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Electron and chemical reservoir corrections for point-defect formation energies
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Point-defect formation energies calculated within the framework of density functional theory often depend on
the choice of the exchange and correlation (xc) functional. We show that variations between the local density
approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals mainly arise from
differences in the position of the bulk valence-band maximum, as well as in the reference energies for the
chemical potential obtained with distinct xc functionals. We demonstrate for point defects relevant for p-type
GaN that these differences can be accounted for by corrections, reducing the maximum disagreement between the
different functionals from more than 2 eV to below 0.2 eV. Our correction scheme should be useful for performing
high-throughput calculations in cases where full hybrid functional calculations are prohibitively expensive.
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I. INTRODUCTION

The calculation of defect formation energies by means
of density functional theory (DFT) in a supercell geometry
has evolved into a standard tool to address doping and
doping limitations in semiconductor physics [1–3]. Calculated
formation energies allow predicting, for example, equilibrium
concentrations of intrinsic and extrinsic point defects or defect
complexes. However, the predictive power of this approach
appears limited: the calculated formation energy of point
defects depends on details of the theoretical method, notably
the exchange-correlation (xc) functional [4], and is also
affected by spurious interactions between a defect and its
periodic images in the supercell approach [5–8].

Traditional functionals such as the local density approxima-
tion (LDA) or the generalized gradient approximation (GGA)
severely underestimate the band gaps of semiconductors and
insulators. For a long time it was believed that this is mostly
due to an insufficiently accurate description of unoccupied
states, and hence correction schemes focused on the position
of conduction bands (CBs) and defect states with CB-like
character such as donors [9,10]. However, it became clear that
also valence-band (VB) like states must be corrected [11], and
that the relative position of the VB with respect to the averaged
electrostatic potential is poorly described [12–14].

Hybrid functionals have emerged as a reliable approach for
overcoming these problems. These functionals mix approx-
imate (semi)local exchange functionals with exact nonlocal
Hartree-Fock exchange, yielding excellent structural proper-
ties as well as quantitatively better band gaps and absolute
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band-edge positions [15,16]. Of course, hybrid functionals are
also approximate and parameterized; how reliably a particular
functional reproduces experiment is still under active research
(see, for instance, Komsa and Pasquarello [17]). At present,
however, hybrid functionals are the widely used choice to
overcome the limitations of the conventional semilocal func-
tionals. Unfortunately, hybrid functionals are computationally
very demanding. This limits the size of affordable supercells,
and makes scanning large numbers of possible defect config-
urations prohibitively time consuming. It therefore remains
desirable to employ standard functionals to estimate the
formation energy of candidate defects [18]. Such an approach
is only effective, of course, if the calculations based on standard
functionals are reliable in identifying the most relevant defects.
In the present work, we propose such an approach.

We will compare the results of three widely used xc func-
tionals: the LDA [19], the generalized gradient approximation
of Perdew, Burke, and Ernzerhof (PBE) [20], and the screened
hybrid functional of Heyd, Scuseria, and Ernzerhof (HSE)
[21,22]. As a benchmark we consider magnesium-doped
gallium nitride (GaN:Mg), which has a high technological
relevance due to its use as the p-conductive layer in GaN-based
light-emitting devices. Point defects in this material have
been extensively studied both experimentally and theoretically
[1,2,23–27]. For example, the study by Myers et al. [2]
provides a detailed analysis of the energetics and electrical
activity of various point defects in GaN:Mg at the level of
PBE. The extensive set of defect structures investigated there
will be used as a test set in the present study. Note that we use
the term “defect” to include impurities, point defects, as well
as complexes.

The defect formation energies obtained with the various
xc functionals show an unacceptable scatter as discussed in
Sec. III. We will analyze the origin of the differences in Sec. IV
and show that they can be explained by an incomplete error
cancellation between the calculations for defect supercells and
the corresponding reference states. The incomplete cancella-
tion of errors has been observed and addressed before, see, e.g.,
Refs. [4,28,29]. For instance, in their work on alumina Hine
et al. [29] exploited the fact that the error cancellation between
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solids (Al and Al2O3) works better than between solids and
molecules (O2). Building on this observation, they rewrote the
oxygen reference energy in the defect-formation formalism
described below in terms of the DFT total energies of Al and
Al2O3 and the experimental formation enthalpy of Al2O3. Peng
et al. [4] compared formation energies of GGA(+U ) and HSE
for defects in a range of oxides and nitrides. They proposed to
apply corrections to the valence-band maximum (VBM) from
GW calculations and to the atomic reference energies from
a fit to a set of experimental compound formation enthalpies,
thereby reducing the differences between the functionals to
0.34 eV on average. We will show here that by correcting the
chemical potentials of the electrons and chemical elements for
a specific system, the apparent differences between different
functionals can be reduced to below 0.1 eV on average.

