristine BLG. For �U 	 t ,
the band gap is �g ≈ �U . For both valleys, the number of
energy levels increases, as the dot radius increases and the band
gap decreases to zero. In both cases, each set of energy levels
are approximately equally spaced for fixed m. The energy
spectrum corresponding to the K valley [Fig. 2(a)] exhibits the
symmetry EK (m) = EK (−m), which does not hold for the K ′
valley levels. This is different from SLG [28] and BLG QD [5]
flakes in which the K and K ′ energy levels are degenerate
at zero magnetic field. This difference is due to the zigzag
boundary condition applied to the SLG-BLG interface which
removes the layer symmetry and thus the valley symmetry in
BLG. The energy spectrum in Fig. 2(b) shows groups of energy
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FIG. 2. Energy levels of SLG-infinite BLG QD for m =
0,±1,±2,±3 as a function of the dot radius R, in the presence
of bias U1 = −U2 = 0.1 eV at the (a) K and (b) K ′ valleys. The
energy levels of the K valley (a) satisfy EK (m) = EK (−m). The
solid (dashed) curves are for m > 0 (m < 0).

levels with E ∼ +�g/2 and m > 0. These levels correspond
to states that are mainly confined at the interface [see Fig. 3(c)].

Figures 3(a)–3(d) show the electron densities in each layer
corresponding to the points labeled by (1)–(4) in Figs. 2(a)
and 2(b). The energy levels at the K valley [see Figs. 3(a)
and 3(b) for the levels (1) and (2)] show that the confinement
is mostly in the SLG QD, while for the energy levels
corresponding to the K ′ valley [see Figs. 3(c) and 3(d)] the

0.054 0.026

0.082
0.054

(a) (b)

(d)(c)

FIG. 3. Probability density corresponding to the states indicated
by (1), (2), (3), and (4) in the energy spectrum of Fig. 2 for R = 30 nm.
Blue solid curves refer to layer 1, and red dashed curves denote
layer 2.

carriers are confined in both SLG QD and at the SLG-BLG
interface. The set of energy levels with E ∼ +�g/2 are
interface states that are predominantly confined along the
zigzag edge of the second layer with low density in the dot
area of the first layer [see Fig. 3(c)].

B. Nonzero magnetic field

In the presence of a perpendicular magnetic field B = Bêz,
one needs to replace the canonical momentum p by the gauge-
invariant kinetic momentum p + eA(r) in the Hamiltonians (2)
and (12). A(r) = (0,Br/2,0) is the vector potential in the
symmetric gauge. In the case of B �= 0, it is more convenient
to use the magnetic length lB = √

�/eB as the unit of length,
facilitating the interpretation of our numerical results. This
results in the following dimensionless quantities, ξ = r/

√
2lB ,

ε = ElB/�vF , and u1 = U1lB/�vF . In these units, π± in
Eqs. (2) and (12) takes the form

π± = −ie±iτϕ 1√
2

[
∂

∂ξ
± iτ

ξ

∂

∂ϕ
∓ τξ

]
, (24)

and the radial Dirac-Weyl equation for the spinor components
of the wave function (5) becomes

1√
2

[
∂

∂ξ
− (τm − 1)

ξ
− τξ

]
φτ

B(ξ ) = (ε − u1)φτ
A(ξ ),

1√
2

[
∂

∂ξ
+ τm

ξ
+ τξ

]
φτ

A(ξ ) = −(ε − u1)φτ
B(ξ ). (25)

After decoupling the above equations, we obtain[
− 1

2

(
d2

dξ 2
+ 1

ξ

d

dξ
− m2

ξ 2

)
+ (m − τ ) + ξ 2

2

]
φτ

A(ξ )

= (ε − u1)2φτ
A(ξ ). (26)

Using the ansatz φτ
A(ξ ) = ξ |m|e−ξ 2/2f (ξ 2), Eq. (26) yields the

confluent hypergeometric ordinary differential equation

ξ̃
d2f (ξ̃ )

dξ̃ 2
+ (|m| + 1 − ξ̃ )

df (ξ̃ )

dξ̃

− 1

2

(|m| + m − τ + 1 − (ε − u1)2
)
f (ξ̃ ) = 0, (27)

where ξ̃ → ξ 2. The solutions are the confluent hypergeometric
functions of the first kind 1F̃1(a,b,ξ 2) with

a = 1
2

(|m| + m − τ + 1 − (ε − u1)2
)
, b = |m| + 1. (28)

