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Electronic pair binding and Hund’s rule violations in doped C60
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We calculate the electronic properties of the t-J model on a C60 molecule using the density-matrix
renormalization group and show that Hund’s first rule is violated and that for an average of three added electrons
per molecule, an effective attraction (pair binding) arises for intermediate values of t/J . Specifically, it is
energetically favorable to put four electrons on one C60 and two on a second rather than putting three on each.
Our results show that a dominantly electronic mechanism of superconductivity is possible in doped C60.
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I. INTRODUCTION

Interest in the superconductivity of the alkali-metal doped
C60 compounds (fullerides) [1–3] derives in part from their
status as a new class of superconductors with large values of
the superconducting critical temperatures Tc [4]. There has
been a great effort over the last two decades to characterize
and understand both the normal-state and the superconducting
properties of fullerides. A source of renewed interest in these
systems is the surprising indication of magnetism derived from
strong electron-electron repulsions in crystals in which the
C60-C60 distance is modestly expanded [5–9]. Several exam-
ples are now known where this kind of expansion first leads
to superconductivity with a dome-shaped Tc, followed by a
Mott insulating state. A superconducting dome proximate to an
antiferromagnetic Mott insulating state is a hallmark of strong
electron correlations in the high-temperature superconducting
cuprates and organic charge-transfer salts; its appearance in
alkali-metal doped C60 suggests that electron correlations
are crucial in understanding the superconductivity in these
materials, as well.

Although most theoretical work has focused on phonon
mechanisms, a dominantly electronic mechanism has also been
considered. In particular, it was argued in Refs. [10,11] that
the special geometry of the C60 molecule (that of a truncated
icosahedron—or more colloquially a soccer ball) permits
subtle intramolecular electronic correlation effects that give
rise to an effective attraction (i.e., positive pair binding energy)
between doped electrons and violations of Hund’s first rule.
This conjecture was supported by extrapolating second-order
perturbative calculations for the one-band Hubbard model on
the C60 structure to intermediate values of U/t (where, strictly
speaking, low-order perturbation theory is not justified). These
inferences were also supported [12] by exact diagonalization
(ED) studies of smaller “Hubbard molecules”—especially the
somewhat analogous 12-site truncated tetrahedron. However,
various later numerical studies [13–21] of the C60 problem
gave inconclusive and conflicting results. Most significantly,
the best existing quantum Monte Carlo (QMC) calculations
[22] on the same system suggested significant failures of
the extrapolated perturbation theory; in particular, the QMC
results seemingly support the validity of Hund’s rule and an
absence of pair binding.

In order to resolve the issues of principle, we use density-
matrix renormalization group (DMRG) [23–25] to investigate
the ground-state properties of the t-J model on a single C60

molecule, including the magnetic properties and electronic pair
binding energy of doped electrons. The t-J model [see Eq. (1)]
is a simplified model of doped C60 which, in common with
the Hubbard model, can plausibly be assumed to capture the
most significant correlation effects of the system. Moreover,
since the t-J model is defined on a significantly smaller Hilbert
space, it is much less numerically demanding than the Hubbard
model. Our most important conclusion is that electronic pair
binding (an effective attractive interaction) arising from a
purely electron-electron repulsion is a now established feature
of the t-J model for a finite interval of the dimensionless
parameter, t/J . In particular, it is energetically favorable to add
four electrons to one C60 molecule and two to a second rather
than to add three electrons to each of two C60 molecules—i.e.,
there is a positive pair binding energy. In addition, we find that
Hund’s first rule is violated; the ground state is the state of
minimal total spin rather than maximal. For instance, we find
that the ground states with two and four doped electrons has
spin zero while the ground state with three doped electrons has
spin 1/2.

