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We propose a tunable electronic band gap and zero-energy modes in periodic heterosubstrate-induced graphene
superlattices. Interestingly, there is an approximate linear relation between the band gap and the proportion of an
inhomogeneous substrate (i.e., percentages of different components) in the proposed superlattice, and the effect
of structural disorder on the relation is discussed. In an inhomogeneous substrate with equal widths, zero-energy
states emerge in the form of Dirac points by using asymmetric potentials, and the positions of Dirac points are
addressed analytically. Further, the Dirac point exists at k = 0 only for specific potentials; every time it appears,
the group velocity vanishes in the ky direction, and the resonance occurs. For general cases of an inhomogeneous
substrate with unequal widths, part of the zero-energy states are described analytically, and differently, they are
not always Dirac points. Our prediction may be realized on a heterosubstrate such as SiO2/BN.

DOI: 10.1103/PhysRevB.93.165137

I. INTRODUCTION

Since graphene was isolated in 2004 [1], it has attracted
great attention [2–8]. Graphene is the true two-dimensional
(2D) material with one-atom thickness, and the 2D electronic
gas in graphene obeys the massless Dirac equation [9,10].
In the past decade, there have been many interesting dis-
coveries in graphene, such as the quantum anomalous Hall
effect [10,11], Klein tunneling [12,13], plasmons [14], ballistic
charge transport [15,16], and minimum conductivity [17].
Despite these exotic properties, pristine graphene is gapless
in the electronic spectrum, which hinders its application in
some electronic devices like transistors.

In recent years, many methods have been proposed for
opening a gap in the electronic spectrum of graphene
[17–33]. For instance, by breaking A and B sublattice sym-
metry by using graphite, hexagonal boron nitride (h-BN), and
SiC, gaps of �10 meV [26], 53 meV [27], and 260 meV [28],
respectively, have already been experimentally demonstrated
. Moreover, the tunable band gap and electronic properties
in the monolayer heterostructure of hexagonal boron nitride
and graphene (h-BNC) have been studied intensively [34–38].
One of the interesting and heuristic results in h-BNC is that
the percentage of h-BN doped in the graphene layer can be
used to tune the band gap [34].

Zero-energy modes, critical states in graphene’s band
structure, always lead to interesting and significant prop-
erties. Pristine graphene shows minimum conductivity and
the highest shot noise at the unique Dirac point [39,40].
It is found that the periodic potential induces new
Dirac points, and resonance occurs for specific conditions
[41–43]. It is shown that confinement of the charge carriers in
graphene by electrostatic potentials is possible for zero-energy
states [44,45]. Most recently, Ferreira and Mucciolo studied
vacancy-induced zero-energy modes in graphene, and they
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proved that the early field-theoretical picture for the BDI
class [46] is valid well beyond its controlled weak-coupling
regime [47]. Further important progress reported recently is
that the presence of Majorana zero-energy modes is predicted
in graphene/superconductor junctions [48].

Inspired by these studies, our motivation here is to study the
electronic band structure of heterosubstrate-induced graphene
superlattices (GSLs), which refer to the GSLs with periodically
modulating substrates via the BN (or SiC, graphite) and
SiO2 substrates. It is known that the behavior of electrons
in graphene may be different on different substrates; thus it is
expected that the electronic properties in such heterosubstrate-
induced GSLs can be tunable. It would be useful to mention
that such heterosubstrate-induced GSLs could be fabricated
technically by many advanced growth methods in electronics,
like those in Refs. [49–52].

In this paper, we present a theory of tunable electronic
band structures and zero-energy modes in the heterosubstrate-
induced GSLs. It is interesting to see that the electronic band
gap of such heterosubstrate-induced GSLs is dependent on
the width ratio of different substrates. More importantly, this
paper further shows that there exist zero-energy states in
such heterosubstrate-induced GSLs, which may be controlled
by applying unsymmetrical square potentials. These results
are compared with those in the gapless GSLs [41–43,53,54]
and the gapped GSLs [55]. The properties of the electronic
transport such as the conductivity and the Fano factor are
discussed in detail. The possible realization of our results in
experiment is also suggested.