Then �τ
A becomes

�τ
A(ξ,ϕ) = Cτeimϕξ |m|e−ξ 2/2

1F̃1(a,b,ξ 2), (29)

where Cτ is the normalization constant. The second compo-
nent of the wave function is extracted from the second equation
of Eq. (25):

�τ
B(ξ,ϕ) = −iCτ ei(m−τ )ϕ

√
2(ε − u1)

ξ |m|e−ξ 2/2

×
[

2ξa 1F̃1(a + 1,b + 1,ξ 2)

+
( |m| + τm

ξ
+ (τ − 1)ξ

)
1F̃1(a,b,ξ 2)

]
. (30)

165410-4



ENERGY LEVELS OF HYBRID MONOLAYER-BILAYER . . . PHYSICAL REVIEW B 93, 165410 (2016)

Using Eqs. (4), (11), (12), (14), and (24) in the new
dimensionless units the radial dependence of the spinor
components in BLG are described by

1√
2

[
d

dξ
− (m − 1)

ξ
− ξ

]
φK

B1(ξ )

= (α − δ)φK
A1(ξ ) − t ′φK

B2(ξ ),

1√
2

[
d

dξ
+ m

ξ
+ ξ

]
φK

A1(ξ ) = −(α − δ)φK
B1(ξ ),

1√
2

[
d

dξ
+ (m + 1)

ξ
+ ξ

]
φK

A2(ξ )

= (α + δ)φK
B2(ξ ) − t ′φK

A1(ξ ),

1√
2

[
d

dξ
− m

ξ
− ξ

]
φK

B2(ξ ) = −(α + δ)φK
A2(ξ ), (31)

where α = ε − u0, δ = (u1 − u2)/2, u0 = (u1 + u2)/2,
u1,2 = U1,2lB/�vF , ε = ElB/�vF , and t ′ = t lB/�vF . U1 and
U2 are the potentials on the two different graphene layers.

These equations can be decoupled to obtain for φK
A1[

−1

2

(
d2

dξ 2
+ 1

ξ

d

dξ
− m2

ξ 2

)
+ m + ξ 2

2

]
φK

A1(ξ )

= γ±(ε)φK
A1(ξ ), (32)

where

γ± = α2 + δ2 ± [(α2 − δ2)t ′2 + (1 − 2αδ)2]1/2. (33)

Using the ansatz φK
A1(ξ ) = ξ |m|e−ξ 2/2f (ξ 2), similar for the

SLG region, we arrive at the confluent hypergeometric or-
dinary differential equation with solutions 1F̃1(a±,b,ξ 2) and
U (a±,b,ξ 2), where

a± = 1
2 (|m| + m + 1 − γ±), b = |m| + 1. (34)

Now for the BLG region, we need to take the confluent
hypergeometric functions of the second kind U (a,b,x) which
decays exponentially for r → ∞. Then φK

A1 becomes

φK
A1(ξ ) = ξ |m|e−ξ 2/2[CK

1 U (a+,b,ξ 2) + CK
2 U (a−,b,ξ 2)

]
,

(35)

where CK
j (j = 1,2) are the normalization constants. The other

spinor components of the wave function can be obtained using
Eq. (31) by inserting φK

A1 and employing the properties of
the confluent hypergeometric function. The wave function
at the K ′ point can be obtained from (φK ′

A1,φ
K ′
B1,φ

K ′
B2,φ

K ′
A2) =

(φK
B2,φ

K
A2,φ

K
A1,φ

K
B1).