In the noninteracting limit, the electronic structure of the
C60 molecule is well known [26], and the electronic states
can be labeled according to the irreducible representations
of the icosahedral group. The neutral C60 molecule has a
unique ground state and a substantial gap between the filled
and empty orbitals. The lowest unoccupied molecular orbitals
are the threefold-degenerate t1u orbitals, whose degeneracy is
an important property of the molecule. For many purposes,
the C60 molecule can be approximated as a sphere, and the
t1u orbitals can then be thought of as p orbitals with “angular
momentum” L = 1. The electrons donated by the alkali-metal
atoms to the C60 molecule enter the threefold-degenerate
t1u orbitals. In the presence of orbital degeneracy and weak
interactions, the Hund’s rules can be derived perturbatively
[10], where Hund’s first rule is that the exchange energy is
minimized when the molecular state has the highest possible
total spin and the second rule is that it has the highest total
orbital angular momentum compatible with the first rule. These
rules, if they applied, would imply that the ground state has a
total spin 1 and “angular momentum” 1 when doped with two
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FIG. 1. (a) The “spin gap” �s and (b) orbital gap �o (defined in Sec. IV) as a function of number of added electrons ne, for different
number of DMRG states m. Here t/J = 2. The inset in (a) shows the “spin gap” �s for t ′/t = 1.0 and t ′/t = 1.2.

or four electrons, and a total spin 3/2 and “angular momentum”
0 when doped with three electrons.

II. VERIFYING CONVERGENCE

The steps we have taken to test that all our DMRG results
for the t-J model on the C60 molecule have converged with
high accuracy are described in detail in Appendix B. To get
convincing results we have had to keep large numbers of
DMRG states (e.g., up to m = 12 000 states), and to iterate
the DMRG a large number of times (e.g., up to 100 sweeps).
However, by doing this we have been able to obtain results
that we are confident have converged to the exact answer. The
Hubbard model on a single C60 would, presumably, require
keeping an even larger number of states; we have not currently
succeeded in obtaining clearly converged results for this more
difficult problem.

As a further test of the reliability of our simulation, we have
benchmarked the DMRG method on the one-band Hubbard
model on the C20 molecule. (See Appendix A for details.)
We find that the DMRG results converge very rapidly to the
exact diagonalization (ED) results, even with a relatively small
number of DMRG states, and in particular gets values for both
the ground-state energy and the pair binding energy that are
more accurate than those obtained using QMC. (See Fig. 3 in
Appendix A for details.)

III. t- J MODEL ON A C60 MOLECULE

We now investigate the ground-state properties of the t-J
model on the single C60 molecule using DMRG. The t-J model
Hamiltonian on the C60 molecule is

H =
∑
〈ij〉σ

tij (c+
iσ cjσ + H.c.) + J

∑
〈ij〉

(
�Si · �Sj − 1

4
ninj

)
, (1)

where 〈ij 〉 are nearest-neighbor (NN) sites, c+
iσ (ciσ ) is a

fermionic creation (annihilation) operator with spin-σ on site
i,�Si is the spin, and ni = ∑

σ c+
iσ ciσ is the number of holes

on site i. The Hilbert space is constrained by the no-double

occupancy condition, ni � 1. The sign of the hopping term
in Eq. (1) is the opposite of the usual convention. We
are interested in “electron-doped” C60 in which the total
number of electrons is Ne = 60 + ne, where ne = 0–6 is
the number of “doped” electrons added to the neutral C60

molecule. However, in deriving Eq. (1), we have made a
particle-hole transformation, which results in this sign change,
and correspondingly it is to be understood that

∑
i ni =

60 − ne. In the C60 molecule, there are two inequivalent sets
of NN bonds—those bounding pentagonal plaquettes tij = t

and those connecting the pentagons tij = t ′. The relation
between them is believed to be 1.0 < t ′/t < 1.3 [10]. In our
simulation, we consider two cases with different values of
t ′/t , i.e., t ′/t = 1 and t ′/t = 1.2. As shown in Figs. 1(a)
and 2, both cases give qualitatively similar results. Thus, to
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FIG. 2. Electronic pair binding energy Eb(ne) as a function of
t/J with different ne for both m = 8000 and m = 10 000 number
of DMRG states. The shaded region and lines connecting the data
points are guides to the eye only. The inset is the electronic pair
binding energy Eb(ne) as a function of ne for both t ′/t = 1.0 and
t ′/t = 1.2 with t/J = 2 and m = 8000.
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simplify the discussion, unless otherwise specified we will set
t ′ = t , and will consider the range of parameters t/J = 1–5,
which approximately corresponds to the Hubbard model at
U/t ∼ 4t/J = 4–20. We will define the unit of energy such
that J = 1 and employ the standard approach [24,25] to choose
a suitable one-dimensional path over all sites of the C60

