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We present detailed theoretical predictions on the enhancement of the thermoelectric figure of merit by minority
carrier blocking with heterostructure barriers in bulk narrow-band-gap semiconductors. Bipolar carrier transport,
which is often significant in a narrow-band-gap material, is detrimental to the thermoelectric energy conversion
efficiency as it suppresses the Seebeck coefficient and increases the thermal conductivity. When the minority
carriers are selectively prevented from participating in conduction while the transport of majority carriers is
relatively unaffected by one-sided heterobarriers, the thermoelectric figure of merit can be drastically enhanced.
Thermoelectric transport properties such as Seebeck coefficient, electrical conductivity, and electronic thermal
conductivity including the bipolar term are calculated with and without the barriers based on the near-equilibrium
Boltzmann transport equations under the relaxation time approximation to investigate the effects of minority
carrier barriers on the thermoelectric figure of merit. For this, we provide details of carrier transport modeling and
fitting results of experimental data for three important material systems, Bi2Te3-based alloys, Mg2Si1-xSnx , and
Si1-xGex , that represent, respectively, near-room-temperature (300 K–500 K), midtemperature (600 K–900 K), and
high-temperature (>1000 K) applications. Theoretical maximum enhancement of thermoelectric figure of merit
that can be achieved by minority carrier blocking is quantified and discussed for each of these semiconductors.
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I. INTRODUCTION

Thermoelectric energy conversion has drawn great attention
over the past few decades as a viable solid-state technology
for waste heat recovery and on-chip cooling [1–3]. Recently,
human body-heat energy harvesting for powering wearable
electronics and medical sensors has emerged as a new promis-
ing application of thermoelectrics [4,5]. The energy conversion
efficiency of a thermoelectric device is predominantly deter-
mined by the material’s dimensionless thermoelectric figure
of merit, zT = S2σT/(κelec + κlat), where S is Seebeck coef-
ficient; σ is electrical conductivity; T is absolute temperature;
κelec and κlat are electronic and lattice thermal conductivities,
respectively; and S2σ in the numerator is called the power
factor. The electronic thermal conductivity includes the bipolar
thermal conductivity, which becomes significant at low carrier
concentrations near the intrinsic regime. Bipolar transport also
reduces the magnitude of the Seebeck coefficient, so it is
crucial to minimize the bipolar transport in thermoelectrics.

In recent years, significant enhancements of the thermo-
electric figure of merit have been achieved mostly by the
reduction of the lattice thermal conductivity via increased
phonon scatterings at structural defects, interfaces, and grain
boundaries in nanostructured materials [6,7]. A very high
zT ∼ 2.2 was recently reported for bulk spark-plasma-sintered
Na-doped PbTe:SrTe at 900 K, which was attributed to
the significant reduction of lattice thermal conductivity to
∼0.5 W/mK by all-scale hierarchical structures in the material
[8]. A zT ∼ 2.0 was achieved at a lower temperature 773 K for
Na-doped binary PbTe by further optimizing nanostructures
to reduce the lattice thermal conductivity [9]. Recently, a
zT ∼ 2.6 was reported for undoped single-crystal SnSe at
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923 K without complex alloying or nanostructuring but only
with the intrinsically ultralow lattice thermal conductivity of
the crystal [10]. However, more recent work reported that the
highest zT for doped polycrystalline SnSe was only 0.6–0.7
[11,12]. Also a theoretical study showed that the actual lattice
thermal conductivity could be higher than the value reported
in Ref. [10] for the crystalline direction (b axis), along which
the highest zT value was achieved, suggesting a further study
on the results [13].

Besides these approaches to reducing the lattice thermal
conductivity, there have also been several independent strate-
gies proposed for enhancing the power factor, such as the
quantum confinement effect in low-dimensional materials [14]
(the limitations of this effect were also studied in a recent work.
[15]), resonant impurities such as Tl in p-type PbTe to enhance
the Seebeck coefficient via distortion of the electronic density
of states [16] (see Ref. [17] for the limitations of this effect),
band convergence by alloying [18,19], and three-dimensional
modulation doping [20]. The electron energy filtering scheme
utilizes heterostructure barriers to filter out low-energy carriers
from the transport, so the entropy transport per electric
current is increased and thus the Seebeck coefficient [21,22].
Recently, solution-processed p-type Sb2Te3 with embedded
Ag nanoparticles as nonplanar barriers showed a carrier energy
filtering effect to enhance the power factor and the figure of
merit over a broad temperature range from room temperature
to 480 K [23].

None of the aforementioned approaches, however, deals
with bipolar transport to enhance the thermoelectric figure
of merit. In fact, it is the bipolar transport that limits a
thermoelectric material to be useful only below a certain
temperature range. Beyond this temperature range, the bipolar
transport causes the power factor to suddenly decrease and the
electronic thermal conductivity to shoot up rapidly at the same
time, deteriorating the thermoelectric conversion efficiency.
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If the bipolar transport is effectively suppressed, the thermo-
electric material can be used over a much wider temperature
range with even higher efficiencies. Furthermore, a much lower
doping level can be utilized to further enhance the figure
of merit with a lower electronic thermal conductivity and
a higher Seebeck coefficient due to the suppression of the
bipolar effect. Reduction of electronic thermal conductivity is
particularly beneficial when the lattice thermal conductivity
has already been much reduced, i.e., by increased phonon
scatterings in a nanostructured material, so the electronic
thermal conductivity was limiting the thermoelectric figure
of merit. In addition, utilizing a low doping level will be very
helpful to reduce the cost in material synthesis, particularly
for the synthesis methods based on solution processes, where
a high-level doping is usually very difficult [24].

As proposed in our recent paper [25], heterostructure
barriers could be incorporated in a bulk material to effectively
suppress the transport of minority carriers. An appropriate
band alignment between the matrix and the barrier material is
required, so the barriers are prominent only for the minority
carriers while negligible for the majority carriers, i.e., with
a sufficiently large band offset in the minority carrier band,
and a negligible band offset in the majority carrier band.
Recently, this proposed scheme of minority carrier blocking
with heterostructure barriers has been experimentally demon-
strated in the solution-processed PbTe-Ag2Te heterostructures
to enhance the figure of merit by about 40% [26]. In this
material, PbTe creates a large barrier in the conduction band
of the Ag2Te matrix to suppress the minority carrier (electron)
transport, whereas the relatively small barrier in the valence
band ensures smoother transport for holes. Consequently, the
Seebeck coefficient has been enhanced toward a larger positive
(p-type) value, thereby enhancing the figure of merit. Sizes and
interparticle distances of the PbTe nanoparticles were carefully
controlled during the synthesis process of the dumbbell-like
PbTe-Ag2Te nanowires to meet the requirements for effective
minority carrier blocking. It is noted that minority carrier
blocking and electron filtering similarly utilize barriers to
enhance thermoelectric properties. The difference, however,
is that the filtering scheme utilizes potential barriers in the
majority carrier band, while the minority carrier blocking
uses barriers in the minority carrier band. Also the filtering
effect requires precise energy selection of majority carriers,
which is relatively difficult to achieve [22], but the minority
carrier blocking only needs sufficiently high barrier heights to
completely block the minority carriers.

In this paper, we further investigate the theoretical maxi-
mum of the thermoelectric figure of merit enhancement that
can be achieved by minority carrier blocking for several state-
of-the-art thermoelectric materials. We select one representa-
tive material system for each of the three temperature regimes
for this study; Bi2Te3-based alloys with Sb (p-type) and Se
(n-type) for the near-room-temperature range 300–500 K,
Mg2Si1-xSnx for the midtemperature range 600–900 K (PbTe
has already been studied in Ref. [25] for this temperature
range), and Si1-xGex for the high-temperature range 1000 K to
higher. Detailed carrier transport modeling as well as the fitting
results of the experimental data obtained from literature are
presented in Appendix. Thermoelectric transport properties are
calculated with and without the heterostructure barriers based

on the near-equilibrium Boltzmann transport equations under
the relaxation time approximation for each of the materials.
The thermoelectric figure of merit is then obtained with an
assumed lattice thermal conductivity value to identify the
theoretical maximum figure of merit by the minority carrier
blocking as well as the optimal carrier concentration at a given
desired temperature for each of the three material systems.