The outline of this paper is as follows. In Sec. II, we intro-
duce our model and method for calculating band structures,
electronic transmission, conductivity, and the Fano factor. In
Sec. III, we show the properties with different parameters and
discuss the effect of lattice constants and structural disorder
on the band gap. Afterward, we investigate the appearance
of zero-energy states, the group velocities, and the resonances
near zero energy. Finally, in Sec. IV, we summarize our results
and draw our conclusions.
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FIG. 1. (a) Schematic diagram of the electronic spectrums of
gapless and gapped graphene without potentials. (b) Schematic of
the monolayer graphene superlattice on the periodic heterosubstrate.
2δ is the band gap induced by the graphite, BN, or SiC substrate;
wA(B) is the width of the SiO2 (graphite, BN, and SiC) substrate, as
well as the width of gapless (gapped) graphene; and � = wA + wB

is the lattice constant. kj is the wave vector in the j th region, qj

and ky are components of kj in the x and y directions, and øj is the
transporting angle in the j th region.

II. MODEL AND FORMULA

In this model, gapless and gapped graphene are periodically
hybridized, such as that shown in Fig. 1. The gapless graphene
is fabricated on the SiO2 substrates, and the gapped graphene is
grown on the h-BN substrates [27,56]. The difference between
gapless and gapped graphene is whether an electronic band gap
caused by the sublattice symmetry breaking exists. In gapless
graphene, there is a famous linear band structure with a unique
Dirac point, whereas, in gapped graphene, a 2δ-wide band gap
near zero energy exists.

We assume the length of these cells along the y direction
is infinite, and we call such a periodic superlattice, shown in
Fig. 1, a heterosubstrate-induced GSL. wA is the width of the
gapped-graphene subcells on the SiO2 substrates, wB is the
width of the gapped-graphene subcells on BN/SiC substrates,
and � = wA + wB is the lattice constant of the whole periodic
structure.

For both gapless and gapped monolayer graphene, the
charge carrier near the K point can be universally described
by the Hamiltonian

Ĥ = υF σ · p + V (x)Î + δσz, (1)

where υF � 106 m/s is the Fermi velocity, σ = (σx,σy), and
σx , σy , and σz are Pauli matrices; p = (px,py) = (−i� ∂

∂x
,

− i� ∂
∂y

) is the two-component momentum operator, V (x) is
the one-dimensional (1D) square potential depending on the x

direction, Î is a 2 × 2 unit matrix, and δ is the half width of the
band gap opened by the sublattice symmetry breaking. When
δ = 0, the Hamiltonian (1) describes gapless graphene. The
Hamiltonian Ĥ acts on the two-component pseudospin wave
function � = (ψ̃A,ψ̃B), where ψ̃A and ψ̃B are the smooth
envelope functions for two triangular sublattices in monolayer
graphene and ψ̃A,B can be written as ψA,B(x)eikyy due to the

translation invariance. The solution of the eigenequation Ĥ

leads to the transfer matrix [53,54]

Mj (	x,E,ky) =
( cos(qj 	x−∅j )

cos ∅j
i

sin(qj 	x)
pj cos ∅j

i
pj sin(qj 	x)

cos ∅j

cos(qj 	x+∅j )
cos ∅j

)
, (2)

which connects the wave functions at x and x + 	x inside the
j th potential. Here in Eq. (2),

qj =
⎧⎨
⎩

sgn(ηj+)
√

kj
2 − ky

2, kj
2 > ky

2,

i

√
ky

2 − kj
2, otherwise,

is the x component of the wave vector inside the j th potential,
sin ∅j = ky/kj , cos ∅j = qj/kj , pj = ηj−/kj , and the wave
vector inside the potential Vj can be expressed as

kj =
{

sgn(ηj+)[(E − Vj )2 − δ2]/(�υF ), |E − Vj | > δ,

i[δ2 − (E − Vj )2]1/2/(�υF ), otherwise,

where η± ≡ [E − V (x) ± δ]/(�υF ). ∅j is regarded as the
transporting angle in the j th region, and it should be noted
that the angle ∅j is not always a real number because the
evanescent mode exists. In the case of ηj+ = 0, Eq. (2) is
replaced by [55]