Applying the boundary conditions (21) for the K point at
the interface ξ = ξR = R/(

√
2lB), we arrive at

MK
ZZ

⎛
⎝CK

CK
1

CK
2

⎞
⎠ = 0,

where

MK
ZZ =

⎛
⎝ m11 m12 m13

m21 m22 m23

m31 m32 m33

⎞
⎠, (36)

with the matrix elements

m11 = − 1F̃1
(
a; b; ξ 2

R

)
,

m12 = U
(
a+,b,ξ 2

R

)
,

m13 = U
(
a−,b,ξ 2

R

)
,

m21 = 1

ε − u1

[
2ξRa1F̃1

(
a + 1; b + 1; ξ 2

R

)

+ (|m| + m)

ξR 1
F̃1

(
a; b; ξ 2

R

)]
,

m22 = 1

α − δ

[
2ξRa+U

(
a+ + 1; b + 1; ξ 2

R

)

− (|m| + m)

ξR

U
(
a+; b; ξ 2

R

)]
,

m23 = 1

α − δ

[
2ξRa−U

(
a− + 1; b + 1; ξ 2

R

)

− (|m| + m)

ξR

U
(
a−; b; ξ 2

R

)]
,

m31 = 0,

m32 = 4ξ 2
Ra+(a+ + 1)U

(
a+ + 2,b + 2,ξ 2

R

)
+ 4

[
ξ 2
R − |m| − 1

]
a+U

(
a+ + 1,b + 1,ξ 2

R

)
+ 2[(α − δ)2 − |m| − m]U

(
a+,b,ξ 2

R

)
,

m33 = 4ξ 2
Ra−(a− + 1)U

(
a− + 2,b + 2,ξ 2

R

)
+ 4

[
ξ 2
R − |m| − 1

]
a−U

(
a− + 1,b + 1,ξ 2

R

)
+ 2[(α − δ)2 − |m| − m]U

(
a−,b,ξ 2

R

)
. (37)

One can similarly obtain the corresponding matrix for the K ′
valley MK ′

ZZ . The nonzero-energy levels are obtained from the
condition det |MK

ZZ| = 0
In order to find the solutions of the zero-energy states, one

can solve Eqs. (25) and(31) in the case of ε = 0 (U1 = U2 =
0). Applying the boundary conditions (21) at the interface
shows that zero-energy states exist for all angular momenta m,
at the K valley, and only for m < 0 at the K ′ valley.

1. Unbiased system

Figure 4 shows the energy levels as a function of magnetic
field at the K (solid curves) and K ′ (dashed curves) valleys
when U1 = U2 = 0. The energy levels are shown for the
angular momenta, m = −1 (blue), m = 0 (green), and m = 1
(red) with QD radius R = 30 nm. As mentioned before, the
SLG-infinite BLG QD in the absence of unbiased magnetic
field displays a continuum energy band which is also apparent
in Fig. 4. In this case, there are many degenerate zero-energy
states at zero magnetic field corresponding to all angular
momenta for both K and K ′ valleys. Increasing the magnetic
field, zero-energy degenerate levels for each m is lifted due
to the breaking of the time reversal symmetry. Breaking of
the inversion symmetry due to the interface removes the
degeneracy of the K and K ′ valleys. The spectrum shows
anticrossings, which is due to the influence of the SLG-BLG
interface. At high magnetic fields, the energy levels merge into

165410-5



MIRZAKHANI, ZARENIA, KETABI, DA COSTA, AND PEETERS PHYSICAL REVIEW B 93, 165410 (2016)

0 5 10 15 20 25 30 35
0.0

0.5

1.0

1.5

2.0

2.5

3.0

B (T)

m=-1

m=0

m=1

U=0

K
K’

5101
1.3

1.4

1.5

a b

c

)l/
v

(ћ
B

F

FIG. 4. Energy spectrum of unbiased SLG-infinite BLG QD (i.e.,
U1 = U2 = 0) as a function of magnetic field for m = −1 (blue),
m = 0, (green) and m = 1 (red) with the dot radius R = 30 nm at
the K (solid curves) and K ′ (dashed curves) valleys. The inset is an
enlargement of the black square box for a particular anticrossing of
energy levels in the K ′ valley.

the Landau levels (LLs) of SLG, (ε = ±√
2n, n is the LLs’

number [26]). In a strong magnetic field, the carriers become
localized at the center of the SLG dot and will not be influenced
by effects due to the dot interface. It should be mentioned that
electron-hole symmetry exists for both valleys, because all
matrix elements in MK