II. COMPUTATIONAL DETAILS

The key thermodynamic quantity for a point defect X in
charge state q is its formation energy [1,3]

Ef [Xq] = Etot[X
q] − Etot[bulk] −

∑

i

niμi + qμe + �q,

(1)
which depends on the chemical potentials μi of atoms that
have been added (ni > 0) or removed (ni < 0) in order to
construct the defect, and on the chemical potential for electrons
μe. The total energy of the defect Etot[Xq] and the energy of
the defect-free bulk reference Etot[bulk] are obtained by DFT.
�q is the finite-supercell size correction for charged defects
[5,30], as explained below. For each functional, the internal
coordinates of each cell are optimized using the bulk lattice
constant for the employed functional.

We perform projector augmented wave (PAW) [31] cal-
culations with the LDA [19], PBE, [20] or HSE [21,22]
functionals, using the Vienna Ab Initio Simulation Package
(VASP) [32,33] as well as the SPHInX package [34], and
the VASP PAW potentials [33]. Most of the LDA and PBE
calculations were done with the SPHInX package. We checked
that both packages give the same results to within 0.05 eV. The
Ga 3d electrons were treated as part of the frozen core. For HSE
an exact-exchange mixing of α = 0.31 and a screening of ω =
0.2 Å

−1
is used, which produces a band gap for wurtzite GaN

of 3.46 eV. In our defect calculations we use an orthorhombic
3 × 2 × 2 supercell, containing 96 atoms. For LDA and PBE,
an energy cutoff of 476 eV and a 2 × 2 × 2 Monkhorst-Pack
mesh [35] ensure convergence for the total energy within 1
meV and the lattice constant within 0.01 Bohr. For HSE, the
plane-wave cutoff was 300 eV. Relaxing the structure to the
energetic minimum results in the bulk structural parameters in
Table I. The lattice constants for LDA and HSE agree closely
with experimental data, while PBE yields a slightly larger
lattice constant. On the other hand, HSE reproduces the c/a

ratio slightly worse (−0.2%) than LDA and PBE.
The chemical potentials μi represent the energies (in the

implicit reference given by the DFT code) of the reservoirs
that act as the sources of the individual species. The chemical
potentials appear as parameters in Eq. (1), and can be chosen
to correspond to specific physical growth scenarios. The
chemical potentials are referenced to well-defined reference

TABLE I. Structural parameters of wurtzite GaN obtained with
different xc functionals and compared with experiment.

LDA PBE HSE expa

a (Bohr) 6.04 6.14 6.06 6.0263
c/a 1.627 1.626 1.623 1.626
u 0.377 0.377 0.378
gap (eV) 1.98 1.64 3.46 3.51

aRef. [36]

states [3], i.e.,

μi = μ0
i + �μi, (2)

where μ0
i is the (fixed) reference and �μi is the value of the

chemical potential for a specific scenario relative to the refer-
ence. The conventional standard reference state for each chem-
ical element is the phase of that element at standard conditions,
i.e., the bulk metals for Ga and Mg, and molecular N2 and H2

for nitrogen and hydrogen, respectively. Neglecting the effects
of temperature and pressure, the reference energies are directly
obtained from DFT total energies. For instance, μ0

Ga is given by

μ0
Ga = 1

8EDFT(Ga bulk), (3)

where EDFT(Ga bulk) is the total energy of the eight-atom
orthorhombic unit cell of Ga. Given these references, and
assuming equilibrium with bulk GaN, we then obtain:

�μN + �μGa = �Hf (GaN), (4)

where �Hf (GaN) is the formation enthalpy of GaN. Both
�μN and �μGa can thus vary over a range given by the
magnitude of the enthalpy of formation.

Similarly, the chemical potential of electrons μe is
referenced to a standard reference, conventionally taken to be
the VBM:

μe = εVBM + εFermi. (5)

The VBM reference energy is likewise taken in the implicit
reference of the DFT code used. The range of εFermi is typically
taken to be the band gap, i.e., the Fermi energy can vary
between the VBM and the conduction-band minimum (CBM).

As far as thermodynamics is concerned, chemical species
and electrons can be treated on the same footing, and indeed,
we will exploit this analogy in our discussions. To keep the
distinction clear, however, we will generally restrict our use of
the term “chemical potential” to refer to chemical species only,
and use the term “Fermi energy” when discussing the chemical
potential for electrons, thereby following the conventional
terminology in the field of semiconductors.

The values of the chemical potential reference energies
μ0

i and of the VBM energy εVBM are specific to a particular
theoretical approach (xc functional, potentials, DFT code,
etc.). The parameters �μi and εFermi, on the other hand, can be
chosen to correspond to specific experimental conditions: In
the case of the chemical potentials to reflect physical growth
scenarios, and in the case of the Fermi level to represent
specific electronic conditions (e.g., due to doping) in the
material. In contrast to μ0

i and εVBM, the parameters �μi and
εFermi should be independent of the computational details.
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For the purpose of listing defect formation energies, it
is common practice not to use the “standard formation
energies” (�μi = 0), but to employ a certain choice of
limiting conditions, given by equilibrium with selected phases,
and setting the Fermi energy to the VBM (εFermi = 0). In
our case, the reservoirs will be wurtzite GaN, orthorhombic
Ga metal, hexagonal Mg metal, and the H2 molecule, all
at zero temperature. These choices correspond to �μGa =
�μMg = �μH = 0 and, given Eq. (4), �μN = �Hf (GaN).
The corresponding values for the chemical potentials μi can
then be directly extracted from DFT total energy calculations.
For internal consistency, the energies of the reservoirs must be
calculated at the same level of theory as the defect supercell
and the perfect bulk system.

