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Bond orbital description of the strain-induced second-order optical susceptibility in silicon
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We develop a theoretical model, relying on the well established sp3 bond-orbital theory, to describe the
strain-induced χ (2) in tetrahedrally coordinated centrosymmetric covalent crystals, like silicon. With this approach
we are able to describe every component of the χ (2) tensor in terms of a linear combination of strain gradients
and only two parameters α and β which can be theoretically estimated. The resulting formula can be applied to
the simulation of the strain distribution of a practical strained silicon device, providing an extraordinary tool for
optimization of its optical nonlinear effects. The application of the first order theory to the photoelastic effect in
C, Si, and Ge showed very good phenomenological and numerical agreement, up to 3% in Si. The model was
then used to the second-order nonlinear susceptibility, and we were able not only to confirm the main valid claims
known about χ (2) in strained silicon, but also estimate the order of magnitude of the χ (2) generated in that device.
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I. INTRODUCTION

Silicon-based photonics has generated a strong interest in
recent years, mainly for optical communications and optical
interconnects in CMOS circuits. The main motivations for
silicon photonics are the reduction of photonic system costs
and the increase of the number of functionalities on the same
integrated chip by combining photonics and electronics, along
with a strong reduction of power consumption [1]. However,
one of the biggest constraints of silicon as an active photonic
material is its vanishing second order optical susceptibility,
the so-called χ (2), due to the centrosymmetry of the silicon
crystal. Without any second order nonlinear phenomena, fast
and low power consumption optical modulation based on
Pockels effect and wavelength conversions based on second
harmonic generation (SHG) are not possible in bulk Si [2].
This is a very limiting factor when we expect silicon to be part
of a solution to high performances and high energy efficient
devices [3].

To overcome this problem, strain has been used as a
way to deform the crystal and destroy the centrosymmetry
which inhibits χ (2). In fact, over the last few years Pockels
electro-optic modulation [4–8] and SHG [9,10] have been
claimed to be demonstrated in devices where the silicon
active region is strained by a stress overlayer, usually made
of SiN. Motivated by its enormous potential, the interest in
strained silicon photonic devices has been growing in the past
years. However, there is a lack of fundamental understanding
on the process through which the strain tensor ε̄ generates
nonvanishing χ (2) tensor components. In other words, there
is no available general quantitative relationship between these
two quantities.

Despite the different attempts to find a solution to this
problem, no theoretical model showing a practical relationship
between the components of the second order nonlinear optical
susceptibility χ (2) and the strain tensor ε̄ has been published
yet. Such model is fundamental in the field of strained silicon
photonics because it permits a connection between the strain
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effects, easy to simulate with the right computational tools,
and the respective induced nonlinear phenomena. Without this
knowledge, it is not possible to design and optimize structures
based on strained silicon structures for the maximum outcome
of χ (2) effects.

The first proposed models connecting χ (2) with ε̄ [11,12]
were based on the deformation potentials in semiconductors.
The deformation potentials theory relies on the delocalization
of the Bloch wave function over the entire crystal and proves
to be a good description for the study of transport properties
of electrons. However, when applied to the description of non-
linear optical phenomena, because it is not a vectorial theory,
it proves to be very limiting in extracting and identifying the
different χ (2) tensor components in terms of ε̄ and predict a
good numerical agreement [11,13].

Later, simpler models based on Coulomb interactions
between atoms were also suggested [13,14], but none of
them proved to a good description of the effects, both
numerically and conceptually. To overcome this difficulty, ab
initio calculations were performed as an attempt to understand
how the change in position of the atoms enables χ (2) in
the crystal [9,15]. Although they proved to be an accurate
description of the problem, they are very computationally
demanding and do not provide a practical, quantitative, and
spatial relationship between χ (2) and the strain ε̄ in the crystal
and thus do not allow for device design over the strain
distribution.

Even though the underlying process has not been described
yet, it has been widely claimed that there is a direct relationship
between χ (2) and the strain gradients inside silicon [6–9,16].
In fact, very recently Manganelli et al. [17] proposed a model
based on symmetry arguments to show a linear relationship
between both the spatial distribution of χ (2) and ε̄ tensor com-
ponents. However, even though the theory is well developed,
it is very dependent on parameters required to be determined
experimentally. This poses a problem because very recently it
has been shown that the reported electro-optic measurements
of strained silicon devices have a strong contribution from
free carriers effects inside the silicon waveguide [16,18,19].
Therefore, most of the numerical data of strain-induced
χ (2) in silicon waveguides available in the literature was
misinterpreted and discredited, making it impossible at the
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moment to find the experimental parameters predicted by the
model presented in Ref. [17].

Because of its immense application potential, the theoreti-
cal description of nonlinear phenomena in covalent crystals
has been the target of many different works in the past
years. Some works suggest that a correct description of the
nonlinear properties of solids must be addressed in a fully
quantum-mechanical energy-band picture [20–22]. This is
indeed the right approach for materials which have intrinsically
nonzero bulk χ (2). However, when χ (2) is generated because
of some localized effect where the crystal periodicity is locally
perturbed, a local bond theory (such as the bond charge
model [23] or the bond orbital model [24]) proves to describe
very well the atomic nonlinear processes, from which tensor
properties emerge automatically. In fact, the bond charge
model was used to describe the surface-generated χ (2) in
silicon, where the crystal is abruptly terminated and χ (2) is
localized at the surface where the centrosymmetry is locally
broken [25,26], which is conceptually very similar to what
happens under strain.

Although many works have been reported, no consistent
study based on the bond orbital model has been reported
yet on the study of the strain-induced nonlinear effects in
Si. The bond orbital model is a widely accepted model to
describe the local properties of electrons in the bonds of a
tetrahedral covalent crystal like silicon [24,27,28]. Relying
on the well established phenomenon of sp3-hybridization
of silicon valence electrons, the properties of the bonding
electrons are studied quantum mechanically. This procedure
has already been used to characterize the strain effects [29] and
nonlinear optical properties [27] in covalent crystals, although
treated separately.

In the present paper, we rely on the original work first
developed by Harrison et al. in Ref. [24] to describe the
bonding electrons. By using the bond orbital model and
keeping only first order effects in strain and strain gradients,
we are able to show a practical way of knowing any χ (2)

component generated by the strain (ε̄ ) in that point in space.
The results not only show very good agreement with the main
claims made in the literature about the relationship between
χ (2) and strain in silicon, but also depends only on two
parameters which can be predicted theoretically and depend
only on the material.