Mj (	x,E,ky) =
(

exp(ky	x) 0
ipj sinh(ky	x) exp(−ky	x)

)
, (3)

where pj = ηj−/ky . When ηj− = 0, Eq. (2) is replaced by [55]

Mj (	x,E,ky) =
(

exp(ky	x) ipj sinh(ky	x)
0 exp(−ky	x)

)
, (4)

where pj = ηj+/ky . The above results are also valid for
gapless graphene when δ = 0.

For an infinite periodic system (AB)N , with N → ∞, the
symbols A and B denote gapless and gapped graphene with
square potentials VA and VB , respectively. The wave function
of this periodic system is the Bloch wave function. Therefore
the electronic dispersion relation is governed by

cos(βx�) = 1

2
Tr[MAMB], (5)

where βx is the x component of the Bloch wave vector in the
whole system and � is the lattice constant labeled in Fig. 1(b).
If βx has a real solution, there is an electron (hole) state in
the band structure; otherwise, there is a band gap. For general
cases of ηj+ηj− �= 0 (i.e., kj �= 0), substituting Eq. (2) into
Eq. (5), we have

cos(βx�) = cos(qAwA + qBwB) − sin(qAwA) sin(qBwB)

×
pB

2+1
pB

− 2 cos(∅A − ∅B)

2 cos(∅A) cos(∅B)
. (6)

Equation (6) will be used to find zero-energy modes and band
structures in the next section. Here pA = 1 has been used.

Next, we discuss the wave function, the transmission
probability, the conductivity, and the Fano factor (ratio of
the shot-noise power and the current) for a finite periodic-
potential system, which are a reflection of the band structure
for infinite periodic systems. From the continuity of both
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wave functions ψA and ψB , the electronic transmission and
reflection amplitudes can be obtained by [55]

t(E,ky) = 2p0 cos ∅0

x22p0e
−i∅0 +x11peei∅e −x12p0pee

i(∅e−∅0)−x21
,

r(E,ky) = x22p0e
−i∅0 −x11pee

i∅e −x12p0pee
i(∅e+∅0)+x21

x22p0e
−i∅0 +x11peei∅e −x12p0pee

i(∅e−∅0)−x21
, (7)

where ∅0(e) is the incident (exit) angle and xij (i,j = 1,2)

is the element of X =
1∏

j=N

Mj (wj,E,ky), which is the entire

transfer matrix from the incident to exit edge. We assume
V0(e) � Vj ; thus ∅0(e) � 0. Two components of the electronic
wave function are expressed by [53]

ψA(x) = ψi(E,ky)[(1 + r)Q11 + p0(ei∅0 − re−∅0Q12)],

ψB(x) = ψi(E,ky)[(1 + r)Q21 + p0(ei∅0 − re−∅0 )Q22],

(8)

where ψi(E,ky) is the incident wave packet of the electron
at x = 0 and Qij (i,j = 1,2) is the element of the matrix

Q = Mj (x − xj−1,E,ky)
1∏

i=j−1
Mi(wi,E,ky).

With the transmission probability T = |t |2, the conduc-
tance and the Fano factor for a given energy can be obtained

by [57,58]

G = 4e2Ly

2πh

∫ ∞

−∞
T (E,ky) dky,

F =
∫ ∞
−∞ T (E,ky)[1 − T (E,ky)] dky∫ ∞

−∞ T (E,ky) dky

, (9)

where all degeneracies are included. The conductivity is σ =
G × Lx/Ly , where Lx(y) is the length of the graphene stripe
in the x (y) direction.

III. RESULT AND DISCUSSION

Now, let us use the above equations to calculate the
electronic band structures and the properties of transport for
different situations. We would like to point out that the edge
effect between gapless and gapped graphene can be neglected
when the widths wA and wB are sufficiently larger than the
sublattice size of graphene.