molecule. (See Appendix C for details.) We perform up to 100
sweeps and keep up to m = 12 000 DMRG states with a typical
truncation error ∼10−4. This led to excellent convergence for
the results that we report here. Extrapolating to m = ∞ gives
typical fractional errors in the total energy of about ∼10−3.

IV. HUND’S RULE VIOLATION

One of our main observations is that Hund’s first rule
is violated for this range of parameters. The state with
the minimal possible total spin has smin = 1/2 for ne odd
and smin = 0 for ne even, i.e., �S · �S � smin(smin + 1) where
�S = ∑

i
�Si is the total spin operator. The ground state is

generically an eigenstate of total spin, so in testing for
violations of Hund’s first rule, we measure the “excess spin,”
δS2 ≡ 〈�S · �S〉 − smin(smin + 1), which is zero in the minimal
spin state, and satisfies the inequality δS2 � 2 otherwise. We
always find that, for a large enough number of kept states,
δS2 = 0 to high accuracy (δS2 < 1.2 × 10−2); representative
data for t/J = 2 for all values of ne in the range 0–6 are shown
in Fig. 4(a). (See Appendix B for details.) In addition, we define
the “spin gap,” �s ≡ E0(smin + 1) − E0(smin), where E0(Sz)
is the ground-state energy for a given value of the z component
of total spin Sz. In any state with more than the minimal spin,
�s = 0, while, barring an accidental degeneracy, in a minimal
spin state, �s > 0. The value of �s as a function of ne is shown
in Fig. 1(a) for t/J = 2; the different colored points represent
the results with different numbers of kept states m. [A more
complete presentation of the convergence to the m → ∞ limit
is shown in Fig. 4(a).] It is clear that �s is nonzero in all cases,
which is independent confirmation of the conclusion that the
ground state has the minimum possible spin. For ne = 2, 3,
and 4 this represents a violation of Hund’s first rule.

In Fig. 1(b) we show the “orbital gap,” �o ≡ E1(smin) −
E0(smin), where E1(Sz) is the energy of the first excited for
given Sz. If the ground state is an orbital singlet, �o > 0,
while for any orbital multiplet (higher angular momentum)
�o = 0. For ne even, both �s and �0 are nonzero, implying
that the ground states are both orbital and spin singlets. For
odd ne, that �s > 0 and �o = 0 implies that the ground states
have spin 1/2 and are orbital multiplets.

All these findings are consistent with an analysis [10]
in which the ground states are adiabatically connected
to appropriate (symmetry determined) combinations of the
noninteracting ground states: The states with one or five
electrons in a p orbital have total spin s = 1/2 and angular
momentum l = 1 (i.e., an orbitally degenerate minimal spin
state consistent with what we find). The states with two or
four electrons can have s = 1 and l = 1 (the state favored
by Hund’s first rule), s = 0 and l = 2 (the state favored by
Hund’s second rule, if the first were to be ignored), or s = 0
and l = 0 (i.e., an orbitally nondegnerate minimal spin state
consistent with what we find). The states with three electrons
can have s = 3/2 and l = 0 (the state favored by Hund’s first

rule), or s = 1/2 and l = 2 or l = 1 (either of which is an
orbitally degenerate minimal spin state consistent with what
we find). From the weak-coupling perspective, the fact that the
ground state is an orbital and spin singlet when ne = 0 or 6
appears obvious (corresponding to an empty or full t1u orbital).
However, the fact that the ground states of the t-J model have
the same symmetries as the noninteracting ground states even
in these cases is a nontrivial observation. In particular, for
ne = 0, this is a statement concerning the ground state of the
spin-1/2 Heisenberg model on the C60 lattice, a problem which
has many interesting features in its own right [27].