The organization of this paper is as follows: we start by
presenting the general reasoning behind the model before
entering into the quantum mechanical treatment of the sp3 hy-
bridization in strained covalent crystals, in Sec. II.1. In Sec. II.3
we proceed to the calculation of the strain-induced polarity of
a covalent bond, and in Sec. II.2, we deduce its second order
nonlinear dipole moment. This will allow us to extract the
strain-induced χ (2) components in terms of the strain tensor
(ε̄) components. Finally, in Sec. IV we check the validity of our
model by applying it to photoelasticity (a first-order effect) and
study χ (2) in a particular example device, showing the degree
of the agreement and its practical applicability.

II. THE STRAIN-INDUCED χ (2) IN COVALENT CRYSTALS

Silicon is a tetrahedral covalent crystal, where two neighbor
atoms are bond together by sharing electrons, creating a co-

FIG. 1. The representation of the process of generation bond
polarity, where different contour colours represent different electron
energies. A homogeneous strain changes the energy of the bonding
electrons, but it is still the same in both sides of the bond (yellow
contours), keeping its inversion symmetry. However, a strain gradient,
changes the energy in both sides of the bond (represented with the
yellow and blue contours), creating a difference in energy polarity
and destroying the inversion symmetry. The generated bond polarity
is the origin of χ (2) in that bond.

valent bond [27]. Four covalent bonds organize themselves in
a tetrahedral configuration as shown in Fig. 1. Understanding
any property of the crystal (like χ (2) ) requires studying the
quantum mechanical interactions of the electrons in the bonds.
However, to make it clearer for the reader, before entering
in any mathematical description, we start by presenting the
process suggested in this paper for the generation of χ (2) in
each bond due to the strain.

It is known that χ (2) depends primarily on the polarity of
the bonds of a crystal [23,28,30]. The polarity of a bond is
the difference of energy of the two electrons in the bond. In
a centrosymmetric crystal, since the electrons feel the same
energy in both directions, the bonds are unpolar, as shown
in Fig. 1. However, when strain is applied to a crystal, the
atomic configuration changes and a bond becomes polar if and
only if there is a strain gradient in the direction of the bond.
This process is presented schematically in Fig. 1, where the
blue and yellow contours represent different values of energy.
This explains why inhomogeneous strain fields are required
to induce bond polarity and thus χ (2), because homogeneous
strain changes the electronic energy, but in the same way in
both electrons of the bond.

This is the idea behind the mathematical and quantum
description of our model: First we calculate how the strain
changes the polarity of a bond and from there we deduce how
that strain induces second order nonlinear effects. Moreover,
even though in this paper we focus on silicon atoms, this
procedure can be applied to any covalent diamond crystal
structure.
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(a)

(b) (c)

FIG. 2. (a) 3D Representation of the bond ξ between the general
atoms A and B in a unstrained silicon lattice C unit cell, in blue. In
purple is the corresponding structure when an inhomogeneous strain
field is applied, generating the lattice C′. (b) The 2D projection of the
unit cells in (a), with the representation of the relevant vectors used
in the text. (c) Schematic representation of the bond hybrids in the
original and in the strained crystal.

A. Quantum mechanical treatment of a strained
covalent crystal

Consider a tetrahedral covalent crystal C, represented in
blue in the 3D scheme of Fig. 2(a). The four valence electrons
in a general Si atom A organize themselves in four different
sp3 hybrids |hA

ξ 〉 pointing in the direction of the four nearest
neighbors, creating four bonds ξ (ξ = 1,2,3,4). Such hybrid
orbitals on any given atom are orthogonal to each other if the
near neighbours are exactly tetrahedral, like in an unstrained
Si crystal [24].

Consider now the lattice C′ (represented in purple), the
strained version of C. Each atom n in C′ is slightly moved by
a vector un in relation to C and the new atomic organization
in C′ will change a bond ξ into ξ ′ [see Fig. 2(b)]. To study this
new bonding, it may sound appealing to construct four new
hybrids out of the atomic orbitals, pointing in the direction of
ξ ′. However, since the atoms are not arranged in a tetrahedral
configuration anymore, such a set of hybrids would not be
orthogonal, and it would require a special treatment afterwards
[31]. To overcome this problem, we will construct the wave
function of the electrons in any atom n as a combination of the
original hybrids |hn

ξ 〉, placed in the new atomic positions. This
is schematically represented in Fig. 2(c), making it possible to
deal with the quantum mechanical subtleties of this problem,
as will be apparent later on.

Consider now, without any loss of generality, atom A, taken
as the atom which preserves the same position in C′ and C, as
shown in Figs. 2(a) and 2(b). This atom is connected to four
other atoms. We focus on one of its four bonds, connecting
atom A with atom B and call it bond ξ . The bond vector ξ

(associated with bond ξ ) is defined as the vector from atom A

to atom B. [Fig. 2(b)].
To study the quantum mechanical properties of the electrons

in the bond, we must start by building its Hamiltonian. The
one-electron Hamiltonian of the strained crystal lattice C′ is
given by [32]:

H ′ = T +
∑

n

V ′
n = T + V ′

A + V ′
B +

∑
n�=A,B

V ′
n (1)

where T is the kinetic energy of the electron and V ′
n(r) =

V (r − R′
n) is the potential due to the atom in position R′

n.
This potential can be written as

V ′
n(r) = Vn(r) + �Vn(r), (2)

with Vn(r) = V (r − Rn) and �Vn being the contribution from
the strain effects, vanishing for an unstrained crystal. We have
explicitly separated V ′

A and V ′
B from the sum in Eq. (1) because

we are focusing on the bond between atoms A and B and its
treatment is more clear this way.

The matrix element of H ′ in |hA
ξ 〉 is given by

〈
hA

ξ

∣∣H ′∣∣hA
ξ

〉 = 〈
hA

ξ

∣∣T + V ′
A

∣∣hA
ξ

〉 + 〈
hA

ξ

∣∣V ′
B

∣∣hA
ξ

〉
+

∑
n�=A,B

〈
hA

ξ

∣∣V ′
n

∣∣hA
ξ

〉
. (3)

The corresponding expression is true for |hB ′
ξ 〉, which is the

translation of the hybrid |hB ′
ξ 〉, pointing in the original direction

of B to A in C, to the new location of atom B in the strained
crystal C′, as shown in Fig. 2(c). We should now relate these
matrix elements with ones of the unstrained Hamiltonian H =
T + ∑

n Vn in the original hybrids basis. Since the hybrid wave
functions |hA

ξ 〉 and |hB ′
ξ 〉 are, respectively, centered at the atoms

A and B in C′, it is clear that:

〈
hA

ξ

∣∣T + V ′
A

∣∣hA
ξ

〉 = 〈
hA

ξ

∣∣T + VA

∣∣hA
ξ

〉
(4)〈

hB ′
ξ

∣∣T + V ′
B

∣∣hB ′
ξ

〉 = 〈
hB

ξ

∣∣T + VB

∣∣hB
ξ

〉
(5)

Moreover, because of the symmetry of the bond, the
potential of A in |hB ′

ξ 〉 is the same as the potential of B in
|hA

ξ 〉. Thus,

〈
hA

ξ

∣∣V ′
B

∣∣hA
ξ

〉 = 〈
hB ′

ξ

∣∣V ′
A

∣∣hB ′
ξ

〉 = EAB + �EAB (6)

where EAB = 〈hA
ξ |VB |hA

ξ 〉 and �EAB is the correction ac-
counting for the new relative position of atoms A and B in C′.