A. Electronic band structures

From Eq. (5), we can obtain the electronic band structures
for the infinite periodic systems. Now, we let wA = λ�, then
wB = (1 − λ)�, and λ is the proportion of gapless graphene
over the whole structure. For convenience, the energy is in

FIG. 2. (a)–(c) Electronic band structures for (a) λ = 0.33, (b) λ = 0.50, and (c) λ = 0.67. (d) and (e) The dependence of band structures
on λ under (d) ky = 0 and (e) ky = 0.2 (in units of 2π/�). In all cases, VA = VB = 0 and δ = πε�/2. Here energy is in units of ε� ≡ �υF /�,
λ = wA/�, and � = 60 nm.

165137-3



XIONG FAN, WENJUN HUANG, TIANXING MA, AND LI-GANG WANG PHYSICAL REVIEW B 93, 165137 (2016)

0 0.2 0.4 0.6 0.8
0

1

2

3

B
an

d 
ga

p 
[ε

Λ
]

δ=(π/2)εΛ
(a)

Λ
0
=30 nm

Λ
1
=60 nm

Λ
2
=90 nm

Λ
3
=120 nm

E
g
 = 2δ(1−λ)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

δ=(π/2)εΛ
(b)

0 0.2 0.4 0.6 0.8
0

2

4

6

λ

B
an

d 
ga

p 
[ε

Λ
]

(c)

δ=πεΛ

Λ
0
=30 nm

Λ
1
=60 nm

Λ
2
=90 nm

Λ
3
=120 nm

E
g
 = 2δ(1−λ)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

λ

(d)

δ=πεΛ

FIG. 3. (a) and (c) The band gap versus the proportion λ with
λ = wA/�. (b) and (d) Effect of the structural disorder on the band
gap with wA = λ� + R1 and wB = (1 − λ)� + R1, where R1 is a
random number between −2.5 and +2.5 nm. Here the energy is in
units of ε� = �υF /�1.

units of ε� ≡ �υF /�, and the transverse wave vector ky is in
units of 2π/�.

Figure 2 shows the band gap around the Fermi level for
different λ. In Figs. 2(a)–2(c), with a fixed lattice constant,
the width of the band gap near the Fermi level changes from
2.05ε� to 1.54ε� to 1.03ε� with λ from 0.33 to 0.50 to 0.67.
Figures 2(d) and 2(e), with ky = 0 and ky = 0.2 (in units of
2π/�), respectively, show that the top of the valence band (the
bottom of the conduction band) increases (decreases) almost
linearly as λ increases, and the band gap for ky = 0.2 is larger
than that of the normal case (ky = 0). The gap around the
Fermi level completely opens compared with the symmetric
forbidden bands in the valence band and conduction band [see
Figs. 2(a)–2(c)], and the center position of the gap is robust
against both the proportion λ [see Figs. 2(a)–2(e)] and the
lattice constant � (not shown). To find the relation between
the width of the band gap and λ, we plot the band gap’s width
Eg versus λ in Fig. 3. In Figs. 3(a) and 3(c), it is shown that the
relations between Eg and λ can be approximately described by
the linear function Eg = 2δ(1 − λ). Additionally, both larger
δ and larger � widen the deviation. In Figs. 3(b) and 3(d),
we plot the band gap versus λ under the structural disorder.
We consider a finite periodic structure (AB)20 with a width
deviation of ±2.5 nm. From Figs. 3(b) and 3(d), we can find
that the relations are robust against the structural disorder.
Early works focus on the band gap of graphene nanoribbons
(GNRs). In contrast, the band gap of a GNR scales inversely
with the channel width [22,24], and it has been proved by
experiment [25]. Results similar to those in GNRs are also
observed in silicene nanoribbons [59].