ZZ [Eq. (36)] and MK ′
ZZ are even function

of the dimensionless energy ε, when U1 = U2 = 0.
An enlargement around a particular anticrossing point is

given in the inset of Fig. 4. The wave functions as well as
the probability densities for the points labeled by (a), (b), and
(c) in Fig. 4 are shown in Fig. 5. The upper panels show the
wave functions of layer 1 which are continuous in both SLG
and BLG. The wave functions of layer 2 are plotted in the
middle panels. Point (a) corresponds to confinement in both
BLG regions and the SLG-BLG interface, while for the energy
state (c) the electrons are confined inside the SLG QD. Right

r (nm) r (nm) r (nm)

(a) (b) (c)).u .a( noitcnuF eva
W

K '
A

K '
B1

K '
A1

K '
B

K '
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K '
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K ' 2
Layer1| |

K ' 2
Layer 2| |

FIG. 5. The wave functions corresponding to the points (a), (b),
and (c) of the inset in Fig. 4. The upper panel shows the wave functions
for layer 1, the middle panel displays the wave functions for layer 2,
and the lowest panel shows the density of the bound states in the two
layers for the K ′ valley.

B (T)

)l/
v

(ћ
B

F

A1
B1

A2
B2

R

A

B
R

0 15 30
B (T)

0 15 30
0.0

0.5

1.0

1.5

2.0

2.5

3.0
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FIG. 6. (a) Schematic pictures of the terminated systems, SLG
QD (left) and BLG antidot (right). Lower panel displays the energy
spectrum of SLG-infinite BLG QD (black solid curves) and the
terminated systems, SLG QD (blue dashed curves) and BLG antidot
(red dashed curves) as a function of magnetic field for the two valleys
(b) K and (c) K ′. The dot radius is R = 30 nm and m = 1.

at the anticrossing [i.e., point (b)] one finds confinement in
both SLG and BLG.

Plateaulike features appear in the energy spectrum, that can
be understood when comparing the energy levels of terminated
SLG QD and BLG antidot. Consider two terminated systems,
SLG QD and BLG antidot with zigzag edges as shown in
Fig. 6(a). The boundary condition is �τ

A = 0 for SLG QD and
�τ

B1 = �τ
A2 = 0 for BLG antidot. Lower panels of Figs. 6(b)

and 6(c) show the energy spectrum of SLG-infinite BLG
QD (black solid curves) and those of the terminated systems
(dashed curves) at the two valleys K and K ′ for m = 1.
The spectrum of SLG-infinite BLG QD resembles that of
the terminated systems with an energy gap opened at every
crossing point. Such energy gaps at the crossing points can be
interpreted as due to the hybridization between SLG QD and
BLG states.

The energy levels of the lowest bound states for the unbiased
system are shown in Fig. 7 as a function of the dot radius
for B = 10 T , and m = −1, 0, 1 at the K (solid curves)
and K ′ (dashed curves) valleys. For R → 0, the energy levels
correspond to the LLs of unbiased bilayer graphene given
by [31]

ε = ± 1

E0

√
t2

2
+ (2n′ + 1)E2

0 ±
√

t4

4
+ (2n′ + 1)t2E2

0 + E4
0 ,

(38)
where E0 = �vF /lB , n′ = n + (|m| + m)/2, and n =
0,1,2, . . ., with m > 0 and m < 0 states being degenerate.
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FIG. 7. Energy states of unbiased SLG-infinite BLG QD (U1 =
U2 = 0) as a function of the dot radius with B = 10 T, for m = −1,0,1
at the valleys K (solid curves) and K ′ (dashed curves).

Increasing R, the LLs of BLG split for different valleys
(breaking of inversion symmetry) as well as for different
angular momenta (breaking of time reversal symmetry) and
approach the LLs of SLG. The energy levels corresponding
to the K valley in Fig. 7, demonstrate the merging of the nth
BLG LLs at R → 0 to the nth SLG LLs at larger R. For the K ′
energy levels, the nth LLs of BLG approach the (n + 1)th LLs
of SLG. Similar analysis is also available for the terminated
systems, illustrated in Fig. 6, exhibiting the appearance of
plateau feature in the spectrum.