Formally, the choice of reservoirs for listing the defect
formation energies is irrelevant. In practice, when one aims
at comparing different theoretical approaches, or theory and
experiment, the choice of the reservoirs used for comparison
does matter (see, e.g., Hine et al. [29], Peng et al. [4]) since
errors of a given xc functional in describing the defect, the
perfect bulk, and the reservoirs of choice do not cancel out
completely. We will discuss this in detail in Sec. IV B.

We will also examine charge-state transition levels, which
are defined as

εq1/q2 = Ef [Xq1 ] − Ef [Xq2 ]

q2 − q1
− εVBM . (6)

These correspond to the Fermi-level positions at which a defect
changes its charge state. Note that these values do not depend
on the chemical potentials.

Charged defect calculations in the supercell approach suffer
from the long-range Coulomb interaction of the defect with its
periodic images. The formation energy of a charged defect
therefore depends on the chosen supercell size unless the
interactions are corrected for [�q in Eq. (1)] [5,30]. Finite-size
errors can be a sizable effect that has the potential of changing
the qualitative physics of the system. The case of the 3+
charge state of the nitrogen vacancy in GaN (VN), calculated
within LDA, is an excellent example. For commonly employed
supercells consisting of approximately 100 atoms, V3+

N is
thermodynamically stable for Fermi levels in the lower part
of the band gap, and the (3+/+) charge-state transition level
appears in the band gap (see Table II). In the limit of infinite
supercell size, however, V3+

N is no longer stable, i.e., the
(3+/+) level lies below the VBM [37] which in itself is a
failure of LDA, as explained below. The charge corrections
�q recover the infinite-supercell-size limit at much smaller
supercell sizes.

TABLE II. Charge-state transition levels for selected defects (in
eV) with respect to the VBM, from Eq. (6), without supercell-size
correction for charged defects. The defect-free supercell contains 96
atoms. Data from Ref. [2] (72 atoms) are listed for comparison.

defect LDA PBE PBEa HSE

V3+/+
N 0.33 0.41 0.39 1.14

(MgVN)2+/0 0.35 0.40 0.45 1.17
(MgHVN)3+/+ 0.36 0.43 0.33 1.21

aRef. [2], 72-atom supercells, ultrasoft pseudopotentials (USPP).

III. APPLYING THE “STANDARD APPROACH”

The dominant defects in GaN:Mg as grown with metal-
organic vapor phase epitaxy include substitutional Mg on the
Ga site; interstitial hydrogen in the positive charge state, H+,
in the bond center (BC) or antibonding (AB) site; the nitrogen
vacancy, VN; and combinations of these point defects. In the
following we use a similar notation as in Ref. [2], notably for
the orientation of defects or defect complexes: Some defects
can be viewed as modification of a Ga-N bond: H+ inserted into
(or attached to) a Ga-N bond, or a complex formed by Mg on a
Ga site and a defect on a N site (VN or HN). For these defects,
the orientation can be characterized by the two inequivalent
types of Ga-N bonds: parallel to the c-axis (subscript ‖), or one
of the three Ga-N bonds lying largely in the ab plane (subscript
⊥). For a detailed description of the defects we refer to Ref. [2]
and references therein.

The calculated formation energies, based on the formalism
described in Sec. II, are shown in Table III, where the
rightmost three columns contain the differences between the

TABLE III. Defect formation energies calculated with LDA,
PBE, and HSE, including the supercell-size correction of Ref. [5].
The chemical potentials correspond to equilibrium with bulk GaN,
Ga, Mg, and the H2 molecule (see text). The Fermi level is set to the
VBM as calculated with each xc functional. All values in eV. The right
columns show pairwise differences between the three functionals. The
weighted rms error gives each of the eight defect classes equal weight.