Now, we try to qualitatively describe the scaling law of
band gaps by introducing competition between propagating
and decaying waves in the whole system. It is obvious that
electronic energy E, interaction potential δ, and proportions of
an inhomogeneous substrate all affect the competition. Higher
|E| (δ) impairs (strengthens) the effect of the decaying wave
and strengthens (impairs) the effect of the propagating wave;
a larger proportion of gapped graphene also strengthens the
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FIG. 4. Evolutions of (a) the probability densities |ψA|2 and |ψB |2
and (b) and (c) the probability amplitudes ψA and ψB with λ = 0.33.
(d)–(f) Evolutions of probability densities and amplitudes with λ =
0.67. For all cases, E = 0.8ε� and ky = 0. The other parameters are
the same as those in Fig. 2.

effect of the decaying wave and, accordingly, impairs the effect
of the propagating wave. In Fig. 3, with fixed δ = (π/2)ε�, the
scaling law of the band gap versus λ is almost linear, which may
indicate that the impacts of |E| and δ on the competition are
almost equal. When δ = πε�, the impact of higher |E| on the
competition becomes stronger than the impact of δ; hence the
band gap is located under the linear scaling law. Specifically,
we illustrate the evolutions of a decaying-dominated wave and
a propagating-dominated wave in Figs. 4(a)–4(c) and 4(d)–
4(f), respectively. With fixed E = 0.8ε�, ky = 0, and λ = 0.33
[see Figs. 4(a)–4(c)], both the transmission probability and
amplitude decay quickly as x increases, which results in no
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FIG. 5. Density of states vs energy for different λ. The other
parameters are the same as those in Fig. 2.

electronic state in the band structure, as shown in Fig. 2(a).
In contrast, changing λ to 0.67 [see Figs. 4(d)–4(f)] results
in a propagating wave called the Bloch wave in the whole
system. Using Eq. (6), we find that the Bloch wave vector in
the x direction is about 0.01045 nm−1, and the corresponding
x-component wavelength is 601.3 nm, which is surely that
pictured in Figs. 4(d)–4(f); thus there is an electronic state in
the band structure for λ = 0.67 in Fig. 2(c).

In addition, we can quantitatively verify the scaling law of
the band gap by the density of states (DOS), which is plotted
in Fig. 5. The DOS for the superlattice system is given by

D(E) = 4S

(2π )2

∑
n

∫ π/�

−π/�

dβx

∫ ∞

−∞
dkyδ[E − En(βx,ky)],

(10)
where S is the unit-cell area in the superlattice system. In
numerical methods, we substitute a Gaussian for the δ function
to compensate for the discrete βx and ky . Figures 5(a)–5(d)
explicitly show that the DOS is zero in the gap determined by
the scaling law for different λ.

Through Eq. (9) and the equation σ = G × Lx/Ly , we
can obtain the conductivity and the Fano factor for the finite
periodic system. Figure 6 shows the transmission probability,
the conductivity, and the Fano factor versus the electronic
energy with different λ. The cases with λ = 0.33, 0.50, and
0.67 correspond to the cases in Figs. 2(a)–2(c), respectively,
and λ = 0 and 1 separately correspond to uniform gapped
graphene and uniform gapless graphene. It is seen that in
the band gap, the conductivity tends to be zero, and the
corresponding Fano factor tends to be the integer 1. For pure
gapless graphene, i.e., λ = 1, the conductivity exhibits the
minimum 4e2/πh at the Dirac point, and the corresponding
Fano factor takes the maximum 1/3 [39,40]. We also notice
that outside the band gap, as the absolute value of energy |E|
increases, the conductivity will increase almost linearly with
small oscillations due to the propagating modes in the finite
structures. The additional forbidden band leads to the reduction
of the conductivity, which can be checked around the energy
±4ε� in Figs. 2(a)–2(c) and 6(b). The corresponding Fano
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FIG. 6. (a) Transmission probabilities vs the energy of the charge
carrier with fixed ky = 0. (b) Conductivity and (c) Fano factor vs
the energy of the charge carrier. The cases of λ = 0.33, 0.50, and
0.67, with the lattice constant � = 60 nm and the periodic number
N = 20, correspond to the cases in Figs. 2(a)–2(c), respectively. For
all cases, VA = VB = 0, Lx = 1200 nm, and Ly/Lx � 1.

factor gradually changes from 1 to a small value (about 0.1).
This indicates that the transport becomes ballistic.