For all the other atoms (n �= A,B), we can write:

〈
hA

ξ

∣∣V ′
n

∣∣hA
ξ

〉 = 〈
hA

ξ

∣∣Vn + �Vn

∣∣hA
ξ

〉
= 〈

hA
ξ

∣∣Vn

∣∣hA
ξ

〉 + 〈
hA

ξ

∣∣�Vn

∣∣hA
ξ

〉
(7)〈

hB ′
ξ

∣∣V ′
n

∣∣hB ′
ξ

〉 = 〈
hB ′

ξ

∣∣Vn + �Vn

∣∣hB ′
ξ

〉
= 〈

hB
ξ

∣∣Vn

∣∣hB
ξ

〉 + 〈
hB ′

ξ

∣∣�Vn

∣∣hB ′
ξ

〉
(8)
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From the previous analysis and after Eq. (3), we are in
conditions of writing the matrix elements of H ′ as〈

hA
ξ

∣∣H ′∣∣hA
ξ

〉 = EA + �EAB +
∑

n�=A,B

〈
hA

ξ

∣∣�Vn

∣∣hA
ξ

〉
〈
hB ′

ξ

∣∣H ′∣∣hB ′
ξ

〉 = EB + �EAB +
∑

n�=A,B

〈
hB ′

ξ

∣∣�Vn

∣∣hB ′
ξ

〉
〈
hA

ξ

∣∣H ′∣∣hB ′
ξ

〉 = U ′
ξ .

The terms 〈hA
ξ |H |hA

ξ 〉 = EA and 〈hB
ξ |H |hB

ξ 〉 = EB are the
average energy of |hA

ξ 〉 and |hB
ξ 〉 in C and because of its

centrosymmetry, they both have the same value EA = EB .
The Hamiltonian crossterm U ′

ξ is called the covalent energy.

B. The optical dipole moment

The nonlinear optical properties of the bond are extracted
from its dipole moment, which in turn is calculated from the
bond wave function. To do that, we now approach the problem
as in the original theory done by Harrison et al. in Ref. [28].
The bond wave function |bξ 〉 of the bond ξ is considered to
be a combination of the two adjacent hybrids of the atoms
forming that bond [see Fig. 2(c)] [24,28,31], so we can write:∣∣bξ

〉 = vA

∣∣hA
ξ

〉 + vB

∣∣hB ′
ξ

〉
(9)

and the coefficients vA and vB are obtained by minimizing
the bond energy Eb = 〈bξ |H ′|bξ 〉/〈bξ |bξ 〉. In doing so, we
are implicitly neglecting all the other matrix elements of the
Hamiltonian H ′ and all other hybrid overlaps are neglected (or
absorbed in the parameters we have retained). It is important to
bear in mind that 〈hA

ξ |hB ′
ξ 〉 = S �= 0. Under these conditions,

the explicit values for vA and vB can be found in the original
work presented in Ref. [28].

The average position of the bond wave function |bξ 〉 in a
strained crystal, in respect to the center of the bond, can be
shown to be given by [28,33]

〈r〉 = 〈
bξ

∣∣r∣∣bξ

〉 = (
v2

B − v2
A

)[γ ξ

2

]
(10)

where γ ξ = uB + γ ξ and uB is the displacement of atom B.
In a nonstrained crystal 〈r〉 reduces to (v2

B − v2
A)γ ξ/2 which

is the same result presented in Ref. [28]. In the original work,
Harrison [28] introduces the parameter γ which accounts for
the distance between the “center of gravity” of each hybrid as
shown in Fig. 2(c), and it would be unity if they were centered
at the nucleus.

The optical effects are introduced by considering an optical
electric field E that interacts with the bond and induces
a dipole moment in it. Because the bond is made out of
two electrons, its dipole moment is given by pξ = 〈 p〉ξ =
−2e〈r〉ξ = −2e〈bξ |r|bξ 〉, as represented in red in Fig. 3(a).

This optically-induced dipole moment changes the Hamil-
tonian by a term �H = p · E = −2er · E, which must be
included in the calculation of the bond wave function |bξ 〉,
resulting in coefficients vA and vB with some dependence on
E. The optically induced dipole moment in the bond will not
only depend on E but also on the displacement uB , and the

(a) (b)

FIG. 3. (a) Representation of the optical electric field E generat-
ing the bond dipole moment pξ and the vectors representation of the
atomic position RAi

of atom Ai and electron position r , useful for the
integral in Eq. (35). (b) Silicon unit cell (with volume vc) centered at
the position R where each bond has its own polarity σi induced by
the strain tensor ε̄(R) in the center of that unit cell.

resulting expression is

pξ = −2e
σξ + eγ ξ ·E

2√
U

′2
ξ + (1 − S2)

(
σξ + eγ ξ ·E)

2

)2
. (11)

The quantity σξ is the so-called polar energy (or polarity) of
the bond ξ in the strained crystal and is defined by [24,28]

σξ =
〈
hA

ξ

∣∣H ′∣∣hA
ξ

〉 − 〈
hB ′

ξ

∣∣H ′∣∣hB ′
ξ

〉
2

. (12)

This is a measure of the energy difference in both sides of the
bond and in a nonstrained centrosymmetric crystal it vanishes,
i.e., σξ = 0.

Expanding the dipole moment in a Taylor series in the local
optical field E, yields 〈 pξ 〉 = p(0)

ξ + p(1)
ξ + p(2)

ξ + ... where
the different order terms are given by:

p(0)
ξ = 2e

⎡
⎣ σξ(

U
′2
ξ + (1 − S2)σ 2

ξ

) 1
2

⎤
⎦γ ξ

2
(13)

p(1)
ξ = 2e

⎡
⎣ U

′2
ξ(

U
′2
ξ + (1 − S2)σ 2

ξ

) 3
2

⎤
⎦ ·

(
eγ ξ · E

2

)
· γ ξ

2
(14)

p(2)
ξ = −2e

⎡
⎣3

2

(1 − S2)U
′2
ξ σξ(

U
′2
ξ + (1 − S2)σ 2

ξ

) 5
2

⎤
⎦ ·

(
eγ ξ · E

2

)2

· γ ξ

2
.