LDA PBE LDA
− − −

LDA PBE HSE HSE HSE PBE

Mg− 1.35 1.19 2.38 −1.03 −1.19 0.16
V+

N 0.63 0.54 −0.18 0.81 0.72 0.09

V3+
N 1.25 0.88 −1.13 2.38 2.01 0.37

H+
‖ (AB) −0.07 0.16 −0.54 0.47 0.70 −0.23

H+
⊥(AB) −0.20 0.04 −0.69 0.49 0.73 −0.24

H+
‖ (BC) −0.25 −0.11 −0.73 0.48 0.62 −0.14

H+
⊥(BC) −0.02 0.09 −0.52 0.50 0.61 −0.11

H2+
N −0.23 −0.12 −1.71 1.48 1.59 −0.11

(MgH)0
‖(BC) 0.06 0.15 0.50 −0.44 −0.35 −0.09

(MgH)0
‖(AB) 0.18 0.30 0.65 −0.47 −0.35 −0.12

(MgH)0
⊥(AB Mg⊥) −0.03 0.12 0.41 −0.44 −0.29 −0.15

(MgH)0
⊥(BC Mg⊥) 0.30 0.38 0.69 −0.39 −0.31 −0.08

(MgH)0
⊥(AB Ga‖) 0.23 0.36 0.67 −0.44 −0.31 −0.13

(MgH)0
⊥(AB Ga⊥) 0.17 0.32 0.52 −0.35 −0.20 −0.15

(MgVN)0
‖ 1.04 0.90 1.27 −0.23 −0.37 0.14

(MgVN)0
⊥ 1.07 0.92 1.25 −0.18 −0.33 0.15

(MgVN)2+
‖ 0.93 0.62 −0.42 1.35 1.04 0.31

(MgVN)2+
⊥ 0.91 0.56 −0.44 1.35 1.00 0.35

(MgHN)+‖ −0.23 −0.14 −0.78 0.55 0.64 −0.09

(MgHN)+⊥ −0.27 −0.18 −0.74 0.47 0.56 −0.09

(MgHVN)+‖ (AB Mg) 0.16 0.29 −0.14 0.30 0.43 −0.13

(MgHVN)3+
‖ (AB Mg) 0.61 0.56 −1.35 1.96 1.91 0.05

weighted rms error 1.12 1.10 0.18
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TABLE IV. Charge-state transition levels of selected defects (in
eV) with respect to the VBM, from Eq. (6), with supercell-size
correction for charged defects.

Defect LDA PBE HSE

V3+/+
N −0.31 −0.17 0.48

(MgV)2+/0
N 0.06 0.14 0.85

(MgHV)3+/+
N −0.22 −0.14 0.61

three functionals. Different xc functionals clearly give rise
to defect energies that can vary by a few eV (here up to
2.4 eV for V3+

N in LDA vs. HSE). We have computed the
root-mean-square (rms) deviation, giving equal weight to
each of the eight defect classes. The weighted rms deviation
compared to HSE is 1.12 eV for LDA and 1.10 eV for PBE,
while LDA and PBE differ on average by 0.18 eV. These large
errors between the semilocal functionals and HSE do not seem
systematic—they vary in sign and magnitude from defect to
defect. This suggests that any conclusions about the relative
importance of the defects drawn at the level of LDA or PBE
cannot be trusted.

Table IV lists the charge-state transition levels as defined
in Eq. (6). As alluded to before, the (3+/+) VN transition
level is unstable at the LDA and PBE level of theory when
charged supercell artifacts are corrected for, in accordance
with previous findings for large supercells [37]. This is not the
case for HSE, which is regarded as superior compared to LDA
and GGA due to the vastly improved description of the band
gap. Indeed, the higher relative position of deep charge-state
transition levels in HSE and other hybrid functionals can be
rationalized by a lowering of the VBM compared to LDA and
GGA functionals [12–15,38].

Interestingly, the charge-state transition levels neglecting
supercell-size corrections obtained with LDA and PBE (see
Table II) agree with the HSE values including the supercell
corrections much better (to within 0.5 eV) than what could
have been estimated from the magnitude of the band gap
error (up to 1.8 eV) and the charge corrections (up to
0.6 eV). It seems that earlier defect calculations (before HSE
defect calculations and reliable charged defect corrections
became practical about five years ago) have profited from
a fortuitous error cancellation in some cases. Indeed, the
charged-defect artifacts for typical supercells systematically
decrease the spacing between charge-state transition levels [5],
squeezing them into the too small band gap of LDA and PBE.
This cancellation explains why the large number of defect
calculations published in the 1990’s and early 2000’s (that were
based on LDA/PBE and neglected supercell-size corrections)
produced results that are often qualitatively correct and hence
more relevant than could have been guessed by assessing the
individual errors.

IV. CORRECTIONS TO REFERENCE ENERGIES

A. Electrons: VBM alignment

It has long been recognized that the errors in the valence-
and conduction-band positions lead to errors in the defect
formation energy as calculated in the standard approach that

LDA PBE HSE LDA PBE

0

1
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3

4

el
ec

tro
n 

en
er

gy
 (e

V
)

standard VBM alignment deep-level alignment

calculated CBM

calculated VBM

VN (3+/+)

MgVN (2+/0)
MgHVN (3+/+)

Δ VBM

FIG. 1. Alignment of the electron chemical potential scales
between LDA, PBE, and HSE. For each of the functionals, the
VBM defines the energy zero. Left: the standard alignment, using
the calculated VBM as a common point of reference for all defects.
Right: modified alignment, using the (3+/+) charge-state transition
level for VN (violet lines) as the common point of reference. The
charge-state transition levels (2+/0) for MgVN (cyan) and (3+/+)
for MgHVN (green) are also indicated, as well as the position of the
calculated VBM and CBM of LDA and PBE.

can and should be corrected for [10,11]. Here, we take a
slightly differently phrased, yet equivalent approach for deep
defects. Instead of correcting the formation energy directly, we
correct the position of the bulk valence band entering Eq. (1) as
reference for the Fermi level [see Eq. (5)]. From a conceptual
point of view, we thus correct for the known weakness of a
functional in describing the extended host states, while leaving
the description of the localized defect states unaltered. This is
appropriate for defects that possess well-localized defect states
within the band gap.