V. PAIR BINDING ENERGY

The electronic pair binding energy is defined as Eb(ne) =
2E0(ne) − E0(ne + 1) − E0(ne − 1), where E0(ne) is the
ground-state energy of the system with ne doped electrons.
If we consider a system with an average of ne doped electrons
per molecule, a positive pair binding energy can be interpreted
as an effective attraction between electrons in the sense that it
is then energetically favorable to add ne + 1 electrons to half
the molecules and ne − 1 to the other half, rather than to place
ne electrons on every molecule. For ne even, we always find
that the pair binding energy is negative. However, for ne = 1,
3, and 5, Eb(ne) is positive for a range of intermediate t/J .
This is illustrated in Fig. 2, which shows Eb(ne) as a function
of t/J for ne = 1, 3, and 5. Importantly, for the whole t/J

parameter region we have explored, Eb(ne = 3) is positive,
although at our largest value of t/J = 5 it is close to zero and
appears to be headed to negative values at still larger t/J . For
ne = 1 and ne = 5, Eb is positive for small enough t/J , but
crosses zero and is distinctly negative (corresponding to an
effective repulsion between electrons) beyond a critical value
of t/J .

For t/J � 1, it can be plausibly argued that the t-J model
is unphysical, and in particular has, in effect, microscopically
attractive interactions, so the results for ne = 1 and 5 are of
uncertain physical significance, as pair binding is only seen
for t/J � 1.5 and t/J � 2, respectively. But the pair binding
for ne = 3 is manifestly robust in the regime 2 < t/J < 5,
where these concerns do not arise. [Note that the absence of
pair binding as t/J → ∞ is expected on general grounds. For
ne = 1, a rigorous proof exists [28] that Eb � 0 in this limit,
as a corellary of a generalized version of Nagaoka’s theorem.
Under the assumption that the fully spin polarized (Nagaoka)
state is the ground state for large enough t/J for ne = 3 it
follows that Eb(3) = 0 at large t/J .]

VI. CONCLUSIONS

In this paper, we have studied the t-J model on the
C60 molecule through DMRG simulation. Several different
quantities are calculated, including the ground-state energy,
spin excitation gaps, and electronic pair binding energy, for
ne = 0–6 and 1 � t/J � 5. In all cases, the ground state
has the minimum possible spin, which for ne = 2, 3, and 4
constitutes a violation of Hund’s first rule. Correspondingly,
for all ne, there is a nonzero spin gap. The ground state
is an orbital singlet for the even values of ne and orbitally
degenerate for the odd values. For ne = 3 we find a positive
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pair binding energy for the entire range of t/J ; thus, we
establish that it is possible that an effective attraction of the sort
necessary to mediate superconducting pairing, can arise from
purely repulsive electron-electron interactions on a single C60

molecule. This establishes an important point of principle.
Naturally, our results do not address the issue of what

differences arise in considering more realistic (nonzero range)
microscopic electron interactions, some of which can be ex-
pected to enhance [20,21] and others to suppress [12,13,17–19]
pair binding. It also leaves open the relevance of our findings
to the physical problem of superconductivity in alkalai-
metal doped C60 where both intermolecular interactions
and electron-phonon interactions [4] must be included in
a complete analysis of the problem. In this context, it is
important to note that the purely electronic model we have
solved results in precisely the same inversion of Hund’s rule
that elsewhere [29,30] has been attributed to the effect of Jahn-
Teller phonons. The putative signatures of a dynamical Jahn-
Teller effect—including the remarkable recent experimental
observations reported in Ref. [31]—in most cases depend
more on the emergent symmetries of the molecular ground
states than on the details of the mechanism that produces these
states. As there is no distinction in symmetry between the
molecular ground states favored by the dynamical Jahn-Teller
effect and those of the t-J model, unraveling the relative
importance of the various contributions to the physics of
real materials is likely to be more subtle than was previously
believed.
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APPENDIX A: HUBBARD MODEL
ON THE C20 MOLECULE