II. CARRIER TRANSPORT EQUATIONS

A. Multinonparabolic bands model and two-carrier
transport with barriers

In a typical narrow-band-gap semiconductor, the dispersion
relation in each band is highly nonparabolic and thus can be
approximated by the modified Kane model [27],

E(1 + αE) = �
2k2

2m∗ , (1)

where α is the nonparabolicity in the unit of (eV)−1 and m∗
is the effective mass of the band. This nonparabolic band
model works well over a broad carrier energy range up to
1–2 eV in most of the narrow-band-gap semiconductors under
reasonably high fields [27]. Beyond this range, one may
need to use the full band structure to calculate the transport
properties. Models based on first-principles band calculations
and Boltzmann transport theory are also widely employed for
thermoelectric carrier transport calculations [28].

In our model, the nonparabolicity can be obtained from the
fitting of the density of states as a function of energy obtained
by a first-principles electronic band calculation, which is
discussed in more detail in Appendix for an example case
of Bi2Te3. The density of states (DOS) for a nonparabolic
band is then given by

ρDOS(E) = d

√
2(m∗)3/2

π2�3

√
E + αE2(1 + 2αE), (2)

where d is the valley degeneracy.
One can use the linearized Boltzmann transport equations

to calculate the thermoelectric transport properties in the case
of two-carrier type transport. All the transport properties are
an integral function of the differential conductivity defined as
[29],

σd (E) = e2τ (E)v2(E)ρDOS(E)

(
− ∂f

∂E

)
, (3)

where τ is the energy-dependent scattering time of the
carrier type, which will be discussed in Sec. II D, v is
the carrier velocity in one direction in that v2 = 2E(1 +
αE)/(3m∗(1 + 2αE)2), and f is the Fermi-Dirac distribution
function. The differential conductivity should be calculated for
each of the bands in the corresponding energy coordinate.

The electrical conductivity, the Seebeck coefficient, and
the electronic thermal conductivity for one type of carrier are
given, respectively, by

σ =
∑

i

∫
TB,i(E)σd,i(E) dE, (4)

S =
∑

i

1

qT

∫
TB,i(E)σd,i(E)(E − EF,i) dE

σ
, (5)
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κelec =
∑

i

1

q2T

∫
TB,i(E)σd,i(E)(E−EF,i)

2dE−S2σT ,

(6)

where σd,i is the differential conductivity of the ith band of the
carrier type and TB,i(E) is the energy-dependent transmission
coefficient of the ith band. The 	 in each of the equations
indicates that the contributions from all the bands that belong
to the carrier type must be summed to obtain the final transport
property.

The transmission coefficient represents the barrier effect
in the transport. When there is no barrier in the band, the
transmission coefficient is unity. When there are barriers with
barrier height EB and width wB , the transmission coefficient
can be determined by the Wentzel-Kramers-Brillouin (WKB)
approximation as [30]

TB = 4E(EB − E)

E2
Bsinh2(2wB

√
2m∗(EB − E)/�) + 4E(EB − E)

,

(E < EB)

= 4E(E − EB)

E2
Bsin2(2wB

√
2m∗(E − EB)/�) + 4E(E − EB)

.

(E > EB) (7)

Note that (7) describes the transmission over a single barrier.
The transmission will return to that of the bulk (TB → 1) if the
carriers travel over a sufficiently long distance before encoun-
tering another barrier because extensive electron scatterings
will cause the distorted carrier energy distribution after the first
barrier to return to equilibrium. This imposes a requirement for
the interbarrier spacing or the content of barrier material in the
matrix. In this transport model, we assume that the average
inter-barrier spacing is comparable to the minority carrier
mean free path of the matrix, which ensures that the carrier
transmission given by (7) is sustained with frequent blockings
by barriers between electron-phonon scattering events during
the travel in the matrix. Note that our model based on the
transmission coefficient described above is not suitable for cap-
turing the transition of the nonequilibrium carrier distribution
after a barrier back to equilibrium with the distance of travel.
Hence, this near-equilibrium bulk transport model is unable to
predict the variation of transport properties with interbarrier
spacing. Instead, a nonequilibrium transport theory such as
the generalized Boltzmann transport theory or Monte Carlo
simulation could be employed to obtain the transport properties
varying with barrier spacing. Also, this model assumes that
the transport inside the barrier is purely ballistic, so there is no
mobility drop through the barriers for majority carriers.

Since we want to suppress the minority carrier transport
as much as possible, i.e., TB � 1, a sufficiently high barrier
(>4 − 5kBT ) is required in the minority carrier band. Also,
the barrier width must be more than a magnitude larger
than the tunneling length �/

√
2m∗(EB − E) to ensure all the

minority carriers with energies lower than the barrier height
to be effectively blocked (TB ∼ 0) without tunneling. On the
other hand, a negligibly small barrier height is required in
the majority carrier band to minimize the barrier effect on the
majority carrier transport.

The total electrical conductivity and total Seebeck coeffi-
cient in two-carrier transport are obtained by

σ = σe + σh, (8)

S = σeSe + σhSh

σe + σh

, (9)

where the subscripts e and h denote the partial properties of
electrons and holes, respectively. Since the partial Seebeck
coefficients of electrons and holes have opposite signs to each
other, it is shown from (9) that the magnitude of the total See-
beck coefficient becomes smaller than that of each partial See-
beck coefficient. Consequently, the thermoelectric power fac-
tor and figure of merit are reduced due to the bipolar transport
despite the slight increase in the total electrical conductivity.

The total electronic thermal conductivity is not only the
sum of the partial (unipolar) electronic thermal conductivities
of electrons and holes. Another term from the bipolar
thermodiffusion effect must be included in the case of
two-carrier transport [31]:

κelec = κelect,e + κelect,h + κbi. (10)

The bipolar electronic thermal conductivity is given by

κbi = σeσh

σe + σh

(Se − Sh)2T . (11)

We will discuss the characteristics of bipolar thermal
conductivity in more detail in Sec. II B.

B. Bipolar thermal conductivity

The total thermal conductivity is the sum of the lattice
thermal conductivity and the electronic thermal conductivity
such that

κ = κlat + κelec. (12)

In this paper, the lattice thermal conductivity is not
calculated, but instead extracted by subtracting the electronic
thermal conductivity calculated by (10) from the measured
total thermal conductivity. The obtained lattice thermal
conductivity is then assumed to be constant to analyze the
variation of the figure of merit with carrier concentration at a
given temperature.

According to (11), the bipolar thermal conductivity can
be obtained only when both the electron and hole transport
are well known for the material: Both the partial electrical
conductivities and Seebeck coefficients of electrons and holes
must be known. These partial properties cannot be measured
separately, but only the total values described in Eqs. (8) and
(9) can be measured. Instead, these partial properties can be
estimated based on the accurate transport modeling using (4)
and (5) for each type of carrier.

At a relative low carrier concentration, i.e., near the non-
degenerate limit, the partial Seebeck coefficients of electrons
and holes can be approximated, respectively, as [32]

Se = kB

e

[
EF

kBT
−

(
r + 5

2

)]
, (13)

Sh = −kB

e

[
− (EF − Eg)

kBT
−

(
r + 5

2

)]
, (14)
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where EF is the Fermi level referenced to the conduction band
edge in the electron energy coordinate, Eg is the band gap, and
r is the energy exponent in the energy-dependent relaxation
time as in τ = τ0E

r . From (13) and (14), the last factor in the
right-hand side of Eq. (11) becomes

(Se − Sh)2T = k2
B

e2

[
Eg

kBT
+ (2r + 5)

]2

T , (15)

which is nearly constant, independent of the carrier concentra-
tion, at least within the concentration range discussed in this
paper because r typically does not change much with carrier
concentration in that range. Therefore, using the relations,
σe = neμe, σh = peμh, and n2

i = np, where ni is the intrinsic
carrier concentration, (11) becomes, as a function of hole
concentration p, or electron concentration n, respectively,

κbi ∝ p

bn2
i + p2

, or κbi ∝ n

n2
i /b + n2

. (16)

According to (16), the bipolar thermal conductivity is a bell-
shape function with each of the carrier concentrations and has
a maximum when p = bn or σe = σh at a given temperature.