In order to obtain values for the valence-band shift, we will
use the HSE data as the “best available theory” reference. We
thus need the relative position of the LDA or PBE valence-
band edges with respect to HSE. Such alignments have been
discussed in the literature and can be based on the position of
the average electrostatic potential [39] or on the alignment of
the vacuum level [38]. Recent studies indicate that localized
defect states in the band gap suffer less from the band-gap
problem if referenced to the average electrostatic potential
[13]. In the spirit of the Langer-Heinrich rule [40] and the
marker method [41], we align the energy scales via the charge-
state transition level of a deep and spatially well localized
defect, specifically the V3+/+

N transition level. This is achieved
by shifting the VBM of LDA down by −0.785 eV and that of
PBE by −0.645 eV, as shown schematically in Fig. 1. These
shifts agree with alternative schemes (electrostatic potential,
vacuum level) to within ∼ 0.3 eV. Note that the VBM and
the conduction-band minimum (CBM) as calculated from the
respective functional are then no longer needed (see Fig. 1).

Applying the above alignment substantially reduces the
differences between the LDA, PBE, and HSE formation
energies for charged defects. The charge-state transition levels
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TABLE V. Charge-state transition levels after applying correc-
tions �εVBM to the position of the VBM of LDA and PBE. The
corrections have been chosen to bring the V3+/+

N into agreement with
HSE, which are therefore marked with “!”.

Defect LDA PBE HSE

V3+/+
N 0.48! 0.48! 0.48

MgV2+/0
N 0.84 0.79 0.85

MgHV3+/+
N 0.56 0.51 0.61

�εVBM −0.79 −0.65 0

(Table V) agree to within 0.1 eV. The improvement for the
transition levels is not too surprising, since the transition levels
of Table V all derive from the V3+/+

N transition level. Yet, the
formation energies listed in Table VI and visualized in Fig. 2

TABLE VI. Defect formation energies calculated with LDA,
PBE, and HSE, including supercell-size corrections [5], and with
a correction applied by shifting the VBM: The VBM values of LDA
and PBE (used for referencing the Fermi level) have been adjusted
as indicated in the first row of the Table to bring the V3+/+

N level in
agreement with HSE (see text and Table V). All values in eV. The right
columns show pairwise differences between the three functionals. The
weighted rms error gives each of the eight defect classes equal weight.

LDA PBE LDA
− − −

LDA PBE HSE HSE HSE PBE

�εVBM −0.79 −0.65
Mg− 2.14 1.84 2.38 −0.25 −0.55 0.30
V+

N −0.16 −0.11 −0.18 0.02 0.08 −0.05

V3+
N −1.11 −1.06 −1.13 0.02 0.07 −0.05

H+
‖ (AB) −0.86 −0.49 −0.54 −0.32 0.06 −0.37

H+
⊥(AB) −0.99 −0.61 −0.69 −0.30 0.09 −0.38

H+
‖ (BC) −1.04 −0.76 −0.73 −0.31 −0.03 −0.28

H+
⊥(BC) −0.81 −0.56 −0.52 −0.29 −0.04 −0.25

H2+
N −1.80 −1.41 −1.71 −0.09 0.30 −0.39

(MgH)0
‖(BC) 0.06 0.15 0.50 −0.44 −0.35 −0.09

(MgH)0
‖(AB) 0.18 0.30 0.65 −0.47 −0.35 −0.12

(MgH)0
⊥(AB Mg⊥) −0.03 0.12 0.41 −0.44 −0.29 −0.15

(MgH)0
⊥(BC Mg⊥) 0.30 0.38 0.69 −0.39 −0.31 −0.08

(MgH)0
⊥(AB Ga‖) 0.23 0.36 0.67 −0.44 −0.31 −0.13

(MgH)0
⊥(AB Ga⊥) 0.17 0.32 0.52 −0.35 −0.20 −0.15

(MgVN)0
‖ 1.04 0.90 1.27 −0.23 −0.37 0.14

(MgVN)0
⊥ 1.07 0.92 1.25 −0.18 −0.33 0.15

(MgVN)2+
‖ −0.64 −0.67 −0.42 −0.22 −0.25 0.03

(MgVN)2+
⊥ −0.66 −0.73 −0.44 −0.22 −0.29 0.07

(MgHN)+‖ −1.02 −0.79 −0.78 −0.24 −0.01 −0.23

(MgHN)+⊥ −1.06 −0.83 −0.74 −0.32 −0.08 −0.23

(MgHVN)+‖ (AB Mg) −0.63 −0.36 −0.14 −0.49 −0.22 −0.27

(MgHVN)3+
‖ (AB Mg) −1.75 −1.38 −1.35 −0.40 −0.02 −0.37

weighted rms error 0.29 0.28 0.26
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FIG. 2. Comparison of the formation energies of LDA (crosses)
and PBE (squares) with those of HSE, with corrections for the VBM
(see Table VI). Perfect agreement corresponds to the solid line.
Dashed lines delimit deviations within the indicated bounds.