2. Biased system

The dependence of the spectrum on the magnetic field, at the
two valleys K and K ′ for a biased system with U1 = −U2 =
0.1 eV, are shown respectively in Figs. 8(a) and 8(b). The
results are presented for m = −1 (blue), m = 0 (green), and
m = 1 (red). The energy levels show a band gap between the
conduction and valence bands at the K and K ′ points. For small
magnetic field (B → 0), this band gap exhibits a divergence
when expressed in the units of �vF /lB . Applying a gate
potential breaks the degeneracy of the lowest-energy states,
and the spectrum becomes strongly dependent on m. However,
as the magnetic field increases, the magnetic confinement
becomes important, as seen by the lifting of the degeneracy
of the states, and the energy levels approach the LLs of SLG
(see black dashed curves, i.e., ε = ±√

2n + u1). Furthermore,
both K and K ′ spectra show electron-hole asymmetry because
of the breaking of inversion symmetry due to the presence
of the external gate potentials. The behavior of the electron
states in both valleys is qualitatively similar, but the hole states
display different behavior which for the K valley are nearly
degenerate.

Results for the spectrum of localized states as a function of
R are shown in Fig. 9 for the biased case, U1 = −U2 = 0.1 eV.
The energy levels are plotted for angular momentum labels,
m = −1 (blue), m = 0 (green), and m = 1 (red) with B =
10 T at the valleys (a) K and (b) K ′. When R → 0, for both
valleys, energy levels coincide with the LLs of biased BLG
as it should be. The LLs of biased BLG is determined by the
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FIG. 8. Energy spectrum of biased SLG-infinite BLG QD as a
function of magnetic field for m = −1,0,1 at the (a) K and (b) K ′

valleys with the dot radius R = 30 nm. The black dashed curves
depict the SLG LLs +u1. The applied bias is U1 = −U2 = 0.1 eV.

equation [31]

[(α + δ)2 − 2(n′ + 1)][(α − δ)2 − 2n′] − (α2 − δ2)t ′2 = 0.

(39)

For small R, the lowest energy levels become nearly degen-
erate, forming two energy bands around ε = ±u1 = ±1.23.
As R increases, degeneracy of the energy levels is lifted and
finally they connect to the LLs of SLG subject to the external
potential u1. Figure 10 shows the spectrum for terminated
systems (dashed curves) and biased SLG-infinite BLG QD
(black solid curves) as a function of R at the valleys K and K ′
for m = 1. The resemblance of the two different spectra are
also evident for the biased case.

III. BLG-INFINITE SLG QUANTUM DOTS

A. Zero magnetic field

In this section we choose the inverse of the previous QD
system in which a BLG QD is surrounded by an infinite SLG
[see Fig. 1(b)]. This system can be considered as an infinite
BLG sheet in which a circle of radius R from its upper layer
is left and the other part is removed. Similar to the previous
section the Hamiltonian is solved for both parts of the system
and then we choose the appropriate wave functions to satisfy
the extreme conditions when r → 0 for bilayer dot and r → ∞
for SLG. Here, the modified Bessel function of the first kind Im,
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FIG. 9. Energy spectrum of biased SLG-infinite BLG QD (U1 =
−U2 = 0.1 eV) as a function of dot radius with B = 10 T and for
m = −1,0,1 at the valleys K (a) and K ′ (b). Black dashed lines are
the LLs of SLG +u1.

and the Bessel function of the second kind Ym, are the solutions
for regions of the BLG QD and infinite SLG, respectively.
As discussed before (see Sec. II A), there is no unique linear
combination of real or imaginary parts of Im(γ±) and Ym(γ±)
from which unique discrete energies can be obtained even
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070 0 357035
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FIG. 10. Energy spectrum of SLG-infinite BLG QD (black solid
curves) and the terminated systems, SLG QD (blue dashed curves)
and BLG antidot (red dashed curves) as a function of dot radius R,
for the two valleys (a) K and (b) K ′. The magnetic field is B = 10 T
and m = 1.
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FIG. 11. Energy spectrum of unbiased BLG-infinite SLG QD
(i.e., U1 = U2 = 0) as a function of magnetic field for R = 30 nm
and m = −1,0,1 at the two valleys, K (solid curves) and K ′ (dashed
curves). Black dot-dashed curves are the LLs of unbiased infinite
BLG. The inset shows an enlargement of the energy levels for low
magnetic fields.

in the presence of bias. Thus there are no bound states in
BLG-infinite SLG QDs for B = 0.