Also, near the intrinsic regime, n ≈ p ≈ ni , and using
ni = (NcNv)1/2 exp(−Eg/2kBT ), where Nc and Nv are the
effective density of states in the conduction and valence bands,
respectively, (11) becomes

κbi = k2
Bbμp

e(b + 1)
(NCNV )1/2 exp

(
− Eg

2kBT

)

×
[

Eg

kBT
+

(
2r + 5

)]2

T . (17)

Here the last factor at the right-hand side of (17), also shown in
Eq. (15), (Eg/kBT + 2r + 5)2T , is only slowly varying with T

and Eg for narrow-band-gap semiconductors. Therefore, (17)
becomes

κbi ∝ exp

(
− Eg

2kBT

)
, (18)

which indicates that the bipolar thermal conductivity increases
exponentially with temperature. This explains the reason that
the zT values of most thermoelectric materials significantly
drop as temperature rises beyond the material’s working
temperature range above room temperature, where the phonon
drag [32] is typically insignificant. Equation (18) also suggests
that this detrimental bipolar effect can be delayed at a later
temperature if the band gap can be increased, i.e., via alloying.
Furthermore, Nc (Nv) shown in Eq. (17) is proportional to
(m∗

e )3/2 [(m∗
h)3/2]. Thus, by reducing the effective masses,

i.e., through compositional changes, the bipolar thermal
conductivity can be reduced [33]. However, it may not be
easy to find a suitable material composition with appropriate
band structures. Instead, we propose in this work to simply
add heterostructure barriers to modify the carrier transport and
effectively suppress the bipolar effect in an already-established
material composition.

C. Carrier concentrations and Hall coefficient

When there are multiple bands participating in the con-
duction, which is often true for most of the narrow-band-gap

thermoelectric materials at high temperatures, the electron
concentration n and the hole concentration p are obtained
by summing each band’s carrier concentration as

n =
∑

i

∫ ∞

0
ρDOS,i(E)fi(E)dE, (19)

p =
∑

j

∫ ∞

0
ρDOS,j (E)fj (E)dE, (20)

where ρDOS,i is the density of states of the ith conduc-
tion band, and fi(E) = 1/{1 + exp[(E − EF,i)/kBT ]} is the
Fermi-Dirac distribution function for the ith conduction band
with the Fermi level EF,i referenced to the band edge of the
ith band. For the valence bands, an index j is used. Note that
the energy integrals in Eqs. (19) and (20) are performed for
each band with energy referenced to the corresponding band
edge. So the Fermi level of each band must be converted to its
relative position from the specific band edge in the integrals,
i.e., EF,i = EF − Ec,i , and EF,j = Ev,j − EF , where Ec,i ,
Ev,j , and EF are, respectively, the ith conduction band edge,
the j th valence band edge, and the Fermi level positions in the
universal electron energy coordinate.

The carrier concentrations are typically measured using
the Hall effect experiment. For single carrier-type transport,
the carrier concentration is easily obtained from n or p =
1/(qRH ), where RH is the Hall coefficient and q is –e

for electrons and +e for holes. However, in the case of
two-carrier-type transport, where both electrons and holes are
participating in the conduction, analysis of the Hall effect
results is no longer straightforward because the Hall coefficient
becomes a function of both carrier concentrations as well
as their mobilities, so there are four unknowns. One may
perform the Hall-effect measurements with varying magnetic
field to extract all these four quantities [34]. Otherwise, it is
possible to extract both electron and hole concentrations by
simultaneously fitting the Seebeck coefficient and the elec-
trical conductivity using the Boltzmann transport equations
presented in Sec. II B if the band structure and the scattering
characteristics of the material are readily known, because then
the only adjustable parameter for the fitting is the Fermi level.
Additional Hall-effect measurements may be helpful in case
there are uncertainties in the band structure and scattering
information for the material. The Hall coefficient in the case
of two-carrier-type transport under the limit of weak magnetic
field is given by

RH = 1

e

p − nb2

(p + nb)2 , (21)

where b = μe/μh is the mobility ratio between electron and
hole.

D. Energy-dependent scattering time

In most of the start-of-the-art thermoelectric materials
including the three kinds of materials simulated in this paper,
the predominant electron scattering mechanism is the acoustic
phonon deformation potential scattering [22,35–37]. The
energy-dependent carrier scattering time by acoustic phonon
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deformation potential for a nonparabolic band is given by

τAC(E) = π�
4Cl(E + αE2)

−1/2

√
2(m∗

d )3/2kBT D2
a(1 + 2αE)

[(1 − A)2 − B]−1,

(22)
where Cl is the elastic constant, m∗

d is the density of states
effective mass for a single valley, Da is the acoustic phonon
deformation potential, A = αE(1 − K)/(1 + 2αE), and B =
8αE(1 + αE)K/[3(1 + 2αE)2]. K is the ratio between the
deformation potentials of the valence band and conduction
band.

In addition to the acoustic phonon scattering, important
scattering mechanisms to consider for these materials are the
polar optical phonon scattering, the ionized impurity scatter-
ing, and the short-range defect scattering. These scatterings
are typically much weaker than the acoustic phonon scattering,
but may be necessary to include in the calculations to fine tune
the mobility. In particular, the ionized impurity and defect
scatterings can be very significant in nanostructured materials
where nonperfect crystalline structures are purposely created.
The scattering time by polar optical phonons (POP) with
screening is given by [36]

τPOP(E) = �
2ErPOPF−1

(2m∗
d )1/2e2kBT

(
ε−1∞ − ε−1

0

)
(1 + 2αE)

, (23)

where ε∞ and ε0 are the high-frequency and static permittivity
values, respectively, and

F = 1 − δ∞ ln(1 + δ−1
∞ ) − 2αE(1 + αE)

(1 + 2αE)2

× [1 − 2δ∞ + 2δ2
∞ ln(1 + δ−1

∞ )]

and δ∞ = �
2/(8m∗

dr
2
∞E). r∞ is the high-frequency screening

length given by 1/r2
∞ = (e2/ε∞)

∫ ∞
0 (−∂f0/∂E)ρDOS(E)dE,

and rPOP is the energy exponent of the polar optical phonon
scattering, which is an adjustable parameter, typically slightly
less than 0.5 [36].

The ionized (Coulomb potential) impurity scattering time
is given by [37]

τII(E) = 16
√

2m∗
dπε2

0(E + αE2)
3/2

NIIe4(1 + 2αE)

×
[

ln
(
1 + δ−1

0

) − δ0

1 + δ0

]−1

, (24)

where NII is the ionized impurity density and r0

is the static screening length given by 1/r2
0 =

(e2/ε0)
∫ ∞

0 (−∂f0/∂E)ρDOS(E)dE. Note that NII counts
not only the impurities that are ionized but also all the charged
defects and vacancies that create Coulomb potential around
them. To the first-order approximation, NII is proportional to
the carrier density, and we define the compensation ratio rc

as the proportionality factor as in rc = NII/n in the case of n
type. We use the compensation ratio as a fitting parameter.

The short-range (non-Coulomb) defect scattering time is
given by [37]

τSD(E) = π�
4(E + αE2)

−1/2

√
2(m∗

d )2/3NV U 2
V (1 + 2αE)

[(1 − A)2 − B]−1,

(25)

where NV is the nonionized defect density and UV is the
short-range potential of the defects.

As shown in Eqs. (24) and (25), these two defect or impurity
scatterings have distinct energy dependencies, i.e., τII ∼ E3/2

and τSD ∼ E−1/2. The spatially slowly varying Coulomb
potential around the ionized impurities prefers scattering low-
energy or low-frequency carriers, whereas the sharp potential
barrier by the short-range defects prefers scattering high-
energy or high-frequency carriers [38]. Appropriate balance
between the intensities of the two scattering mechanisms
ensures a good fitting of the electrical conductivity and
Seebeck coefficient over a wide temperature range because
the transport properties are sensitive to the energy dependency
of carrier scattering.

With the assumption that the different scattering events
are independent of each other, the total energy-dependent
scattering time can be obtained by

1

τ (E)
= 1

τAC(E)
+ 1

τPOP(E)
+ 1

τII(E)
+ 1

τSD(E)
. (26)

III. RESULTS AND DISCUSSION

A. Bi2Te3 alloys

Since the early boom of thermoelectrics research in the
1950s, Bi2Te3 has remained the best thermoelectric material
with high zT ∼ 1 near room temperature. Recently, nanos-
tructured bulk Bi2Te3 alloys that were hot pressed from
ball-milled nanopowder showed enhanced zT via reduced
thermal conductivity (∼1 W m−1 K−1). Poudel et al. [39]
reported zT ∼ 1.4 for nanostructured p-type Bi0.5Sb1.5Te3

at ∼400 K. For n type, alloys with Se, i.e., Bi2(Te1-xSex)3,
showed highest zT ∼ 1 at 350–400 K [40]. However, these
zT values decreases substantially as temperature rises beyond
this temperature range due to the bipolar effect. At 500 K and
beyond, the zT value of p-type Bi0.5Sb1.5Te3 reduces below
1.0 and that of n-type Bi2Te2.7Se0.3 below 0.6.