compare much better to each other even for defects completely
unrelated to VN. The maximum error is reduced to 0.55 eV
(PBE vs HSE for Mg−). A close inspection of Table VI and
Fig. 2 shows that the error is now dominated by systematic
shifts for the individual defect classes.

Figure 3 depicts the main principle of the VBM alignment
with the help of plots of formation energy (Ef ) vs Fermi level
(εFermi) for LDA, PBE, and HSE. More precisely, we first note
that the formation energy [Eq. (1)] depends on the absolute
electron chemical potential μe = εVBM + εFermi [Eq. (5)] in
the implicit reference of the respective DFT bulk calculation.
We then attach two Fermi energy scales to this plot: The bottom
scale in each graph corresponds to the standard scheme, where
the Fermi energy εFermi = μe − εVBM relative to the VBM at
the respective level of theory is indicated. The top scale for
LDA and PBE corresponds to the adjusted VBM. The three
graphs in Fig. 3 show the same range of the adapted scale. The
gray part marks the bulk valence band within LDA and PBE,
respectively. The formation energies of the standard scheme,
listed in Table III, correspond to the crossing points of the
formation energy lines with the μe = εVBM(DFT) vertical line.
It is obvious that errors in correctly positioning the VBM
related to the choice of the xc functional have a direct and
large impact on the formation energy of charged defects. The
formation energies in the adjusted VBM scheme, listed in
Table VI, correspond to the crossing points with the adjusted
VBM at the left edge of the graph (no adjustment for HSE).
Inspection of Fig. 3 drives home the point that the energies
of the various defects are much more consistent with each
other than the cut at the calculated (functional-specific) VBM
suggests.

B. Reference energies for chemical elements

Despite the improvements resulting from the alignment
of the VBM, systematic differences remain in the formation
energies of Table VI and Fig. 2. For instance, the formation
energies of all Mg-containing defects are lower in LDA by
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FIG. 3. Defect formation energies as a function of electron
chemical potential μe = εVBM + εFermi, calculated with LDA, PBE,
and HSE. The bottom scale reflects the standard referencing scheme
with respect to the calculated VBM at the respective level of theory.
The top scale for LDA and PBE reflects the adjusted scale.

0.2–0.5 eV compared to HSE. Similarly, the protonlike H+
defects are too low by 0.3 eV. Such systematic deviations
arise from the incomplete error cancellation of the underlying
DFT calculations, namely the defect-containing supercell, the
perfect bulk cell, and the various reference systems (Mg and
Ga metal, and H2).

In analogy to the approach taken for the VBM as reference
state for the electron chemical potential, we will adjust the

reference energies μ0
i , entering Eq. (1) via Eq. (2), to account

for the differences in the description of the employed reservoirs
by different functionals, as previously proposed by Peng et al.
[4].

To be specific, let us develop the analogy for the case of the
nitrogen reference energy, μ0

N. The standard reference state is
the nitrogen molecule N2 at zero temperature and the reference
energy (in the implicit reference of the DFT code used) is

μ0
N(N2) = 1

2EDFT(N2). (7)

It is well known that the errors in the total energy from a
specific xc functional do not cancel out between molecules and
solids [4,28,29,42]. It is here where the choice of the reservoirs
for the comparison of defect energies and the consistent use
of the same level of theory comes into play. For instance,
let us assume equilibrium with bulk GaN [see Eq. (4)] and
Ga-rich conditions, i.e., equilibrium with bulk Ga (�μGa = 0).
In this scenario—which we will abbreviate with GaN/Ga—the
nitrogen chemical potential is given by

�μN(GaN/Ga) = �Hf (GaN). (8)

If �Hf (GaN) is calculated consistently at the level of theory
used for the defects as

�Hf (GaN) = EDFT(GaN) − μ0
Ga − μ0

N, (9)

the absolute nitrogen chemical potential for Eq. (1) becomes

μN(GaN/Ga) = μ0
N + �μN = EDFT(GaN) − μ0

Ga (10)

and hence independent of the molecular reference.
In experiment, chemical potentials are usually limited to

the stability region of the host material

�μN(GaN/Ga) � �μN � 0, (11)

very much like the Fermi energy is limited to the band gap

VBM � εFermi � CBM. (12)

It is therefore natural to use one of the two limits for the
comparison of defect energies. Which of the two limits is used
(GaN/Ga or N2) is formally arbitrary. In practice, with the
use of imperfect functionals, the choice of the reference state
does matter, in particular if the formation enthalpy of the host
material is not well reproduced. This can be seen as the analog
of the band-gap problem.