(15)

The nth order of the macroscopic polarization can be
calculated from the previous equations by summing the
contributions of the four bonds in the unit cell

P (n) = 1

2vc

4∑
ξ=1

p(n)
ξ , (16)

where vc = 2.01 × 10−2 nm3 is the volume of the unit cell and
the factor 2 accounts for the consideration of two electrons in
the dipole moment of one bond.

Each order of the polarization has a specific role. The 0th
order is related to the permanent polarization of the material
and in bulk silicon it vanishes identically because σξ = 0.
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The 1st order polarization P (1) is related to the dielectric
permittivity of the material. The application of the bond-orbital
model to this property of materials has shown very good
numerical agreement with the experimental values [24,27].
Moreover, the strain effects on P (1) corresponds to the
photoelastic effect, which we shall analyze in Sec. IV.1 in
order to validate the physical principles of our model.

Finally, P (2) is related to the second order nonlinear optic
effects, i.e., with χ (2). Under no strain σξ = 0 and from
Eq. (15) we see that P (2) vanishes. This explains why there
is no χ (2) effects in centrosymmetric covalent crystals like
Si. Consequently, we must study the effects of strain on the
polarity σξ to understand how we can make P (2) �= 0.

C. Strain-induced bond polarity

The polarity of the bond ξ defined in Eq. (12) in the strained
crystal can be written as

σξ =
〈
hA

ξ

∣∣H ′∣∣hA
ξ

〉 − 〈
hB ′

ξ

∣∣H ′∣∣hB ′
ξ

〉
2

(17)

=
∑

n�=A,B

〈
hA

ξ

∣∣�Vn

∣∣hA
ξ

〉 − 〈
hB ′

ξ

∣∣�Vn

∣∣hB ′
ξ

〉
2

, (18)

and it can be immediately seen that if �Vn = 0, i.e., no strain
is applied to the crystal, σ = 0 and the bonds are nonpolar.

By reducing the sum in Eq. (12) only to the interaction
between the first neighbors of atoms A and B individually, Ai

and Bi i = 1,2,3, respectively, as shown in Figs. 2(a) and 2(b),
Eq. (12) reduces to

σξ =
3∑

i=1

〈
hA

ξ

∣∣�VAi

∣∣hA
ξ

〉 − 〈
hB ′

ξ

∣∣�VBi

∣∣hB ′
ξ

〉
2

. (19)

Despite that we have not said anything about the form of
the crystal potential V (r) yet, we know it is a central potential
[V (r) = V (r)] and for r big enough, it should behave like a
Coulomb potential. Therefore, for small displacements of the
atoms, we may assume that ‖un‖ � ‖r − Rn‖ and the form
of �Vn(r) defined in Eq. (2) can be taken by performing a first
order Taylor expansion of the potential V ′

n(r):

V ′
n(r) = V (r − R′

n) = V (r − (Rn + un))

∼ V (r − Rn) − ∇V (r − Rn) · un.

By defining ∇Vn ≡ ∇V (r − Rn), it is clear that

�Vn = −∇Vn · un (20)

which can only be evaluated once we know the explicit form
of V (r).

Using this definition along with the symmetries of the bond,
the central properties of the potential V (r) and bearing in mind
that the hybrid wave functions satisfy hB ′

ξ (r) = hA
ξ (R′

B − r),
it can be shown that〈

hA
ξ

∣∣�VAi

∣∣hA
ξ

〉 = −〈
hA

ξ

∣∣∇VAi

∣∣hA
ξ

〉 · uAi〈
hB ′

ξ

∣∣�VBi

∣∣hB ′
ξ

〉 = 〈
hA

ξ

∣∣∇VAi

∣∣hA
ξ

〉 · (uBi
− uB)

leading to the simplification of Eq. (19) into

σξ =
3∑

i=1

〈
hA

ξ

∣∣∇VAi

∣∣hA
ξ

〉 · (uB − uBi
− uAi

)

2
. (21)

1. Strain effects in a crystal

The deformation state of a crystal is completely defined
by the displacements un = u(Rn) in each atomic position
n. In continuum mechanics, the local deformation at Rn is
characterized by the so-called deformation gradient tensor F̄,
whose components are defined by [34,35]:

Fij = ∂ui

∂xj

+ δij . (22)

From this definition, the displacement of any atom in Rn in
respect to another atom in R0 is given by:

un = u0 +
∫ Rn

R0

(
F̄(r) − Ī

) · d r, (23)

where Ī is the identity matrix.
The previous integral is well defined and easy to evaluate in

a continuous media, but in a crystal, where the position of the
atoms are discrete, it requires a reinterpretation. Because the
deformation is a small varying function over the bond length d

( ∂F
∂x

.d < 10−6 [17]), the adaptation of the problem to discrete
positions can be done by tessellating the crystal into discrete
elements and then considering that inside each element F̄ is
constant [34–36].

For that reason, along the bonds ξAi
and ξBi

[where ξAi
is

the bond vector between atoms A and Ai and, respectively, for
B, as shown in Fig. 2(b)], the deformation gradient tensor can
be considered to take the constant values F̄(RA) and F̄(RB),
respectively. In that case, the integral in Eq. (23) directly gives

uAi
� [

F̄(RA) − Ī
] · ξAi

(24)

uBi
� uB + [

F̄(RB) − Ī
] · ξBi

. (25)

In the case where the strain tensor has no shear components,
i.e., εij = 0 for i �= j (and this is a critical condition) it is
directly related to the deformation gradient tensor by ε̄ = F̄ −
Ī [34–37]. Putting this relation in the previous equations allow
us to relate the strain field in the crystal with the displacements
of a atoms A and B:

uAi
� ε̄(RA) · ξAi

(26)

uBi
� uB + ε̄(RB) · ξBi

. (27)

Putting together Eqs. (26) and (27) and bearing in mind that
ξBi

= −ξAi
[Fig. 2(b)], Eq. (21) becomes

σξ = 1

2

3∑
i=1

〈
hA

ξ

∣∣∇VAi

∣∣hA
ξ

〉 · [ε̄(RB) − ε̄(RA)] · ξAi
. (28)

Since the strain changes slowly in distances of the bond length
d, we can relate the kl component of the strain tensor in atoms
A and B with the strain gradient ∇εkl(RA) by making a first
order Taylor expansion

εkl(RB) = εkl(RA + ξ ) ∼ εkl(RA) + ∇εkl(RA) · ξ . (29)
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We now define the rank-3 strain gradient tensor ¯̄η whose
components are given by

ηijk = ∂εij

∂xk

. (30)