The above discussions are under the condition of VA =
VB = 0; nevertheless, the gate voltage VA = VB = Vgate can
change the band gap originally around the Fermi level EF = 0
to the position of EF = Vgate. For unequal VA and VB , a stable
gap in the band structure will also exist [60]. It will be discussed
further in the next section.

B. Zero-energy modes

In this part, we start with Eq. (6) to find zero modes. We
discuss the simple and typical case of equal widths of an
inhomogeneous substrate in detail, i.e., λ = 0.5, so that wA =
wB . Assuming VA > VB , in the energy range VB + δ < E <

VA, we have qA < 0 and qB > 0. When qAwA + qBwB = 0 in
particular, Eq. (6) becomes

cos(βx�) = 1 + sin2(qAwA)
pB

2+1
pB

− 2 cos(∅A − ∅B)

2 cos(∅A) cos(∅B)
. (11)

In this case, pB
2+1

pB
= pB + 1

pB
> 2 (as pB �= 1 and pB > 0),

cos(∅A − ∅B) � 1, and cos(∅A) cos(∅B) > 0; therefore the
right-hand side of Eq. (11) is larger than the integer 1 unless
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−qAwA = qBwB = mπ , where m is a positive integer. For
the general cases of −qAwA = qBwB �= mπ , there is no
real solution for βx . These conditions lead to a gap that is
located around the energy satisfying qAwA + qBwB = 0. If
−qAwA = qBwB = mπ , βx = 0 is the only possible solution.
Based on the above analysis and to find zero-energy states, we
assume E = 0 and βx = 0; thus we have VB + δ < 0 < VA.
From −qAwA = qBwB and λ = 0.5, we obtain

VB = −
√

VA
2 + δ2. (12)

From −qAwA = qBwB = mπ , we have

ky, m = ±
√

VA
2

(�υF )2
− (2mπ )2

�2
. (13)

Here m denotes the serial number of a Dirac point, which
will be explained later. For convenience, we assume VA =
2lπ�υF /� = 2lπε�, and Eq. (13) becomes the concise form

ky, l,m = ±2π

�

√
l2 − m2. (14)

We have 0 � |ky | < kA for propagating modes; thus l and m

satisfy 0 < m � l; meanwhile, remember that m ∈ Z.
Differently, for other cases, i.e., λ �= 0.5, to find zero-energy

states located at ky = 0, we should consider the conditions
−kAwA = kBwB [53] [kA(B) is the wave vector in the A (B)
regions] and −kAwA = kBwB = m′π (m′ ∈ Z), which lead to

V ′
B = −

√
V ′

A
2
λ2

(λ − 1)2 + δ2 (15)

and

ky, m′ = 0, (16)

with the definition of V ′
A = m′π�υF /(λ�). To find zero-

energy states at ky �= 0, we still use −kAwA = kBwB to

determine the potentials, and we have V ′′
B = −

√
V ′′

A
2
λ2

(λ−1)2 + δ2

with V ′′
A = l′′π�υF /(λ�) (l′′ is an arbitrary positive number).

Then we assume −qAwA = mAπ and −qBwB = mBπ , where
mA and mB are both positive integers. From the hypotheses,
we have

ky, l′′,mA
= π

λ�

√
l′′2 − (mA)2,

ky, l′′,mB
= π

(1 − λ)�

√
l′′2 − (mB)2. (17)

If ky, l′′,mA
= ky, l′′,mB

, there will be a new zero-energy state
at ky, l′′,mA(B) . For λ �= 0.5, it is difficult to find zero-energy
states from Eq. (6) using the analytic method; therefore the
results stated above are always a convenient approach since the
zero-average wave-number gap was found [60]. In addition,
we emphasize that the above solutions for the cases of λ �= 0.5
are not all the solutions for zero-energy states satisfying
−kAwA = kBwB , and other unsolved zero-energy states will
cluster together with the states we have gotten; hence the
obtained solutions are not always Dirac points, which is very
different from the case of λ = 0.5.