Typically no particular dopant impurities are added to
dope Bi2Te3 alloys. Instead, the compositional variation of
stoichiometry affects the carrier concentration drastically
because the vacancies and antisite defects (Te occupying the Bi
site or Bi occupying the Te site) in the crystal are responsible
for charge donation in Bi2Te3 alloys [41,42]. It has been
reported that ball-milling conditions can also affect the antisite
defect densities and thus change the carrier concentration in
both p-type and n-type Bi2Te3 alloys [43,44].

We have successfully fitted the experimental data of the
high zT n- and p-type Bi2Te3 alloys from Refs. [39,40] using
our electron transport model. Details about the modeling
are presented in Appendix A. Based on the theory, we
calculated the thermoelectric transport properties with and
without minority carrier blocking barriers in the material as
a function of carrier concentration. First results shown in
Fig. 1 are for n-type Bi2Te2.7Se0.3 at 500 K. Here 20-nm-wide
barriers with a 10kBT barrier height for the minority carriers
(holes) and a 0-eV barrier height for the majority carriers
(electrons) were assumed for the calculations. This one-sided
barrier structure showcases the ideal minority carrier blocking,
in which more than 99% minority carriers are blocked by the
barriers while majority carriers remain unaffected.
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FIG. 1. Calculated (a) electronic thermal conductivity, (b) elec-
trical conductivity, (c) Seebeck coefficient, and (d) power factor of
n-type Bi2Te2.7Se0.3 with and without minority carrier (hole) blocking
as a function of electron concentration at 500 K. Barriers with 20-nm
width and 10 kBT barrier height in the valence bands were used for
the simulation of minority carrier blocking.

As shown in Fig. 1(a), the bipolar thermal conductivity
is significantly high in the electron concentration range
1018 − 1019 cm−3, reaching the maximum 1.5 W m−1 K−1 at
4 × 1018 cm−3 electron concentration at 500 K. Note that this
electron concentration (4 × 1018 cm−3) corresponds to hole
concentration ∼1 × 1019 cm−3 in this material, and with 2.5

FIG. 2. Calculated figure of merit zT of n-type Bi2Te2.7Se0.3

with and without minority carrier blocking as a function of electron
concentration at 400 K and 500 K. The same barrier size and heights
used in Fig. 1 were used for the calculations. A constant lattice thermal
conductivity of 0.5 W m−1 K−1 was assumed.

times higher mobility for electrons than holes, the partial
electrical conductivity of electrons become equal to that of
holes to have the maximum bipolar thermal conductivity at
this concentration as discussed in Sec. II C. This is also the
minimum electrical conductivity point. [Fig. 1(b)] Further-
more, the Seebeck coefficient is very small, only −8 μV K−1,
at this concentration [Fig. 1(c)] because the partial Seebeck
coefficients of electrons and holes almost cancel each other
out according to (12). As a result, the power factor and zT are
extremely small at this concentration.

When the barriers are incorporated, however, the bipolar
thermal conductivity is largely suppressed, and the total
electronic thermal conductivity mostly comes from the unipo-
lar thermal conductivity of the majority carriers (electrons
in this case), which is proportional to the majority carrier
concentration following the Wiedemann-Franz relation. The
magnitude of Seebeck coefficient also enhances in the case
with barriers because the otherwise canceling-out hole con-
tribution is removed. The magnitude of Seebeck coefficient
increases monotonically with decreasing concentration just
like the case of a unipolar transport [Fig. 1(c)]. As one can see
in Fig. 1(d), the resulting power factor is greatly enhanced near
the intrinsic region (1018−1019 cm−3 electron concentration
range) compared to the bulk case at the same concentration
due to the suppression of the minority carrier contribution by
barriers. Note that in this intrinsic region, the power factor
is still lower than the maximum power factor occurring at
8 × 1019 cm−3 electron concentration [Fig. 1(d)], because the
concentration is way much off optimal. But combined with the
reduced electronic thermal conductivity, zT could be enhanced
beyond the maximum value of a bulk.

Figure 2 shows zT with and without the minority carrier
blocking as a function of electron concentration for the n-type
Bi2Te2.7Se0.3 at two temperatures, 400 K and 500 K. The
lattice thermal conductivity was assumed to be 0.5 W m−1 K−1,
which was the value extracted from the experimental thermal
conductivity data reported in Ref. [39]. (See Appendix A
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for details.) Without the barriers, bulk Bi2Te2.7Se0.3 has a
maximum zT ∼ 1.0 at electron concentration 3 × 1019 cm−3

(hole concentration 1.2 × 1018 cm−3) at 500 K. This maximum
zT value is drastically enhanced to 1.7 by the minority carrier
blocking at a lower electron concentration 1 × 1019 cm−3. At
400 K, the enhancement is a bit lower; about 27% enhancement
from zT = 1.1 for bulk to 1.4 with minority carrier blocking.
Smaller enhancement at a lower temperature is anticipated
because the bipolar thermal conductivity decreases overall
as temperature lowers according to (21), so the enhance-
ment through bipolar thermal conductivity reduction becomes
weaker.

In the case of p-type Bi0.5Sb1.5Te3, the story is similar,
and the effect differs only quantitatively. As shown in
Fig. 3(a), the bipolar thermal conductivity becomes as high as
1.6 W m−1 K−1 at hole concentration 6 × 1018 cm−3 (electron
concentration 2.1 × 1018 cm−3) at 500 K. As the hole concen-
tration increases after this point, the bipolar thermal conduc-
tivity gradually decreases, but the unipolar electronic thermal
conductivity rises up instead. Due to the opposite behaviors of
these two quantities, total electronic thermal conductivity be-
comes to have a minimum value of 0.9 W m−1 K−1 at hole con-
centration 4 × 1019 cm−3 (electron concentration 2.8 ×
1017 cm−3). However, if the minority carriers are blocked by
the barriers, the electronic thermal conductivity comes mostly
from the unipolar conduction of majority carriers and thus
monotonically decreases with decreasing hole concentration.
Near intrinsic, the total electronic thermal conductivity be-
comes less than 0.1 W m−1 K−1 as shown in Fig. 3(a). Due
to the same reason, the Seebeck coefficient monotonically
increases with decreasing hole concentration in the case when
the barriers block the electron (minority carrier) transport
[Fig. 3(c)]. But the electrical conductivity keeps decreasing
at the same time [Fig. 3(b)], so because of that the power
factor decreases with decreasing hole concentration but still in
a much slower pace than the bulk case [Fig. 3(d)].

Figure 4 shows the calculated figure of merit zT of p-type
Bi0.5Sb1.5Te3 as a function of hole concentration at 400 K and
500 K with and without the minority carrier blocking barriers.
The same lattice thermal conductivity (0.5 W m−1 K−1) used
previously for n-type Bi2Te2.7Se0.3 was used for the p-type.
Overall, p-type bulk Bi0.5Sb1.5Te3 shows higher zT than that
of n-type bulk Bi2Te2.7Se0.3 at the same majority carrier
concentration. This is because of the lower electronic thermal
conductivity of the p-type than that of the n-type with relatively
similar power factors for the two materials at the same
majority carrier concentration. The higher electronic thermal
conductivity for the n-type mainly comes from its higher
carrier (electron) mobility than the hole mobility of the p-type
material. So the highest zT value achievable for p-type bulk
Bi0.5Sb1.5Te3 is found to be ∼1.2 at hole concentration of
6 × 1019 cm−3 at 500 K. (Recall that the maximum zT for n-
type was ∼1.0.). This zT value can be enhanced to 2.0 when the
minority carrier blocking takes place with the 20-nm barriers
as shown in Fig. 4 for the p-type Bi0.5Sb1.5Te3, which is about
∼68% enhancement, a similar enhancement as the n-type
Bi2Te2.7Se0.3 had at the same temperature 500 K. At 400 K,
the bulk material without the barriers has maximum zT ∼ 1.4,
which is higher than that of 500 K mainly because of the lower
bipolar thermal conductivity at the lower temperature. (Recall

FIG. 3. Calculated (a) electronic thermal conductivity, (b) elec-
trical conductivity, (c) Seebeck coefficient, and (d) power factor of
p-type Bi0.5Sb1.5Te3 with and without minority carrier (electron)
blocking as a function of hole concentration at 500 K. Barriers with
20-nm width and 10 kBT barrier height in the conduction bands were
used for the simulation of minority carrier blocking.

that the bipolar thermal conductivity increases exponentially
with temperature.) However, zT enhancement by minority
carrier blocking is smaller at 400 K; the maximum zT is
enhanced from 1.4 to 1.74 at 400 K, which is about 24%
enhancement.
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FIG. 4. Calculated figure of merit zT of p-type Bi0.5Sb1.5Te3

with and without minority carrier blocking as a function of hole
concentration at 400 K and 500 K. The same barrier size and height
used in Fig. 3 were used for the calculations. A constant lattice thermal
conductivity of 0.5 W m−1 K−1 was assumed.