Using this definition and putting together Eqs. (29) and (28),
we finally arrive at the relation between the strain gradients ¯̄η
and the polarity of a bond ξ in atom A as

σξ ( ¯̄η) = 1

2

3∑
i=1

θ
ξ

i · �̄ξ ( ¯̄η) · ξAi
(31)

where we have defined the rank-2 tensor �̄ξ ( ¯̄η; R), related to
the bond ξ , in the atom located in position R and with explicit
dependence on the strain gradients ¯̄η in that position, given by

�̄ξ ( ¯̄η; R) = ¯̄η(R) · ξ . (32)

In addition, the vector θ
ξ

i is defined by

θ
ξ

i = 〈
hA

ξ

∣∣∇VAi

∣∣hA
ξ

〉
(33)

=
∫

∞
|hA

ξ (r)|2 · ∇V (r − RAi
)dV (34)

=
∫

∞
|hA

ξ (r)|2 · ∂V

∂r

∣∣∣∣
r−RAi

· r − RAi

‖r − RAi
‖dV. (35)

Its evaluation can be done with the help of the scheme in
Fig. 3(a). It does not depend on the atom A in particular, but
only on the unstrained bonds ξ i ≡ ξAi

, i = 1,2,3, which are
the bonds in the unit cell different than ξ [compare Fig. 3 with
Fig. 2(b)].

The closed form of θ
ξ

i can only be found once the potential
V (r) is known. However, regardless of that, we can always
define

θ
ξ

i = αξ + βξ i (36)

where α and β are parameters whose values are related
to the projections of θ

ξ

i on ξ and ξ i , respectively, and are
characteristic of the crystal species in consideration. This
definition, together with Eq. (31), allows us to write

σξ ( ¯̄η) = 1

2

3∑
i=1

[αξ + βξ i] · �̄ξ ( ¯̄η) · ξ i . (37)

Expression (37) is the final expression for the polar energy
(or polarity) of any bond ξ in an atom centered in the unit cell
located in R [see Fig. 3(b)]. The subscript ξ identifies one of
the four bonds, which defines the corresponding bond vector
ξ and then the three other vectors ξ i , i = 1,2,3. We see that
it depends explicitly on the strain gradients through �̄ξ ( ¯̄η; R),
which is nonzero only if there is a strain gradient component
in the direction of the bond ξ . This is relevant because it shows
that in a centrosymmetric crystal not only a strain gradient is
required to create a polar bond, but it also gives the preferred
gradient direction to obtain maximum polarity in bond ξ .

Moreover, once the strain distribution ε̄(r) is known,
the only parameters left to know are α and β. These two
coefficients are the only unknowns of the model presented
so far, and their value [defined in Eq. (36)] should be

found experimentally, but this particular point requires further
attention and it will be discussed later in Sec. IV.3.

III. STRAIN DEPENDENT 2ND-ORDER NONLINEAR
POLARIZATION

The macroscopic nonlinear polarization P (n) is an ex-
plicit local function of the strain and strain gradients, i.e.,
P (n)(ε̄,η̄; r). In fact, the covalent energy U ′

ξ depends explicitly
on strain ε̄ while the polarity σξ depends on the strain gradients
η̄. We focus now on the first order effects in ε̄ and η̄ in the
2nd-order polarization.

Since p(2)
ξ in Eq. (15) depends linearly on σξ (η̄), the terms

proportional to ε̄ in that equation will introduce terms of the
form ε.η, i.e., second order in strain effects. Therefore, in a first
order theory, we must neglect the strain contributions from the
other parameters, i.e., U ′

ξ = U and γ ξ = γ ξ . Moreover, U is
much bigger than the rather small strain-induced polarity of
the bond, σξ . All these considerations together with Eq. (16)
for n = 2 lead to

P (2) = 1

2vc

4∑
ξ=1

p(2)
ξ

= −K

4∑
ξ=1

σξ (ξ · E)2 · ξ , (38)

where

K = 3

2vc

( eγ

2U

)3
(1 − S2). (39)

Using the corresponding values for Si, taking γ = 1.4 [27]
and S = 0.5 [28], we have K = 1.18 × 1029 C3 m−3 eV−3.

For a bond length d, the bond vectors ξ in the crystal
coordinates {1̂,2̂,3̂} = {[100],[010],[001]} are given by

ξ1 = d√
3

(1,1,1), ξ2 = d√
3

(1, − 1, − 1)

(40)

ξ3 = d√
3

(−1,1, − 1), ξ4 = d√
3

(−1, − 1,1),

and replacing these coordinates in Eq. 38, we can write the
final components of the 2nd order nonlinear polarization in
the crystal coordinates as:

Px = Kd3

3
√

3

[
(σ1 + σ2 − σ3 − σ4)

(
E2

x + E2
y + E2

z

)
+ 2(σ1 − σ2 + σ3 − σ4)ExEy + 2(σ1 − σ2 − σ3 + σ4)

×ExEz + 2(σ1 + σ2 + σ3 + σ4)EyEz

]
(41)

Py = Kd3

3
√

3

[
(σ1 − σ2 + σ3 − σ4)

(
E2

x + E2
y + E2

z

)
+ 2(σ1 + σ2 − σ3 − σ4)ExEy + 2(σ1 − σ2 − σ3 + σ4)

×EyEz + 2(σ1 + σ2 + σ3 + σ4)ExEz

]
(42)

Pz = Kd3

3
√

3

[
(σ1 − σ2 − σ3 + σ4)

(
E2

x + E2
y + E2

z

)
+ 2(σ1 + σ2 − σ3 − σ4)ExEz + 2(σ1 − σ2 + σ3 − σ4)

×EyEz + 2(σ1 + σ2 + σ3 + σ4)ExEy

]
. (43)
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The previous set of equations, together with the definition
of χ (2) when a static electric field EDC is involved (the case of
Pockels effect) [17],

P
(2)
i = 2ε0χ

(2)
ijkEjE

DC
k (44)

determines every and each component of the χ (2) tensor in the
crystal coordinates in terms of the polarity of each bond σξ in
the unit cell, as represented in Fig. 3(b). This polarity depends
on the sum of the strain gradients projected on the direction
of each bond, as shown by Eq. (32), leading to a different
polarity of each bond in the unit cell. Therefore, in general,
every component of χ (2) will be nonzero, contrasting with the
case of a zinc-blend crystal where each bond has the same
polarity σ and in which case Eqs. (41)–(43) lead to the well
known fact that χ (2)

xyz is the only nonvanishing component.
The explicit calculation of the χ (2) components in terms of

the strain gradients requires an explicit expansion of the sum
defining σξ in Eq. (37). Despite being always possible to do
it in terms of the unknown parameters α and β, we will not
write it explicitly for a general case because it turns out to be a
very big expression and it can be easily calculated in specific
for the required situation. For that reason, we will rather apply
it to a relevant device where we can actually analyze how the
strain enables its χ (2) effects.