We continue to discuss the case of λ = 0.5. Figures 7(b)
and 8(a)–8(h) demonstrate the evolution of the Dirac point
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FIG. 7. (a) Schematic diagram of the periodic square potentials
(red dotted line) and the electronic spectra of gapless graphene
(denoted by large X symbols) and gapped graphene (large V symbols).
(b) Number of Dirac points (spin and valley degeneracies are not
included) vs l with δ = πε�/2, λ = 0.5, VA = 2lπε�, and VB

satisfying Eq. (12). From VA = 2lπε�, we know that l scales linearly
with the potential VA.

versus l for λ = 0.5. Here l can represent VA, as l scales
linearly with VA. The value of l and Eq. (14) determine the
number and the positions of the Dirac points. As l increases,
Dirac points move away from ky = 0, and the Dirac points
are generated one by one from ky = 0 [see Figs. 8(a)–8(h)]. If
l < 1, there is no solution for m, which means no Dirac points
[see Figs. 7(b), 8(a), and 8(b)]. If l is a positive integer, a new
Dirac point is generated at ky = 0 [see Figs. 7(b), 8(c), 8(e),
and 8(g)]. If l moves forward from a positive integer, a new
pair of Dirac points is generated from ky = 0; meanwhile,
the Dirac point originally at ky = 0 vanishes, which results
in an even number of Dirac points [see Figs. 7(b), 8(d), 8(f),
and 8(h)]. With fixed l, m has possible values 1,2, . . . ,[ l ],
and a larger m denotes a Dirac point or pair of points that
is closer to ky = 0 or appears later (consider that the Dirac
point moves away from ky = 0 as l grows). For example [see
Fig. 8(g)], with fixed l = 3, m = 1 denotes the outermost pair
of Dirac points from ky = 0, m = 2 denotes the outer pair of
Dirac points from ky = 0, and m = 3 denotes the Dirac point
which is exactly located at ky = 0. This property is used in
Fig. 9 to indicate different Dirac points. Except for creating
more Dirac points by increasing VA and VB for fixed �, we
can achieve a similar result by increasing � for fixed VA and
VB . In Eq. (13), if we increase �, we will get more reasonable
solutions of m, i.e., more Dirac points appearing. Under this
condition, m still must be a positive integer.

We plot the DOS in Figs. 10(a)–10(h), which correspond to
Figs. 8(a)–8(h), respectively. When zero-energy modes do not
exist, as in Figs. 8(a) and 8(b), the DOS is zero around zero
energy. As for cases with l � 1, zero-energy modes emerge.
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FIG. 8. Electronic band structures for different values of l with δ = πε�/2, λ = 0.5, VA = 2lπε�, and VB satisfying Eq. (12). � = 40 nm
is set in this calculation.

Nevertheless, the relations between the DOS and the energy
are different for different l near zero energy. If l is a positive
integer, as in Figs. 10(c), 10(e), and 10(g), a more or less
curvilinear rise in the DOS versus the energy can be observed.
For the other cases, i.e., Figs. 10(d), 10(f), and 10(h), the DOS
increases linearly. The linear relation between the DOS and the
energy is formed because of the extra linearlike Dirac cones
around zero energy, although these extra linearlike Dirac cones
may be anisotropic. At each Dirac point, the group velocity
becomes zero in a few directions; therefore there is no Van
Hove singularity at zero energy.

Inspired by the work on the group velocity at the Dirac point
of pristine graphene [42,43,61], now we discuss it in this struc-
ture, which helps us to understand the resonance in Fig. 11.
Group velocities in the βx and ky directions can be given by

υx = ∂E

∂px

, υy = ∂E

∂py

, (18)

where px = �βx and py = �ky are the momenta in the
βx and ky directions in terms of the Bloch wave. It is not
convenient to find the analytical solution of Eq. (18) from
Eq. (6); therefore we present the result in Fig. 9 numerically.
As stated previously, the Dirac point at ky = 0 exists only
when l is a positive integer. Figure 9 shows that every time it
appears, υx � υF and υy = 0. When the Dirac point at ky = 0
vanishes, as l increases, the corresponding υx of the new pair
of Dirac points gradually reduces to zero from approximately
υF , and υy gradually approaches υF from zero. The cases
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FIG. 9. Group velocities in βx and ky direction vs l at the Dirac
point. Parameters are the same as those in Fig. 8.

with m = 1,2,3, and 4 are shown in Fig. 9; as can be seen,
they all have similar characters.