In addition, we conducted a later study to investigate the
effects of barrier height and thickness on the figure of merit of
the p-type Bi0.5Sb1.5Te3. Figure 5 shows the bipolar thermal
conductivity and the figure of merit of this material with
varying barrier height and thickness at T = 500 K. It is shown

FIG. 5. Variation of (a) bipolar thermal conductivity and (b)
figure of merit with barrier height (EB ) and barrier width in nm
in the minority carrier band for p-type Bi0.5Sb1.5Te3 at 500 K. In the
figure of merit calculations, lattice thermal conductivity is assumed
to be 0.5 W m−1 K−1.

that as the barrier height decreases from 10kBT to 5kBT

and to 2kBT , the reduction of bipolar thermal conductivity
by barriers is steadily lessened, confirming that the minority
carrier blocking is less effective with lower barrier height.
Although the percentage of minority carriers (electron) that
have energy above 5kBT is very small, i.e., less than 4% among
the total electron concentration of 1.3 × 1018 cm−3 at hole
concentration of 1 × 1019 cm−3, for example, the magnitude
of the Seebeck coefficient of electrons is relatively large
(∼−800 μV/K) due to the barriers, so the bipolar thermal
conductivity becomes as large as 0.2 W/mK at this doping
level, compared to the almost completely suppressed bipolar
thermal conductivity with 105kBT barrier height as shown
in Fig. 5(a). Consequently, the figure of merit is reduced
by more than 20% at this hole concentration as the barrier
height is lowered from 10kBT to 5kBT [Fig. 5(b)]. Similarly,
a significant reduction of zT is found when the barrier
height is lowered from 5kBT to 2kBT , due to the much
reduced effectiveness of the minority carrier blocking on the
suppression of bipolar thermal conductivity.

However, the impact of the minority carrier blocking on
zT is much less sensitive to the width of barriers. As shown
in Fig. 5(b), a 1 nm barrier width is found as effective as
a 20 nm width in reducing the bipolar thermal conductivity
when the barrier height is higher than 5kBT . This is because
the tunneling depth for such a high barrier height is very
shallow, ∼0.6 nm, much shorter than the barrier width, so most
of minority carriers cannot tunnel through the barriers. This
suggests that a broad range of barrier sizes from a few nm to
tens of nm can be incorporated for the minority carrier blocking
without a loss in zT enhancement. We find that this statement
also applies to the other two material systems discussed below,
Mg2Si1-xSnx and Si1-xGex .

B. Mg2Si1-xSnx

Mg2Si and other silicides have been recently attracting great
attention as a viable thermoelectrics for midtemperature ap-
plications due to their various advantages such as material sta-
bility, nontoxicity, and low cost with abundant elements [45].
In particular, its alloys with Sn, Mg2Si1-xSnx solid solutions,
have been one of the main research foci in the field because
of their tunable band structure with Sn content to achieve high
zT . Mg2Si1-xSnx has its two conduction bands converging
with each other for Sn content x = 0.6−0.7, which is known
as one of the important ingredients for a large Seebeck
coefficient [35]. It has been reported that n-type Mg2Si1-xSnx

with x = 0.6−0.7 exhibited zT = 1.0−1.5 at 700 K–900 K
[19,46,47]. However, the high bipolar thermal conductivity
prevented further improvement of zT for this material.

For analysis of the experimental results, we have recently
developed an electron transport model for both n-type and p-
type Mg2Si1-xSnx solid solutions (0 � x � 1) and successfully
fitted most of the key experimental data from literature using
the theory [35]. Herein we reuse the band structure and scat-
tering parameter information obtained for the material system
in Ref. [35] and add the barrier effect in the model to assess
the impact of minority carrier blocking on the thermoelectric
properties of Mg2Si0.4Sn0.6 (x = 0.6) as discussed below.
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FIG. 6. Calculated (a) electronic thermal conductivity, (b) elec-
trical conductivity, (c) Seebeck coefficient, and (d) power factor of
Mg2Si0.4Sn0.6 with and without minority carrier blocking as a function
of electron concentration (bottom x axis) and hole concentration (top
x axis) at 900 K. Barriers with 20-nm width and 10 kBT barrier
height in the conduction bands (e-barrier) for p-type or valence bands
(h-barrier) for n-type were used for the simulation of minority carrier
blocking for each type of carriers.

Figure 6 presents the calculation results for the thermo-
electric properties of Mg2Si0.4Sn0.6 with the minority carrier

blocking over a wide carrier concentration range encompass-
ing both n-type and p-type regimes at 900 K. As one may
expect at such an elevated temperature, the electronic thermal
conductivity of Mg2Si0.4Sn0.6 at 900 K is found to be much
higher than that of Bi2Te3 alloys at 500 K that we showed
previously in Figs. 1 and 3. Due to the very small band gap of
the material ∼0.25 eV at this temperature, the bipolar thermal
conductivity remains very high above 1 W m−1 K−1 near
the intrinsic region (1019−1020 cm−3 electron concentration
range) and peaked as high as 2.8 W m−1 K−1 at 3 × 1019 cm−3

electron concentration at this temperature, which is about
twice larger than those of the Bi2Te3 alloys at 500 K. This
large bipolar thermal conductivity is the major limiting factor
for the material’s zT in this low doping range, because the
lattice thermal conductivity for this material has been reduced
quite much to be ∼1 W m−1 K−1 or lower by nanostructuring
and alloying [19,35]. The unipolar thermal conductivities of
electrons and holes [red curve and blue curve, respectively,
in Fig. 6(a)] do not different much from those of Bi2Te3

alloys at 500 K at the same carrier concentration; their lower
electrical conductivities are compensated by the higher tem-
perature (900 K) because the unipolar thermal conductivity are
proportional to both electrical conductivity and temperature
according to the Wiedemann-Franz relation. This unipolar
thermal conductivity becomes larger than 1 W m−1 K−1 when
the majority carrier concentration is sufficiently high for both
types of carriers, when the electron concentration is higher
than 2 × 1020 cm−3, or the hole concentration is higher than
3 × 1020 cm−3.

Hence, as seen in Fig. 6(a), the total electronic thermal
conductivity cannot be lower than 2 W m−1 K−1 over the
entire carrier concentration range because of the conflicting
behaviors of the unipolar thermal conductivity and the bipolar
thermal conductivity with varying carrier concentration. How-
ever, this high minimum of electronic thermal conductivity
could be lowered drastically by minority carrier blocking.
Due to the suppression of the bipolar transport, the total
electronic thermal conductivity can be kept very low, below
0.5 W m−1 K−1 in the carrier concentration range near intrinsic
region (1019−1020 cm−3 electron and hole concentrations).
The power factor is also enhanced in this concentration region
due to the Seebeck enhancement despite the slight reduction
in the electrical conductivity by the barriers [Fig. 6(d)].

As a result, the figure of merit zT of Mg2Si0.4Sn0.6 is
enhanced quite substantially in this low-carrier-concentration
region. Figure 7 displays the zT enhancement by minority
carrier blocking for both types of carriers of Mg2Si0.4Sn0.6

at 900 K. Here, we inspected the two cases of lattice
thermal conductivity: 0.8 and 0.3 W m−1 K−1. Experimentally,
the lowest up-to-date lattice thermal conductivity achieved
for Mg2Si0.4Sn0.6 at ∼800 K or higher temperatures is
∼0.8 W m−1 K−1. Assuming this lattice thermal conductivity
value, the bulk maximum zT that can be achieved for n-
type Mg2Si0.4Sn0.6 is 1.1 at 900 K. This zT value can be
enhanced to ∼2 at ∼1 × 1019 cm−3 electron concentration by
the minority carrier blocking as shown as a blue dotted curve
with triangles (h-barrier) in Fig. 7. This accounts for about an
80% enhancement. For the p-type material, the enhancement
is similar, about 85%, from the bulk maximum zT = 0.7 to 1.3
by the minority carrier blocking (e-barriers) as shown in Fig. 7.
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FIG. 7. Calculated figure of merit zT of Mg2Si0.4Sn0.6 with
and without minority carrier blocking as a function of electron
concentration (bottom x axis) and hole concentration (top x axis)
at 900 K. The same barrier size and height used in Fig. 6 were
used for the calculations. Electron barriers (e-barrier) were used
for the minority carrier blocking in the p-type material and hole
barriers (h-barrier) for the minority carrier blocking in the n-type.
Two constant lattice thermal conductivities, 0.8 and 0.3 W m−1 K−1,
were considered for each type.