Indeed, choosing a computational reservoir in order to
optimize the error cancellation between the host compound
and the reservoirs has been exploited before, e.g., by Finnis
et al. [29,42] for Al2O3 in contact with oxygen gas. The
computational reservoirs for the DFT calculations were Al2O3

and bulk Al, thereby eliminating the need to calculate the
notoriously problematic O2 molecule. The oxygen reference
energy was then obtained from

�Hf (Al2O3) = EDFT(Al2O3) − 2μ0
Al − 3μ0

O (13)

using the experimental formation enthalpy of Al2O3.
Let us invoke the analogy with the Fermi energy again.

Replacing the calculated formation enthalpy of GaN by the
correct one and keeping the calculated Ga reference energy
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unchanged corresponds to correcting the band gap and keeping
the VBM unchanged. Yet, as we have seen above for the case
of the electrons, corrections must be applied in general to both
limits, the VBM and CBM. Analogously, we should apply a
correction �μ0 to both the N and Ga reference energies. Note
that these reference energy corrections �μ0 are independent of
the chemical-potential scenario expressed by a specific choice
of �μ.

We will again use the HSE results for defining corrections
to the LDA and PBE reference energies. HSE generally
reproduces thermochemical data rather well. The experimental
formation enthalpy of GaN has been debated [43–45], and
extrapolations from high-temperature experiments to standard
conditions range between −1.15 eV and −1.71 eV [45]. Both
LDA (−1.50 eV) and HSE (−1.34 eV) values fall in this range,
while PBE yields a smaller value (−0.90 eV).

For Ga and N, we require that the corrections reproduce the
HSE enthalpy of formation, i.e.,

EDFT(GaN)−EDFT(Ga)− 1
2EDFT(N2)−�μ

0,DFT
Ga −�μ

0,DFT
N

= �Hf,HSE(GaN), (14)

where the superscript DFT stands for either LDA or PBE.
This leaves one free parameter to be determined, which then
makes the defect energies consistent over the entire chemical-
potential range. For the impurity elements Mg and H, no lower
limit exists.

In practice, we proceed as follows: first, we set the
correction of the Ga reference energy, which defines the
nitrogen reference energy via Eq. (14), to bring the formation
energy of the nitrogen vacancy in agreement with HSE. This
is achieved by �μ0

Ga = +0.025 eV for LDA, and +0.075 eV
for PBE. The corresponding corrections for nitrogen [cf.
Eq. 14] are �μ0

N=+0.19 eV for LDA and +0.68 eV for
PBE, respectively. The value for the correction to the H
chemical potential is a compromise between the protonlike
H+ and substitutional H2+

N defects, amounting to −0.2 eV and
+0.15 eV for LDA and PBE, respectively. Last, the correction
to the Mg reference energy is set to −0.2 eV (LDA) and
−0.3 eV (PBE) in order to reduce the overall disagreement of
Mg-containing defects.

The resulting corrected formation energies as well as the
differences between the different functionals are collected
in Table VII and visualized in Fig. 4. It is obvious that the
corrections to the reference energies lead to a further improve-
ment of the agreement between the different functionals. The
root-mean-square errors are 0.1 eV or less, and the maximum
errors are all below 0.2 eV. We note that these errors are of
the same order as the uncertainties inherent in the potential
alignment for the supercell charge corrections (∼0.05 eV) or
the effect of implementational details between the VASP and
SPHInX codes (∼0.05 eV). We further note that adapting a
lattice constant different from the optimized lattice constant
for each functional, and hence putting the supercells under
compressive or tensile stress, changes the defect formation
energies considerably and proportional to the defect excess
volume. The agreement between different functionals becomes
worse if the lattice constant is forced to be the same.

TABLE VII. Defect formation energies calculated with LDA,
PBE, and HSE, including supercell-size corrections [5] and a
correction applied by shifting the VBM, as in Table VI. In addition, the
reference energies of LDA and PBE have been adjusted as indicated
at the top of the table. The energies of VN have been used to adjust
μ0

Ga; the differences are zero by construction and are marked =0!. All
values in eV. The right columns show pairwise differences between
the three functionals. The weighted rms error gives each of the eight
defect classes equal weight.

LDA PBE LDA
− − −

LDA PBE HSE HSE HSE PBE

�εVBM −0.79 −0.65

�μ0
Mg −0.20 −0.30

�μ0
Ga +0.03 +0.08

�μ0
H −0.20 +0.15

Mg− 2.36 2.21 2.38 −0.02 −0.17 0.15
V+

N −0.18 −0.18 −0.18 =0! =0! =0!

V3+
N −1.13 −1.13 −1.13 =0! =0! =0!