The DOS, the conductivity, and the Fano factor at zero
energy are shown in Fig. 11. Brey and Fertig have found
conductance resonance in the uniform gapless graphene with
the periodic cosine-type potential [41]; here we observe a
similar property as well. From Fig. 11, it can be seen that
there are peaks in the conductivity and valleys in the Fano
factor when l are positive integers, and small values (about 0.1)
of the Fano factor suggest the resonance at zero energy. The
resonance may be caused by the appearance of the Dirac point
at ky = 0 and its zero group velocity along the ky direction,
as the new Dirac point and the character of υy = 0 lead to
the strong enhancement of the DOS near zero energy [see
Fig. 11(a)]. It can also be seen intuitively from Figs. 8(c), 8(e),
and 8(g) that the band at (ky = 0, E = 0) becomes flat in the
ky direction, which results in the enhancement of the DOS.
In addition, compared with Fig. 5(b), the conductivity versus
l in Fig. 11(b) has the same rising tendency if we ignore the
resonance, which indicates that the potential (represented by
l) enhances the conductivity by generating more Dirac points
at zero energy.

Then we consider the effect of the structural disorder on the
conductivity and the Fano factor at zero energy. The percentage
of the largest width derivation R2 against wA/wB is up to 5%,
and we show the conductivity and the Fano factor under such
structural disorder in Fig. 12. Figure 12 explicitly shows that
peaks of the conductivity and valleys of the Fano factor still
exist, although the shift of these peaks becomes more distinct.

Finally, in experiments, we suggest that our results could
be realized on a heterosubstrate such as SiO2/BN [62], and the
conditions are that one part of the inhomogeneous substrate
breaks the sublattice symmetry, which leads to a symmetry
gap around the Fermi level, and another part does not. In
addition, other devices which have a similar principle may be
equally valid. For example, graphene with a band gap induced
by patterned hydrogen adsorption [30] can take the place of
graphene on the BN substrate.

IV. CONCLUSIONS

In summary, we investigated the band gap around the
Fermi level and zero-energy modes of the electronic band
structures of 1D graphene-based superlattices placed on the
heterosubstrate with periodic square potentials.
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FIG. 10. Density of states for different l. The other parameters are the same as those in Fig. 8.

It is found that the band gap’s width can be almost linearly
tuned by the proportion of an inhomogeneous substrate if
equal potentials are applied on the GSLs, and the relation is
robust against the effect of the structural disorder. The relation
between the band gap and the proportion of an inhomogeneous
substrate is exactly like comproportionation [63] in chemistry,
which will benefit the design of graphene-based electronic
devices. Moreover, the scaling law of the band gap is explained
by the wave function and the DOS.

For zero-energy modes, the typical case of equal widths of
an inhomogeneous substrate was discussed in detail. Although
the sublattice symmetry was broken for gapped graphene, we
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FIG. 11. (a) Density of states, (b) conductivity, and (c) Fano factor
at zero energy vs l. For (b) and (c), Ly/Lx � 1. The other parameters
are identical to those in Fig. 8.

showed that Dirac points emerge at zero energy if asymmetric
potentials are applied on the GSLs, but the Dirac point at k = 0
[ as (βx,ky) = (0,0) ] exists only for specific potentials. Once
the Dirac point at k = 0 appears, the resonance occurs with
the conductivity having a peak and the shot noise tending to be
very low, which indicates that the transport becomes ballistic.
Furthermore, we found that the resonance occurs for the strong
enhancement of the DOS around zero energy, which is caused
by the appearance of a Dirac point at k = 0 and its zero
group velocity in the ky direction. General cases with unequal
widths of the inhomogeneous substrate were also discussed,
and part of the zero-energy states was described analytically.
Our prediction may be realized on a heterosubstrate such as
SiO2/BN, and other devices which obey a similar principle
should be equally possible.
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