B. Nonzero magnetic field

In the presence of a magnetic field, the calculations are
similar to those presented in Sec. II B. To avoid repetition, we
limit ourselves here to the numerical results. Similar analysis
for the case of zero-energy levels as in previous section, one
finds that zero-energy states exist only for m � 0 at the K

valley, and for all momenta at the K ′ valley.

1. Unbiased system

The dependence of the spectrum on magnetic field, for R =
30 nm and m = −1 (blue), m = 0 (green), and m = 1 (red)
at the two valleys K (solid curves) and K ′ (dashed curves) is
shown in Fig. 11. The inset shows an enlargement of the states
for small magnetic fields. As we see, for B = 0, the energy
levels coincide with the LLs of SLG. The energy levels are
nearly degenerate for m > 0 and m < 0 at very low magnetic
fields (0–0.1 T). As the magnetic field increases, the states
merge to form the LLs of an unbiased infinite BLG sheet
[black dashed curves, see Eq. (38)], which indicates that the
carriers become strongly localized at the center of the dot. The
energy levels in Fig. 11 show that the LLs of SLG connect
to LLs of BLG with the same Landau level indices for the
K valley. However, for the K ′ valley, the SLG and BLG LLs
connect by nSL → nBL − 1.

The spectrum of terminated systems [in this case, BLG
QD (red dashed) and SLG antidot (blue dashed)], and the
BLG-infinite SGL QD (black solid curves) are shown in Fig. 12
at the two valleys K and K ′ for m = −1. The oscillatory
feature in the energy levels can be understood in relation to
the terminated systems as explained in Fig. 6.

In Fig. 13, we show the dependence on R of the low energy
spectrum, at the two valleys K (solid curves) and K ′ (dashed
curves) for m = −1 (blue), m = 0 (green), and m = 1 (red)
with B = 10 T. The R → 0 limit corresponds to the case of
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FIG. 12. Energy levels of BLG-infinite SLG QD (black solid
curves) and the terminated systems, BLG QD (blue dashed curves)
and SLG antidot (red dashed curves) as a function of magnetic field
at the two valleys K (a) and K ′ (b) for m = −1. The dot radius is
R = 30 nm.

SLG sheet, and the spectrum agrees with the LLs of SLG with
the states being degenerate for all angular momenta and for
both valleys. When R increases, angular momentum as well
as valley-degenerate levels split, showing flat plateau features
for certain ranges of dot radius, and eventually merge into the
LLs of unbiased BLG. The way of the LLs of SLG and BLG
are connected is similar to those discussed for Fig. 11.

2. Biased system

Figure 14 displays the energy levels for the biased case
with U1 = −U2 = 0.1 eV and R = 30 nm as a function
of magnetic field for (a) K and (b) K ′ valleys. As in the
unbiased case, the spectrum is plotted for m = −1 (blue),
m = 0 (green), and m = 1 (red). The energy levels show a band
gap between the conduction and valence bands. For very small
values of B, the spectrum becomes degenerate and forms a
continuum band. However, as the magnetic field increases, the
degeneracy of the levels is lifted for each angular momentum

m=-1m=0
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FIG. 13. Energy levels of unbiased BLG-infinite SLG QD (U1 =
U2 = 0) as a function of dot radius R, for m = −1,0,1 at the two
valleys, K (solid curves) and K ′ (dashed curves). The magnetic field
is B = 10 T.
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FIG. 14. Energy spectrum of biased BLG-infinite SLG QD (i.e.,
U1 = −U2 = 0.1 eV) as a function of the magnetic field for R =
30 nm and m = −1,0,1 at the two valleys, K (a) and K ′ (b). Black
dashed curves are the LLs of a biased infinite BLG.

(with the large shift for low lying states) and eventually
approaching the LLs of biased BLG (blacked dashed curves).
For each value of m, the hole energy levels show anticrossings
when the energy levels approach the LLs of biased BLG.
There are some other features, e.g., electron-hole asymmetry,
degeneracy lifting between the states of the different valleys,
and different behavior of the hole states in the K valley, similar
to SLG-infinite QDs.