If the lattice thermal conductivity is further reduced, i.e.,
to 0.3 W m−1 K−1 at this temperature, the zT enhancement by
minority carrier blocking can be much larger. As shown by
the solid curves in Fig. 7, zT for the n-type material can be
enhanced above 3 from the bulk maximum 1.3 in the case of
0.3 W m−1 K−1 lattice thermal conductivity, which is a more
than 130% enhancement. For p type, zT can be enhanced
above 2.5 from the bulk maximum 0.9, thus a more than 170%
enhancement. This exemplifies the fact that the minority carrier
blocking can be more effective in enhancing the figure of
merit when the lattice thermal conductivity is lower. Note that
the lattice thermal conductivity reduction may be achieved
simultaneously by the incorporation of heterostructure barriers
for minority carrier blocking, because these nanoscale barriers
could also effectively scatter phonons if there was a large
acoustic mismatch between the two dissimilar materials at the
heterointerfaces [8].

At a lower temperature, 700 K, the zT enhancement is
expected to be smaller because the bipolar thermal conduc-
tivity to be suppressed is already smaller in the bulk due to a
larger band gap (0.31 eV) and a lower temperature (700 K)
than those at 900 K. The peak value of bipolar thermal
conductivity (1.2 W m−1 K−1) at 700 K is found to be only
∼46% of the 900 K value (2.6 W m−1 K−1). Figure 8 presents
the calculated zT of Mg2Si0.4Sn0.6 with and without minority
carrier blocking as a function of carrier concentrations at
700 K. Here we assumed the lattice thermal conductivity
to be 0.5 W m−1 K−1, a slightly higher value than the value
(0.3 W m−1 K−1) previously used for the calculations at 900 K,
because the predominant phonon scattering at these temper-
atures is the Umklapp scattering, which becomes weaker as
temperature decreases, causing the lattice thermal conductivity
to increase. Note that this value of lattice thermal conductivity

FIG. 8. Calculated figure of merit zT of Mg2Si0.4Sn0.6 with
and without minority carrier blocking as a function of electron
concentration (bottom x axis) and hole concentration (top x axis)
at 700 K. The same barrier size and height used in Fig. 6 were used
for the calculations. Electron barriers (e-barrier) were used for the
minority carrier blocking in the p-type material and hole barriers
(h-barrier) for the minority carrier blocking in the n-type material. A
constant lattice thermal conductivity of 0.5 W m−1 K−1 was assumed.

(0.5 W m−1 K−1) still remains to be experimentally achieved
for this material.

As shown in Fig. 8, bulk n-type Mg2Si0.4Sn0.6 can
achieve maximum zT ∼ 1.6 with electron concentration ∼1 ×
1020 cm−3 at 700 K. This figure of merit can be enhanced
to ∼2.1 by the minority carrier blocking (blue curve with
triangles in Fig. 8), which is an enhancement of about 30%.
Similarly for p type, zT is enhanced from the bulk maximum
1.1 to 1.5 by the minority carrier blocking, which is an
enhancement of 36%.

C. Si1-xGex

Silicon germanium alloys have been actively studied for
thermoelectric applications since 1960s and used in many
radioisotope thermoelectric generators (RTGs) by NASA for
deep space missions since the early 1970s [48–50]. They
are particularly suited for space applications due to their
unique advantages such as excellent material reliability and
thermoelectric properties at high temperatures up to ∼1300 K.
Until recently, the maximum zT values for SiGe alloys had
been ∼0.65 for p type and ∼1.0 for n type at 1200 K [49,51].
In 2008, Joshi et al. [52] reported a large enhancement of zT

for p-type B-doped Si0.8Ge0.2 to achieve zT ∼ 1.0 via reduced
lattice thermal conductivity by nanostructuring achieved by the
advanced material synthesis method. In the same year, Wang
et al. [53] from the same group reported an enhanced zT ∼ 1.3
for n-type P-doped Si0.8Ge0.2 as well as at ∼1200 K.

We have modeled the electron transport for both of these
p-type and n-type Si0.8Ge0.2 alloys and successfully fitted the
data reported in these recent papers. Details are discussed
in Appendix B. Based on the developed electron transport
model, we investigated the minority carrier blocking effects in
the SiGe alloys. Figure 9 displays the calculation results for
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FIG. 9. Calculated (a) electronic thermal conductivity, (b) elec-
trical conductivity, (c) Seebeck coefficient, and (d) power factor of
Si0.8Ge0.2 with and without minority carrier blocking as a function of
electron concentration (bottom x axis) and hole concentration (top
x axis) at 1200 K. Barriers with 20-nm width and 10 kBT barrier
height in the conduction bands (e-barrier) for p-type or valence bands
(h-barrier) for n type were used for the simulation of minority carrier
blocking for each type of carriers.

Si0.8Ge0.2 with and without minority carrier blocking at 1200 K
over a wide carrier concentration range encompassing both n-
type and p-type regions. Without the minority carrier blocking,
the bipolar thermal conductivity has a peak of 1.3 W m−1 K−1

at 6 × 1018 cm−3 electron concentration or, equivalently, at
6 × 1018 cm−3 hole concentration. Mobilities for both types
of carriers are very close to each other in Si0.8Ge0.2, so, at very
similar carrier densities of electrons and holes, the bipolar
thermal conductivity and the electrical conductivity have their
minima. The bipolar thermal conductivity is relatively small
compared to that of Mg2Sn0.4Si0.6 shown in Fig. 6, even though
the temperature is higher. This is because the band gap of
Si0.8Ge0.2 at 1200 K is much larger (0.67 eV) than that of
Mg2Sn0.4Si0.6 (0.25 eV) at 900 K. Therefore, it can be expected
that the zT enhancement in this material by the minority
carrier blocking might not be as large as in Mg2Sn0.4Si0.6.
The bipolar effect on Seebeck coefficient is significant only
when the electron concentration is below ∼5 × 1019 cm−3 in
the n-type material or when the hole concentration is below
∼5 × 1019 cm−3 in the p-type as shown in the middle of
Fig. 9(c). Thus, the minority carrier blocking effect is large
within these carrier concentration ranges. However, in these
carrier concentration ranges, the bulk zT is relatively small
because the bulk optimal carrier concentrations for maximum
zT are much higher beyond the range. As a result, one can
see from Fig. 9(d) that the power factor enhancement by
minority carrier blocking is relatively small near the optimal
concentrations (∼1 × 1020 cm−3) for both n- and p-types. Also
noted is that at very high carrier concentrations for both p-
and n-types [far left and right part, respectively, of Fig. 8(c)],
the magnitude of the Seebeck coefficient obtained with the
barriers rolls over and starts to decrease when the carrier
concentration increases. At such high carrier concentrations
and at such a high temperature, a significant portion of the
carriers can have energies high enough to go over the barrier
height, so the effect of carrier blocking is diminished, resulting
in the recurring bipolar effect affecting the transport properties
unfavorably.