IV. EVALUATION OF THE PROPOSED MODEL

To fully validate the model presented in the previous
sections, an experimental confirmation would be required.
However, as already mentioned in the introduction, very
recently it has been shown that the experimental data available
in the literature on χ (2) phenomena in strained silicon has a
strong not totally understood contribution from free carriers
effects [16,18,19]. This parasitic response masks the real
value of strain-induced χ (2) in silicon, resulting in erroneous
experimental data. As a result, most of the quantitative values
of χ (2) in strained silicon presented in the literature [5–8]
have been discredited, and no reliable data is available to
confidently compare with the results from our model.

For that reason, we will check the validity of our model by
applying it to the photoelastic effect, which has been widely
studied in Group IV materials like C, Si, and Germanium. This
verification is considered as a strong indicator that our model
is able to describe the interaction between optical and strain
effects in tetrahedral covalent crystals. In addition to this, we
may also apply our model to some the structural characteristic
of strained-induced χ (2) in silicon, which have been verified
experimentally.

A. Photoelastic effect

The dielectric tensor ε̄ is related to the first-order optical
susceptibility χ̄ (1) by

ε̄ = Ī + χ̄ (1). (45)

When a cubic crystal is strained, the normally isotropic
dielectric tensor becomes anisotropic. For small deformations,
the linear relationship between the change in the inverse
dielectric tensor δ(ε̄−1) and the strains form the photoelastic

tensor pijkl , and it is often described by

δ(ε̄−1)ij = pijklεkl . (46)

The photoelastic effects directly arise from the strain depen-
dence of χ̄ (1)(ε):

ε̄(ε) = Ī + χ̄ (1)(ε) � ε̄ + �ε̄(ε). (47)

The first order expansion of χ̄ (1) in εij , provides us with the
photoelastic tensor components [38]:

δ(ε̄−1) = pijklεkl = − 1

n4
�ε̄(ε), (48)

where n is the refractive index of the material.
In cubic crystals, there are three independent photoelastic

coefficients. In the compressed Voigt notation for symmetric
tensors, those are [39]: p11, p12, and p44. In this paper we
focus only on the first two coefficients because p44 relates the
shear components of the strain, which we may not consider in
our model. The calculation of χ̄ (1)(ε) is obtained through the
evaluation of p(1) in Eq. (14) because

P (1) = ε0χ̄
(1) · E, (49)

which has a direct dependence on ε̄ through Uξ (ε̄).
To study the photoelastic effect, we consider a homoge-

neous strain. In that case ¯̄η = 0, σξ = 0, and γ ξ = (γ Ī + ε̄) ·
ξ . Consequently, putting together Eqs. (14) and (16) for n = 1
yields

P (1) = e2

2vc

4∑
ξ=1

ξ · (γ Ī + ε̄) · E
Uξ (ε̄)

· [(γ Ī + ε̄) · ξ ]. (50)

The difficulty in evaluating the previous expression is in the
explicit dependence of Uξ (ε̄) on both the bond direction and
strain effects. In general, the explicit form of Uξ (ε̄) is not
known but for some special cases, it can be estimated.

In this analysis we are mainly interested in checking the
validity of the previous expression for P (1) in a phenomenolog-
ical way, i.e., check whether the photoelastic tensor properties
for cubic crystals match with those resulting from Eq. (50)
when first order strain effects are considered. A quantitative
estimation of the photoelastic coefficients deeply depends on
the correct expression for Uξ (ε̄), which is not a simple task,
and best results are achieved by considering multiple potential
contributions in computational simulations [38]. To deal with
this problem, we select strain types where Uξ (ε̄) is the same in
every bond, so that the previous sum is simplified. We selected
two situations where this occurs: uniaxial strain and the elastic
angle distortion strain.

1. Uniaxial strain

Under uniaxial strain in the [001] direction, the only
nonvanishing component of the strain tensor is εzz = ε. In
this case, the strain makes the bonds undergo the same type of
deformation in respect to each other and the covalent energy
changes evenly in all bonds. Therefore Uξ (ε̄) = U (ε) and from
Eq. (50), the linear susceptibility χ̄ (1) takes the form

χ̄ (1)(ε) = d2e2

3ε0vcU (ε)

⎛
⎝γ 2 0 0

0 γ 2 0
0 0 (γ + ε)2

⎞
⎠. (51)
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TABLE I. Comparison between the calculated and experimental values of the photoelastic constants for Si, C, and Ge. The two strain types
studied in this work are compared with the respective experimental values.

Parameters Experimental Calculated

U (eV) γ p11 p12 p11 − p12 p11 (Uniaxial strain) p11 − p12 (Angle distortion)

C 6.94 1.13 [27] −0.249 0.043 −0.292 [40,41] −0.210 −0.251
Si 2.98 1.4 [27] −0.094 0.017 −0.111 [38,41,42] −0.095 −0.108
Ge 2.76 1.6 [27] −0.154 −0.126 −0.030 [43] −0.196 −0.070

Expanding this expression in first order in ε and using
Eq. (48), it results in the following dielectric tensor change

δ(ε̄−1) = − d2e2

3ε0vcn4U 2

⎛
⎝γ 2Û 0 0

0 γ 2Û 0
0 0 γ (γ Û − 2U )

⎞
⎠ε,

(52)
where Û = ∂U

∂ε
|
ε=0

. The same tensor in terms of the photoe-
lastic coefficients, for this type of strain, is given by [39]

δ(ε̄−1) =
⎛
⎝p12 0 0

0 p12 0
0 0 p11

⎞
⎠ε. (53)

Comparing Eqs. (52) and (53) shows that δ(ε̄−1) has the
same shape, and this shows that the strain dependent polariza-
tion deduced from our model has the symmetries expected for
a cubic crystal. The corresponding photoelastic coefficients are

p11 = d2e2γ (2U − γ Û )

3ε0vcn4U 2
(54)

p12 = − d2e2γ 2Û

3ε0vcn4U 2
. (55)

In spite of not knowing the value of Û , we may check
the validity of the previous equations by estimating Û =
3p12ε0vcn

4U 2

d2e2γ 2 from the measured value of p12 and then check
if inserting it in Eq. (55) results in the right value for p11. We
did so for diamond (C), silicon (Si), and germanium (Ge), and
the results are presented in Table I. It is clear the very good
agreement between experimental p11 and the corresponding
calculated value for the uniaxial strain, particularly for Si,
whose error is less than 3%. The shape of δ(ε̄−1) in Eq. (52)
together with the excellent numerical relation between p11 and
p12 for three different tetrahedral centrosymmetric crystals,
suggest that strain effects are well described by our model for
this type of material.