The spectrum as a function of R for the biased case with
U1 = −U2 = 0.1 eV, is plotted in Fig. 15 for the valleys (a)
K and (b) K ′. The other parameters are the same as for the
unbiased case shown in Fig. 13. For R = 0, the spectrum
corresponds to the LLs of the SLG sheet, being degenerate for
all m. With increasing dot radius, the degeneracy of the levels
for different m is lifted, and the levels connect to different LLs
of BLG. The results show that the low-energy LLs of SLG
converge to the low-energy LLs of BLG, as the dot radius
increases, and they form two bands around these energies. It
is also seen that the hole states, in the case of the K valley are
approximately degenerate.

In graphene QDs, it is possible to define a scaling factor
for the maximum of the magnetic field by setting the dot
size R equal to the cyclotron radius at the Fermi energy,
i.e., R = l2

BkF [32]. Having E = �vF kF and E = (�vF kF )2/t

for the low energy dispersion of monolayer and bilayer
graphene, respectively, one can obtain kF and consequently
the scaling factor with respect to the magnetic field and size
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FIG. 15. Energy spectrum of biased BLG-infinite SLG QD as a
function of dot radius, for m = −1,0,1 at the two valleys, K (a) and
K ′ (b). The magnetic field is B = 10 T and U1 = −U2 = 0.1 eV. The
black dashed lines show the SLG LLs +u1.

of the confinement area, i.e., RSLG = E/(evF B) for SLG-
infinite BLG QD and RBLG = √

Et/(evF B) for BLG-infinite
SLG QD.

IV. CONCLUSION

Using the continuum model, i.e., solving the Dirac-Weyl
equation, we obtained analytical results for the energy levels
and corresponding wave functions for two new types of QDs
in hybrid SLG-BLG systems: SLG-infinite BLG QDs and
BLG-infinite SLG QDs. We implemented the zigzag boundary
condition at the SLG-BLG junction in order to observe features
brought by the zigzag edges in the spectrum. Both Dirac
valleys were investigated separately because of the breaking
of inversion symmetry due to the presence of the SLG-BLG
interface.

No bound states are observed in both types of QDs when
B = 0 and when no bias potential is applied to the graphene
layers. In biased SLG-infinite BLG QDs with B = 0, bound
states and the opening of an energy gap between the electron
and hole energy levels are found, and this gap closes when
increasing the dot radius. The energy spectrum corresponding
to the K valley exhibits the symmetry EK (m) = EK (−m),
which no longer holds for the K ′ valley levels.

In the presence of a perpendicular magnetic field without
bias, degeneracy of energy levels is lifted. Increasing the
magnetic field, the spectrum exhibits anticrossings and the
levels merge into the LLs of SLG which indicates that the
carriers become strongly localized at the center of the SLG QD.
The anticrossings are due to the interplay of confined states in
both SLG and BLG region and at the SLG-BLG interface. In
the presence of an external electric field, our results showed
that the degeneracy of the lowest-energy states are lifted at
low magnetic fields and the opening of an energy gap is found.
Furthermore, both the K and K ′ spectrum show electron-hole
asymmetry because of the breaking of the inversion symmetry
by the external potential.

For BLG-infinite SLG QDs, we found that there are no
bound states with or without external electric field when
B = 0. Energy spectrum of unbiased BLG-infinite SLG QDs
for B �= 0 showed that the degeneracy of the states is lifted,
and for high magnetic fields, the energy levels merge into the
LLs of unbiased BLG. The biased case showed an opening of
energy gap.

Dependence of spectrum on dot radius in the SLG-infinite
BLG QDs (BLG-infinite SLG QDs) shows that in the R → 0
limit, the energy levels correspond to the unbiased LLs of BLG
(SLG). Increasing R, the LLs of BLG (SLG) split for different
angular momenta and approach the LLs of SLG (BLG). For
the case of biased SLG-infinite BLG QDs with B �= 0, the
energy gap for R → 0 closes with increasing R.

The energy levels of the proposed new QDs can be
investigated experimentally by STM, which measures the local
density of states (LDOS). From the LDOS, one can obtain
information about the position of the bound states and the
localized electron/hole distribution.
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