H+
‖ (AB) −0.66 −0.64 −0.54 −0.12 −0.09 −0.02

H+
⊥(AB) −0.79 −0.76 −0.69 −0.09 −0.06 −0.03

H+
‖ (BC) −0.84 −0.91 −0.73 −0.11 −0.18 0.07

H+
⊥(BC) −0.61 −0.71 −0.52 −0.08 −0.19 0.10

H2+
N −1.63 −1.64 −1.71 0.08 0.07 0.01

(MgH)0
‖(BC) 0.49 0.38 0.50 −0.01 −0.13 0.11

(MgH)0
‖(AB) 0.61 0.53 0.65 −0.05 −0.13 0.08

(MgH)0
⊥(AB Mg⊥) 0.40 0.35 0.41 −0.02 −0.06 0.05

(MgH)0
⊥(BC Mg⊥) 0.73 0.61 0.69 0.04 −0.09 0.12

(MgH)0
⊥(AB Ga‖) 0.66 0.59 0.67 −0.02 −0.09 0.07

(MgH)0
⊥(AB Ga⊥) 0.60 0.55 0.52 0.07 0.03 0.05

(MgVN)0
‖ 1.24 1.20 1.27 −0.03 −0.07 0.04

(MgVN)0
⊥ 1.27 1.22 1.25 0.02 −0.03 0.05

(MgVN)2+
‖ −0.44 −0.37 −0.42 −0.02 0.05 −0.07

(MgVN)2+
⊥ −0.46 −0.43 −0.44 −0.02 0.01 −0.03

(MgHN)+‖ −0.62 −0.64 −0.78 0.17 0.15 0.02

(MgHN)+⊥ −0.66 −0.68 −0.74 0.08 0.07 0.02

(MgHVN)+‖ (AB Mg) −0.23 −0.21 −0.14 −0.09 −0.07 −0.02

(MgHVN)3+
‖ (AB Mg) −1.35 −1.23 −1.35 0.01 0.13 −0.12

weighted rms error 0.07 0.10 0.07

C. Discussion

Our results clearly indicate that differences in the reference
energies for electrons (the VBM) and chemical elements
account for a very significant part of the differences in the
formation energies calculated in the standard approach. As
Table VII shows, our approach for adjusting the reference
energies brings the LDA and PBE results in close agreement
with the HSE results. This suggests that LDA and PBE may
serve as reliable approaches to pre-screen a large set of
defect configuration candidates. Of course, we have purposely
selected defects that are qualitatively correctly described at
the level of LDA or PBE. Failures must be expected when
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FIG. 4. Comparison of the formation energies of LDA (crosses)
and PBE (squares) with those of HSE, with corrections for the
VBM and for the energies of the reference systems (see Table VII).
Perfect agreement corresponds to the solid line. Dashed lines delimit
deviations within the indicated bounds.

electron (or hole) localization become important [46–48], or
when defect states that are actually deep levels in the gap are
hidden by the band edges—even though [as we saw in the case
of the (3+/+) level of VN], charged-supercell artifacts (if not
properly corrected) may apparently shift them into the LDA or
PBE band gap in some cases, fortuitously helping to identify
and study such levels. We note in passing that Sadigh et al. have
recently proposed a scheme to describe bulk polarons even at
the level of semilocal functionals [49]; whether it works also
for polaronic effects in defects remains to be investigated.

The corrections to the chemical potentials also help to iden-
tify more clearly where LDA, PBE, and HSE show significant
differences. For instance, LDA and PBE systematically place
protonlike H defects lower than HSE compared to HN. This
may be due to a reduction of the artificial self-energy within
the substitutional hydrogen atom from the exact-exchange part
of HSE. We believe that the described correction scheme may
also help to assess the performance of advanced theoretical
methods in separating the improvement of the description of
individual defects from the changes in the description of the
reference systems.

Finally, we note that in our work, the corrections to
the chemical potentials are derived by comparison to HSE
calculations. In general, however, experimental or high-level
theoretical data for selected cases might be used to define
appropriate corrections.

V. SUMMARY & CONCLUSION

We have calculated formation energies of important point
defects in GaN:Mg using LDA, PBE, and HSE. The standard
approach, using each functional consistently to calculate
the energies of the perfect bulk, the defect supercells and
the relevant reference states of chemical elements shows
differences of up to 2.4 eV between the different functionals.
We show that these differences largely arise from the incom-
plete error cancellation when comparing different materials
within the same functional, in addition to the well-known
weakness of LDA and PBE to reproduce band-edge positions
of semiconductors or insulators. By correcting for known
failures in the reference chemical potentials of the electron (in
other words: the valence-band maximum) and of the chemical
elements in an analogous way, we arrive at a consistent picture:
After corrections are applied, the LDA, PBE, and HSE results
for all of the defects considered here agree to within 0.2 eV.
This suggests that, when appropriate corrections are applied,
the standard local and semilocal functionals can be used to
screen for relevant defect configurations before using the
computationally more demanding HSE functional.
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