2. Elastic angle distortion strain

This type of strain is characterized by no variation in bond
length to first order, and all the energy change is due to an
angular distortion of the atoms. The nonzero components of
such kind of strain are εyy = −εzz = ε. This problem was
analyzed by Harrison et al. in [29], where it was concluded
that

Uξ (ε) = U (1 − λε2), (56)

for some constant λ.
Repeating the approach done for the uniaxial case, in this

situation the dielectric tensor change, up to first order in ε,

takes the form

δ(ε̄−1) = − 2d2e2γ

3ε0vcn4U

⎛
⎝0 0 0

0 1 0
0 0 −1

⎞
⎠ε. (57)

The corresponding dielectric matrix expected from the pho-
toelastic coefficients is

δ(ε̄−1) =
⎛
⎝0 0 0

0 p11 − p12 0
0 0 −(p11 − p12)

⎞
⎠ε. (58)

Once again we see that the shape of the last two matrices
match and that the model is consistent with the photoelastic
properties of the crystal. Furthermore, the value of p11 − p12

can be directly evaluated from Eq. (57) and the results are
shown in the last column of Table I. Once again, the calculated
results are very close to the real values for p11 − p12, thus
showing very good agreement with experiment, except for
Ge. In this case the relative error is higher, but the absolute
difference between the experimental and calculated values is
within the experimental error in Ref. [43].

The previous analysis shows that our approach to strain
effects in silicon is consistent with a first order theory (the pho-
toelastic effect), both numerically and phenomenologically.

B. Physical properties of strain-induced χ (2)

Since our model is consistent with a first order theory in
the optical fields and strain, i.e., the photoelastic effect, we
shall now apply it to strain-induced χ (2) and verifying that it
satisfies the properties that have been validated experimentally.
For that, we will apply our model to a practical device in order
to take conclusions about the properties of the generated χ (2).

Consider the waveguide shown in Fig. 4(a), which is the
structure usually used in strained silicon devices towards
Pockels effect modulation [5,6,8]. In this case, the waveguide
coordinates {x̂, ŷ, ẑ} are given in terms of the crystal coordi-
nates {1̂,2̂,3̂} by

x̂ = 1√
2

(1̂ + 2̂)

ŷ = 3̂

ẑ = 1√
2

(1̂ − 2̂).

The straining layer placed on top of the waveguide has an
initial stress σ0, which will induce a strain field ε̄(r) in the
waveguide. Since the waveguide extends over the z direction,
the z strain/strain gradients components can be neglected. In
addition, we will neglect their contribution in our analysis. As
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(a)

(b)

(c)

FIG. 4. (a) Cross section of the strained silicon device under
consideration. (b) Principal strain components εxx(x,y) and εyy(x,y)
generated by the strain overlayer with σ0 = 1 GPa. (c) Linear relation
between the average strain gradients components ηxxy and ηyyy in the
waveguide and the initial stress σ0.

referred to in Sec. II.3.1, our model is only applicable to the
principal components of strain εii . This is not very limiting as
our simulations show that the shear-strain components inside
the Si waveguide are much smaller than the principal ones
εii , so we may neglect their contribution without much loss
of generality. Therefore, we are only left with the components
ηxxx , ηyyx , ηxxy , and ηyyy .

The strain-induced bond polarities [Eq. (37)] in the waveg-
uide coordinates, are calculated after rewriting the bond vector
coordinates [Eq. (40)] in the {x̂, ŷ, ẑ} laboratory basis. The χ (2)

components in the laboratory coordinates can be extracted
after replacing the polarities σξ into Eqs. (41)–(43) for the
macroscopic polarization, in the laboratory coordinates. After
these calculations are performed, the relevant χ (2) components
for this device become:

χ (2)
xxx = 2d6K

27ε0
[2(β − α)ηxxx + (3β − α)ηyyx] (59)

χ (2)
yyx = χ (2)

xxx (60)

χ (2)
xxy = 2d6K

27ε0
[2(β − α)ηxxy + (3β − α)ηyyy] (61)

χ (2)
yyy = d6K

27ε0
[3β − α)(ηxxy + ηyyy]. (62)

This set of equations gives us all the required information
about the χ (2) tensor in any point of space in terms of the

strain gradients in that same point. We can now compare this
result with the main claims on strain-induced χ (2) in silicon.

We start by noticing that the previous equations have the
form

χ
(2)
ijk =

∑
lmn

�ijk,lmn ηlmn (63)

which is a linear combination of strain gradients, as previously
suggested in Refs. [17,44]. Moreover, from our model the
coefficients �ijk,lmn are known and depend only on α and β.
For instance, from Eq. (61) we extract

�xxy,xxy = 4d6K

27ε0
(β − α), �xxy,yyy = 2d6K

27ε0
(3β − α)

(64)
and this can be done to any coefficient �ijk,lmn, always in
terms of only α and β. This is in line with the claims that
χ (2) should be proportional to strain gradients and not to strain
itself, as it has been suggested in many publications in the
past years [6–9,17]; more importantly it gives the exact value
of the weight of each strain gradient direction for the desired
χ (2) component. Another known experimental fact of strained
silicon is that χ (2) has a linear relationship with the initial stress
σ0 in the straining layer [10,12,45].

In Fig. 4(c), we see the simulation of the average ηxxy and
ηyyy in the waveguide for different values of σ0, and it is clear
the linear relationship between these two quantities. This is
true for any ηijk component. Since χ (2) is linear with ηijk , it is
straightforward to conclude that, regardless of the values of α

and β, our model predicts

χ (2) ∝ σ0, (65)

which is coherent with the experimental data in Ref. [45].

C. Estimation of the order of magnitude of χ (2)

As can be seen from Eqs. (59)–(62), χ (2) depends strongly
on the parameters α and β, defined in Eq. 36. To determine
these two parameters, the best approach would be to use
the common practice in any semiempirical model and fit the
experimental data to the theory. This would allow to extract
the values of α and β that give the best fit for a particular
centrosymmetric material.

However, as already mentioned, all the quantitative values
of strain-induced χ (2) in silicon published in the literature,
in particular those in Refs. [5–8] have strong parasitic con-
tributions from carriers [16,18,19]. Consequently, no reliable
numerical data for χ (2) in strained silicon is available right
now to allow for a confident fit of α or β and their estimation
must be done by approaching the definition in Eq. (36).