The one-band Hubbard model on the C20 molecule is given
by the Hamiltonian

H = −t
∑
〈ij〉σ

(c+
iσ cjσ + H.c.) + U

∑
i

ni↑ni↓. (A1)

Here c+
iσ is the electron creation operator with spin-σ on site

i, and niσ = c+
iσ ciσ is the number of electrons with spin-σ

on site i. t is the nearest-neighbor hopping constant and U

is the on-site Coulomb interaction. Previous studies [32,33]
using QMC and exact diagonalization methods have found
a negative pair binding energy (repulsive interaction) on this
molecule. Moreover, they found that Hund’s rule is obeyed
for the corresponding range of parameters U/t � 3 where the
ground state has the maximum values of total spin ranging
from spin 1 for 20 electrons through spin 2 for 22 electrons,
while Hund’s rule is violated for larger U/t > 4.2. However,
due to the presence of the geometrical frustration, a systematic
weakness of QMC simulation was also recognized, for both
large U/t range where the sign problem becomes significantly
worse and small U/t range where the ground state is a spin
multiplet state.

To demonstrate the reliability of the DMRG simulation,
we have benchmarked the DMRG method on the one-band
Hubbard model on the C20 molecule [see Eq. (A1)] by
comparing the QMC and DMRG data. As we will see in
Fig. 3, for both ranges of U/t , we find that the DMRG results
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FIG. 3. Ground-state energy difference δE = E0(m) − E0 as a function of DMRG states m for the one-band Hubbard model [see Eq. (A1)]
with Ne electrons on the C20 molecule at U/t = 2 in (a) and U/t = 5 in (b). Here E0 is the ground-state energy obtained by exact diagonalization
(see Refs. [32,33]), while E0(m) is the ground-state energy obtained by DMRG simulation with minimal value of z-component total spin
Sz = smin, i.e., smin = 0 for Ne = 20, 22, and smin = 1/2 for Ne = 21. The dashed lines in (a) denote the ground-state energy difference
between QMC and exact diagonazation with same Ne and Sz (see Table II in Ref. [33]), for comparison with the DMRG simulation labeled by
the same color. The inset in (b) is the electronic pair binding energies Eb = 2E0(Ne = 21) − E0(Ne = 22) − E0(Ne = 20) from DMRG (red
circle) and ED simulations (solid line). Note that here we use a different definition of the pair binding energy compared with Refs. [32,33], and
a negative Eb means a repulsive interaction between doped electrons.
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of spin Sz. Inset in (b): spin gap �s as a function of m for ne = 0 and 1.

converges very rapidly to the ED results with a relatively
small number of DMRG states m. In particular, we can get
values for both the ground-state energy and the pair binding
energy Eb that are more accurate than those obtained using
QMC [32,33]. For instance, with the same Ne and Sz, DMRG
can easily produce a better ground-state energy than QMC
with only a moderately number of DMRG states m, say
m ∼ 1800 for Ne = 20 while a much smaller value m ∼ 500 is
produced for Ne = 22. Compared with U/t = 2, where QMC
already has a sign problem for the nonbipartite dodecahedral
molecular geometry, a larger U/t = 5 introduce significantly
more sources of negative probability weight, lowering the
average value of the sign, thus making that a reliable QMC
simulation is not applicable [32,33]. On the contrary, DMRG
is immune to such a problem and still provides us with reliable
results, including the ground-state energy and electronic pair
binding energy Eb(Ne = 21) as shown in Fig. 3(b). Especially,
a relatively small number of state m ∼ 1000 has given us a
reliable Eb which is very close to the ED results. Therefore,
the DMRG method works well for the Hubbard model on the
C20 molecule.