As shown in Fig. 10, the zT enhancement by minority
carrier blocking is relatively small in both n-type and p-type
Si0.8Ge0.2 at 1200 K. If the lattice thermal conductivity is
assumed to be 0.8 W m−1 K−1 or higher at this temperature,
then the enhancement is less than 5%. If the lattice thermal
conductivity is even lower to be 0.3 W m−1 K−1, then the
enhancement can be larger than 20% for both carrier types,
achieving zT ∼ 3.0 for n-type Si0.8Ge0.2 at 8 × 1019 cm−3

electron concentration and zT ∼ 2.0 for p-type Si0.8Ge0.2 at
5 × 1019 cm−3 hole concentration. Apparently, this relative
small zT enhancement is due to the relatively large band
gap (0.67 eV) of Si0.8Ge0.2 at 1200 K. Beyond 1200 K,
SiGe alloys can be unstable and undergo material degradation
[50]. Nonetheless, if we can assume that the material can
survive at a higher temperature, i.e., 1500 K, the band gap
of Si0.8Ge0.2 decreases to ∼0.54 eV. Therefore, the minority
carrier blocking effect can be larger than the case at 1200 K.
We find that the zT can be enhanced above 3.6 for n-type with
6 × 1019 cm−3 electron concentration, and above 2.3 for p-type
with 6 × 1019 cm−3 hole concentration at 1500 K if the lattice
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FIG. 10. Calculated figure of merit zT of Si0.8Ge0.2 with and
without minority carrier blocking as a function of electron concen-
tration (bottom x axis) and hole concentration (top x axis) at 1200 K.
The same barrier size and height used in Fig. 8 were used for the
calculations. Electron barriers (e-barrier) were used for the minority
carrier blocking in the p-type material, and hole barriers (h-barrier)
for the minority carrier blocking in the n type. Two constant lattice
thermal conductivities of 0.8 and 0.3 W m−1 K−1 were considered.

thermal conductivity is as small as 0.5 W m−1 K−1. This is an
enhancement of about 80% over the bulk value obtained with
the same lattice thermal conductivity for both carrier types.

IV. CONCLUSIONS

In this paper, we have theoretically investigated the zT

enhancement by minority carrier blocking with heterostructure
barriers in several state-of-the-art thermoelectric materials
such as Bi2Te3, Mg2Sn1-xSix , and Si1-xGex alloys over a wide
temperature range. It is shown through the these example
materials that the minority carrier blocking can enhance the
thermoelectric figure of merit significantly at low carrier
concentrations by suppressing the bipolar thermal conductivity
and keeping the power factor high that is otherwise critically
diminished by the bipolar effect. Typically, the enhancement
is larger when the band gap of the material is smaller and
temperature is higher. Also, the smaller the lattice thermal
conductivity, the larger the enhancement that can be achieved.
In Bi2Te3 alloys, about 70% enhancements are predicted
for both n-type and p-type materials to achieve maximum
zT ∼ 1.7 for the n-type Bi2Te2.7Se0.3 and maximum zT ∼ 2.0
for the p-type Bi0.5Sb1.5Te3 at 500 K when the lattice thermal
conductivity is 0.5 W m−1 K−1. Despite the relatively low
temperature 500 K, the enhancement was large due to the
small band gaps (∼0.2 eV) of the Bi2Te3 alloys. It is expected
that the enhancement is even larger at higher temperatures than
500 K. This effect, if realized, will be particularly useful for
the Bi2Te3 alloys to be used over a much wider temperature
range than the bulks without the need to search for another
material working at elevated temperatures. In Mg2Si0.4Sn0.6,
zTs larger than 3.0 and 2.5 are possible for the n-type and
p-type materials, respectively, at 900 K by the optimal minority
carrier blocking, when the lattice thermal conductivity is as low

as 0.3 W m−1 K−1. In Si0.8Ge0.2 alloy, the enhancement can be
small due to its relatively large band gap (∼0.67 eV at 1200 K),
but at higher temperatures, for example, at 1500 K, the material
could achieve zT larger than 3.0 for n-type Si0.8Ge0.2 by the
minority carrier blocking.

APPENDIX A: ELECTRON TRANSPORT MODELING AND
EXPERIMENTAL DATA FITTING FOR Bi2Te3 ALLOYS

The crystal structures of Bi2Te3 and its alloys with Se are
rhombohedral with the space group R3̄m [54]. They can be
easily cleaved in planes perpendicular to the c axis (trigonal
axis) because the five individual atomic layers following the
sequence Te(1)-Bi-Te(2)-Bi-Te(1) in the direction of the c axis
constitute a quintuple layer, and two adjacent quintuple layers
are bound by the weak van der Waals force [32]. According to
the band structure calculations based on density functional
theory, Bi2Te3 has the conduction band minima with six
valleys along the � line ( − Z) in the Brillouin zone and
the valence band maxima with six valleys on the mirror planes
of the Brillouin zone [32].

In order to calculate transport properties, we are particularly
interested in the density of states for both conduction and
valence bands with the band gap. We use the density of
state results based on the first-principles calculations from
Ref. [55] and model the band structure within the effective
mass approximation (EMA) with nonparabolic bands: We
use two parameters, effective mass and nonparabolicity, both
defined in Eq. (1), for each band. Figure 11 shows the curve-
fitting results of the density of states with two conduction
bands and two valence bands information. The extracted band
structure parameters are summarized in Table I (x = 0 in
Bi2Te3-xSex for Bi2Te3). The obtained effective masses of
the first conduction band and the first valence band are in a
good agreement with the values from the literature [32,56].

The energy gap of Bi2Te3-xSex depends on the composition.
It has been found experimentally that the band gap linearly
increases from Se content x = 0 to x ∼ 0.9 and then decreases
with further Se content increase [57]. We are particularly

FIG. 11. Curve fitting of the density of states of Bi2Te3 (Jeong
et al. [55]) as a function of energy using the multiband effective
mass approximation (EMA) with the nonparabolic band model. The
extracted band structure parameters are summarized in Table I.

165209-12



MINORITY CARRIER BLOCKING TO ENHANCE THE . . . PHYSICAL REVIEW B 93, 165209 (2016)

TABLE I. Band structure and material parameters used for transport calculations of n-type Bi2Te3-xSex (0 � x � 1) and p-type
Bi0.5Sb1.5Te3.a

Parameter n-type Bi2Te3-xSex p-type Bi0.5Sb1.5Te3

Band gap (eV) 0.16 × (1 − x) + 0.3 × x − 9.5 × 10−5 0.23−9.5 × 10−5

×(T − 300) ×(T − 300)
Band offset between the 1st 0.23 0.23

and 2nd conduction bands (eV)
Band offset between the 1st 0.27 0.27

and 2nd valence bands (eV)
Electron effective mass of the 0.20 + 0.07 × x × (1 − x) 0.17

1st conduction band (m0)
Electron effective mass of the 0.21 + 0.07 × x × (1 − x) 0.18

2nd conduction band (m0)
Hole effective mass of the 1st valence band (m0) 0.36 + 0.16 × x × (1 − x) 0.36
Hole effective mass of the 2nd valence band (m0) 0.36 + 0.16 × x × (1 − x) 0.36
Nonparabolicity α of the 1st conduction band (eV−1) 0 0
Nonparabolicity α of the 2nd conduction band (eV−1) 1.0 1.0
Nonparabolicity α of the 1st valence band (eV−1) 0.6 0.6
Nonparabolicity α of the 2nd valence band (eV−1) 2.0 2.0
Acoustic phonon deformation [16 × (1 − x) + 26 × x] 20

potential Da for electrons (eV)
Acoustic phonon deformation [21 × (1 − x) + 30 × x] 20

potential Da for holes (eV)
Elastic constant Cl (N/m2) 7.1 × 1010 7.1 × 1010

Compensation ratio rc 1 1
Nonionized defect density Nv (cm−3) 1 × 1019 3 × 1019

Short-range potential of defects Uv (J m−3) 1 × 10−46 1 × 10−46

aAll the effective masses in this table are one-valley values. To obtain the DOS effective mass, it must be multiplied by N
2/3
val , where Nval is the

number of valley of each band (i.e., Nval = 6 for the Bi2Te3 alloys).

interested in the low Se content alloys with (0 � x � 1) in
this paper. As shown in Table I, we assumed the band gap
and all other band parameters for Bi2Te3-xSex to be a linear
interpolation between those of Bi2Te3 (x = 0, extracted from
the DOS fitting in Fig. 11) and those of Bi2Te2Se1 (x = 1,
from literature [32,56]), except for the effective masses,
which are known to approximately follow a parabolic relation
with Sn content between x = 0 and 1 [56]. Note that the
effective masses shown in Table I are single-valley values.
To obtain the DOS effective mass, it must be multiplied
by N

2/3
val , where Nval is the number of the valley of each

band. The temperature coefficient of the band gap (dEg/dT )
was set to be –9.5 × 10−5 eV/K [32]. It turns out that the
second conduction band and the first and second valence
bands are highly nonparabolic, while the first conduction
band can be modeled as a parabolic band. In the transport
properties calculations for the Bi2Te3 alloys in Table I, the
acoustic phonon deformation potential scattering and the
ionized impurity scattering described by (22) and (24) are
included for the calculation of the energy-dependent scattering
time. These parameters were used to successfully fit the
experimental Seebeck coefficient as a function of electrical
conductivity for Bi2Te3 [55] and Bi2Te2.4Se0.6 [56,58] at room
temperature as shown in Fig. 12.