The evaluation of the integral in Eq. (33) is not a simple
task, not only because it is a difficult integral to evaluate, but
mainly because the real form of the silicon crystal potential
V (r) must be entirely known. The potential V (r) is recognized
to be difficult to be known exactly [38], so any result deduced
from V (r) will always have associated errors. Nevertheless,
we will seek for an estimate of the order of magnitude of
χ (2) in Eqs. (59)–(62) and then compare with the most recent
experimental results on strained silicon and comment on the
result.
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To evaluate the order of magnitude of θ
ξ

i , we must simplify
the integral in Eq. (33). For that we make the approximation
‖r − RAi

‖ ∼ ‖RA − RAi
‖ = d, which basically means that

the hybrid wave function hA
ξ (r) is considered to be strong

only close to the original atom. Despite not being entirely true
because the hybrid extends along its bond, this simplification
should not change considerably the order of magnitude of the
integral of Eq. (33). In that case, Eq. (35) becomes

θ
ξ

i ∼ ∂V

∂r

∣∣∣∣
d

1

d

∫
|hA

ξ (r)|2 · (
r − RAi

)
dV (66)

∼ 1 − γ

2d
· ∂V

∂r

∣∣∣∣
d

ξ − 1

d

∂V

∂r

∣∣∣∣
d

ξ i . (67)

The previous equation gives us values for α and β which are
merely approximations, but should be in the same order of
magnitude of the real ones:

α ∼ 1 − γ

2d
· ∂V

∂r

∣∣∣∣
d

, β ∼ − 1

d

∂V

∂r

∣∣∣∣
d

(68)

As already mentioned, the determination of the real Si
crystal potential V (r) is a very complex problem, which
has been studied for many years [46–50]. Because of its
complexity, in this paper we will only compare the numerical
results for two crystal potentials. The first one is the simplest
Coulomb potential generated by a Si4+ ion

VC(r) = −κ
4

r
(69)

with κ = e2/(4πε0) = 2.3 × 10−28 kg m3/s2. The second is
a local pseudopotential VPS(r) developed by Huang et al.
in Ref. [50] using the modern tools of density functional
theory for the Si crystal. The explicit form of VPS(r) around
r = d = 0.235 nm was obtained by fitting that region of the
corresponding curve in Fig. 3 of Ref. ([50]) with an analytical
function.

We apply this to Eq. (68) for both of these potentials,
taking d = 0.235 nm and focusing only on the χ (2)

xxy component
(which is the one that has been more strongly studied in
the literature [4–8]), we get for the VC and VPS potentials,
respectively (in S.I. units):

χ (2)
xxyC

∼ 8.0 × 10−17 (m2/V)ηyyy + 4.6 × 10−17 (m2/V)ηxxy

(70)

χ (2)
xxyPS

∼ 1.9 × 10−16 (m2/V)ηyyy + 1.1×10−16 (m2/V)ηxxy.

(71)

Now, by using the values ηxxy � −2 × 104 m−1 and ηyyy �
104 m−1 which are the values presented in Fig. 5 at the edge
of the waveguide (where the applied electric field for Pockels
effect is stronger and thus more relevant, as shown in Ref. [19]),
we get:

χ (2)
xxyC

∼ 0.1 pm/V, χ (2)
xxyPS

∼ 0.3 pm/V. (72)

The dependence of χ (2) on the choice of potential V (r) is
clear from the results above. It means that any difference
between predicted and experimental results can be attributed
to a limitation of the potential V (r) to describe the crystal
phenomena. This problem can only be overcome by using a

FIG. 5. Strain gradients components ηxxy(x,y) and ηyyy(x,y)
distribution with σ0 = 1 GPa and the corresponding values over the
vertical dashed black line throughout the center of the waveguide.

semiempirical method and fit α and β to available experimental
data. Any other way of obtaining these two parameters will
inevitably have errors associated because the used potential
V (r) will always be an approximation to the much more
complex potential felt by the electrons in a real crystal.

On the other hand, it is not straightforward which published
experimental values we should compare it to. It is now
widely accepted that previously reported values of χ (2) on
the order of magnitude of 100 pm/V like the ones published in
Refs. [5,6,8] were wrongly interpreted and they are mainly due
to free carriers and not to strain. In fact, latest results, which
account for these effects, suggest values of χ (2) much lower
than these and their order of magnitude should be around
10 pm/V [16] or even as low as 1 pm/V [51]. Moreover,
even these lower values of χ (2) could have been erroneously
estimated as latest publications suggest that the electric field
applied to the waveguide to induce Pockels effect modulation
is not homogeneous throughout the waveguide, but strongly
modified by carriers effects [19], which does not seem to have
been taken into account in these publications.

We would like to point out that the main purpose of this
paper is to develop a phenomenological model to describe the
dependence of the χ (2) components on the different directions
of strain, rather than getting an exact estimate of the numerical
predictions. Nevertheless, the obtained values by our model
in Eq. (72) are closer to the order of magnitude of the latest
experimental results available on strain-induced χ (2) [51] than
any previous models published on the subject [13].

V. CONCLUSION

In this paper we develop and present an atomistic model,
based on the bond orbital model to describe the second order
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nonlinear effects generated by strain in the silicon crystal.
This model gives a spatial quantitative and well defined
relation between the χ (2) tensor and the strain tensor ε̄.

We have shown that χ (2) is proportional to a weighted sum
of strain gradient components, as suggested by many publica-
tions. The weighting coefficients depend only on two coeffi-
cients, α and β, which can be theoretically estimated but should
be experimentally determined to fully validate this model.

By applying this model to the first-order phenomenon of
photoelasticity, we confirmed the consistency between our
theory and the properties of general cubic crystals, showing
very good physical and numerical agreement with the experi-
mentally determined photoelastic coefficients for C, Si, and Ge
crystals. This validation of the first order approach gives high
credibility to our second-order theory on strain-induced χ (2).

Finally, we investigated the second-order effects in a
specific geometry, and we were able to show agreement of
our model with the known properties of strain-induced χ (2) in
silicon. Furthermore, we estimated the order of magnitude
of a component of χ (2) calculated using our model, and
its values (between 0.1 pm/V and 0.3 pm/V) are close to
the experimental order of magnitude of the latest published
experimental results. Nevertheless, this value can be strongly

improved once reliable experimental data is available for a
confident fit of the numerical predictions of this model.

We consider that the presented model is of extreme
relevance for the study of nonlinear effects in strained silicon
photonics. With the relation between χ (2) and ε̄ that we
developed in this paper, the optimization of strained silicon
devices is finally possible. The strain distribution in the
crystal can be engineered to maximize the most relevant χ (2)

components for the desired device, and this opens a whole new
route towards the improvement of nonlinear effects in strained
silicon, bringing us closer to high performance devices based
on this kind of effect.
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