APPENDIX B: t- J MODEL ON THE C60 MOLECULE

In the main text, we have introduced the t-J model on
the C60 molecule and summarized the main DMRG results,
including spin excitation gap and electronic pair binding
energy. Now, we will show more details of the DMRG
simulation about the convergence of the DMRG results. For
this purpose, we first consider t/J = 2 as an example and the
results are given in Fig. 4. As seen in the figure, “excess spin”
δS2 > 0 (see main text for details) when m is small, indicating
that the DMRG simulation may get stuck in a metastable spin
multiplet state. This is because the states with smaller values of
|Sz| may mix with higher-lying states that have the same value
of |Sz| but different total spin. However, such a state is not
the true ground state, instead the true ground state is obtained
when � 7000, where ST = 0 for ne = 0–6 cases. Therefore,

the ground state is a spin singlet state, which violates Hund’s
rule.

In addition to “excess spin” δS2, we have also calculated
the spin gap �s (see main text for details). Figure 4(b) shows
the spin gap �s as a function of DMRG states m. Similar with
δS2, �s starts to converge and saturate to finite values when
m � 7000, for ne = 0–6. On the contrary, for the metastable
state when m � 6000,�s vanishes for ne = 2, indicating that
the metastable state is a spin multiplet state. Consistent with
the minimal spin state, a finite spin gap �s again indicates that
the ground state is a minimal spin state. For ne = 2–4, this
indicates that Hund’s rule is violated, which is in contraction
to the QMC results [22].

Until now, we have demonstrated that the ground state of
the t-J model on the C60 molecule is a minimal spin state.
To provide more information of the ground state, we have
also computed the “orbital gap” �o = E1(smin) − E0(smin),
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FIG. 5. Electronic pair binding energy Eb(ne) for t/J = 2 as a
function of DMRG states m with different number of added electrons
ne. The dashed line indicates the zero. The lines connecting the data
points are guides to the eye only.
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where E0 is the ground-state energy and E1 is the first excited
state state, both in the same spin Sz = smin sector. The results
are given in Fig. 1(b). Similar with �s, �o is also finite for
ne = 0, 2, and 4, indicating a unique ground state without
orbital degeneracy. Interestingly, for other ne cases, �o ∼ 0,
indicating that the ground state is an orbital multiplet, which
is consistent with [10].

Figure 5 shows the results of the electronic pair binding
energy Eb(ne) (see main text for details) for t/J = 2 with
ne = 1, 3, and 5, as a function of the number of DMRG states
m. Similar to δS2 and spin gap �s, Eb is also affected by
the convergent problem for the numerical simulation when
m � 6000, where Eb is either vanishingly small or negative
(repulsive interaction between doped electrons). Interestingly,
when m � 7000, our DMRG simulation is well converged, and
we find a big and positive Eb(ne = 3) ∼ 0.1J . This suggests
that it is energetically favorable to put four electrons on one
C60 and two on the other (positive pair binding) that putting
three electrons on each of the C60 molecules (negative pair
binding). On the contrary, for both ne = 1 and ne = 5 cases,
Eb(ne) is either zero or slightly negative, indicating that there
is no attractive interaction between doped electrons.

APPENDIX C: MAPPING C60 MOLECULE TO
ONE-DIMENSIONAL CHAIN FOR DMRG TREATMENT

As DMRG is a one-dimensional method, the two-
dimensional lattice on cylinder and torus, such as square
lattice, has to be mapped to a one-dimensional chain with
long-ranged interactions. This is known as the multichain
approach [24,25], which defines a suitable one-dimensional
path over all sites of the two-dimensional lattice. Similarly,
the spirit of the multichain approach can be naturally applied

FIG. 6. We map the C60 molecule to a one-dimensional chain
shown in the figure, where the sequence of sites is represented by the
numbers.

to any system, including the C60 molecule that we study in
this paper. Figure 6 shows the mapping of a C60 molecule
to a one-dimensional path, where the numbers represent the
sequence of site of the one-dimensional chain. Approximately,
the numerical cost after this mapping is similar to the t-J
model on the square lattice with system size N = 10 × 6 on
a cylinder, where 10 is the width and 6 is the length of the
cylinder.
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