We also fitted the experimental data of the high zT Bi2Te3

alloys: nanostructured p-type Bi0.5Sb1.5Te3 [39] and n-type
Bi2Te2.7Se0.3 [40] using the band structure information and
scattering parameters shown in Table I. Figure 13 presents
the fitting results for the experimental data. We used a

constant hole concentration of 3.5 × 1019 cm−3 to fit the
experimental data of the p-type Bi0.5Sb1.5Te3 and a constant
electron concentration of 1.7 × 1019 cm−3 to fit the data of
n-type Bi2Te2.7Se0.3 over the temperature range 300 K–530 K.
(Carrier concentrations were not measured in these papers.) As
shown in Fig. 13, the simulation results agree very well with
the experimental data. There is a slight discrepancy between
theory and experiment at high temperatures around 500 K for
the n-type material. The experimental electrical conductivity

FIG. 12. Fitting results of the experimental data, Seebeck coef-
ficient as a function of electrical conductivity, for Bi2Te3 [55] and
Bi2Te2.4Se0.6 [56,58] at 300 K.
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FIG. 13. Fitting results of (a) electrical conductivity, (b) Seebeck coefficient, (c) thermal conductivity, and (d) figure of merit zT ;
experimental data of p-type Bi0.5Sb1.5Te3 from Poudel et al. [39] and n-type Bi2Te2.7Se0.3 from Yan et al. [40]. Symbols are experimental data,
and curves are theoretical fitting. In (c), the lattice thermal conductivity (κlat) and electronic thermal conductivity (κelec) including the bipolar
term are separated by the theory.

was slightly higher, and the magnitude of the Seebeck
coefficient was lower than the calculated values, which may
indicate that the bipolar effect is even more significant than
the theory predicted. There is room for adjustment of the band
structure and scattering parameters, e.g., a higher temperature
coefficient of the band gap, and thus a further reduced band
gap at the higher temperatures could better fit the data with an
increased bipolar effect. However, an increased bipolar effect
should result in a higher bipolar thermal conductivity at the
same time, but the thermal conductivity shown in Fig. 12(c)
is already overestimated by the theory. It is also possible
that there is some degree of uncertainty in the experimental
data, particularly in the thermal conductivity at above 450 K.
With this uncertainty taken into account, the lattice thermal
conductivity for these Bi2Te3 alloy materials is extracted from
the experimental data and found to be as low as 0.4 W m−1 K−1

at around 500 K, indicating strong phonon scattering by the
nanostructures in these materials.

APPENDIX B: ELECTRON TRANSPORT MODELING AND
EXPERIMENTAL DATA FITTING FOR Si1-xGex

Si1-xGex alloys have an indirect band gap that decreases
steadily with increasing Ge content from the Si band gap of

1.12 eV [59]. At x > 0.85, the band structure has a Ge-like
band symmetry, and below x < 0.85, it becomes Si like. We are
interested in the low-Ge-content compositions with x ∼ 0.2.
We have listed the band structure information that we used
for the calculations of the transport properties of the low Ge
content alloys in Table II. The band gap also has a strong
temperature dependency, steadily decreasing with increasing
temperature, e.g., from 0.99 eV at 300 K to 0.67 eV at
1200 K for 20% Ge content [60]. The second conduction
band is located at the X point in the Brillouin zone, with
its minimum only 160 meV above the first conduction band
minimum for Si0.8Ge0.2. Therefore, it is important to include
the transport through the second conduction band. For the
valence band, we model both the heavy hole and light hole
bands as one band (first valence band), and the split-off band
as another (second) valence band, of which the band maximum
is about 90 meV below that of the first valence band. For SiGe
alloys, we included the acoustic phonon deformation potential
scattering, the ionized impurity scattering, and the short-range
defect scattering (for n-type only) given by (22), (24), and (25),
respectively, for the transport calculations.

Figure 14 presents the fitting results of the experimental
thermoelectric properties of both p-type [52] and n-type [53]
Si0.8Ge0.2 over a wide temperature range. We used a constant
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TABLE II. Band structure and material parameters used for transport calculations of Si1-xGex (x < 0.85).

Parameter Si1-xGex

Band gap (eV) 1.12 − 0.41 × x + 0.008 × x2 − 4.73 × 10−4 × T 2/(T + 636)
Band offset between the 1st and 2nd conduction bands (eV) 1.2 − (1.12 − 0.41 × x + 0.008 × x2)
Band offset between the 1st and 2nd valence bands (eV) 0.044 + 0.246 × x

Electron effective mass of the 1st conduction band (m0) 0.32
Electron effective mass of the 2nd conduction band (m0) 0.32
Hole effective mass of the 1st valence band (m0) 0.59
Hole effective mass of the 2nd valence band (m0) 0.23−0.135 × x

Acoustic phonon deformation potential Da for electrons (eV) 20
Acoustic phonon deformation potential Da for holes (eV) 15
Elastic constant Cl (N/m2) 9.8 × 1010

Compensation ratio rc for electrons 4
Compensation ratio rc for holes 1.4
Non-ionized defect density Nv (cm−3)a 5 × 1018

Short-range potential of defects Uv (J m−3)a 1 × 10−46

aFor n-type Si1-xGex only. All the bands are modeled as parabolic (i.e., nonparabolicity α = 0).

hole concentration of 1.2 × 1020 cm−3 for the p-type material
fitting and the same electron concentration of 1.2 × 1020 cm−3

for the n-type material fitting. Both types of materials have
similar electrical conductivities as shown in Fig. 14(a), both

of which steadily decrease with increasing temperature due
to the decreasing mobility by stronger acoustic phonon
scattering at higher temperatures. The Seebeck coefficient
keeps increasing in magnitude for both types of materials

FIG. 14. Fitting results of (a) electrical conductivity, (b) Seebeck coefficient, (c) thermal conductivity, and (d) figure of merit zT ;
experimental data of p-type Si0.8Ge0.2 from Joshi et al. [52] and n-type Si0.8Ge0.2 from Wang et al. [53]. Symbols are experimental data, and
curves are theoretical fitting. In addition, the calculated properties with the minority carrier blocking (MCB) by 10-nm-wide and 10kBT -high
barriers in the minority carrier band are also plotted to show the zT enhancement. In (c), the lattice thermal conductivity (κlat) and electronic
thermal conductivity (κelec) including the bipolar term have been separated by the theory.
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[Fig. 14(b)]. Above 900 K, the experimental data deviate from
the theoretical prediction in both the electrical conductivity
and Seebeck coefficient. The trend is the opposite for the
electrical conductivity and Seebeck coefficient of each carrier
type, which may indicate that there is a carrier concentration
variation with temperature at these high temperatures. It is not
unsual to observe redistribution of carrier-donating impurities
in a material at such a high temperature to change the carrier
concentration; in Na-doped PbTe, Na atoms, which were
confined at the grain boundaries, redistributes themselves into
the matrix at high temperatures ∼650 K and above to increase
the hole concentration in the material [8]. Similarly, it is
possible that the phosphorus dopant atoms were redistributed
into the matrix in the n-type Si0.8Ge0.2 to increase the electron
concentration at high temperatures above 900 K, which
resulted in a sudden increase in the electrical conductivity
and a sudden drop in the magnitude of Seebeck coefficient.
On the other hand, the hole concentration might have been
reduced in the p-type Si0.8Ge0.2 to cause a sudden decrease

in the electrical conductivity, while increasing the Seebeck
coefficient. This process could be related to the compensation
of holes by defects or impurities in the material.

The experimental data were measured up to 1200 K only,
but the theory predicts that the zT would drop down as
temperature further increases above 1200 K for both types
of materials as shown in Fig. 14(d). However, this reduction of
zT could be overturn by the minority carrier blocking, causing
it to keep increasing with temperature beyond 1200 K mainly
because the bipolar thermal conductivity could be effectively
suppressed by the heterostructure barriers [Fig. 14(c)]. Al-
though this carrier concentration 1.2 × 1020 cm−3 used in the
material is not the optimal carrier concentration to maximize
the zT enhancement by minority carrier blocking, zT could
reach ∼2.0 for the n-type material at 1800 K with the minority
carrier blocking assuming that the material can be stable at this
temperature. The lattice thermal conductivity was extracted for
the materials and found to be 1.6 − 1.8 W m−1 K−1, being flat
over the measured temperature range.
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