Ground-state tuning of metal-insulator transition by compositional variations in $BaIr_{1-x}Ru_xO_3$ $(0 \le x \le 1)$

S. J. Yuan, ^{1,*} K. Butrouna, ¹ J. Terzic, ¹ H. Zheng, ¹ S. Aswartham, ¹ L. E. DeLong, ¹ Feng Ye, ² P. Schlottmann, ³ and G. Cao^{1,†}

¹Department of Physics and Astronomy, Center for Advanced Materials, University of Kentucky, Lexington, Kentucky 40506, USA

²Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

³Department of Physics, Florida State University, Tallahassee, Florida 32306, USA

(Received 9 October 2015; revised manuscript received 23 March 2016; published 25 April 2016)

Hexagonal BaIrO₃ is a magnetic insulator driven by the spin-orbit interaction (SOI), whereas BaRuO₃ is an enhanced paramagnetic metal. Our investigation of structural, magnetic, transport, and thermal properties reveals that substitution of Ru⁴⁺ (4d⁴) ions for Ir⁴⁺ (5d⁵) ions in BaIrO₃ reduces the magnitudes of the SOI and a monoclinic structural distortion and rebalances the competition between the SOI and the lattice degrees of freedom to render an evolution from a magnetic insulting state to a robust metallic state. The central findings of this paper are as follows: (1) light Ru doping (0 < $x \le 0.15$) prompts simultaneous, precipitous drops in both the magnetic ordering temperature T_N and the electrical resistivity, and (2) heavier Ru doping (0.41 $\le x \le 0.9$) induces a robust metallic state without any long-range magnetic order. All results suggest a critical role of the lattice degrees of freedom in determining the ground state in the heavy transition-metal oxides.

DOI: 10.1103/PhysRevB.93.165136

I. INTRODUCTION

A unique feature of the 5d iridates is that a strong spinorbit interaction (SOI) competes vigorously with Coulomb interactions, noncubic crystalline electric fields, and Hund's rule coupling [1–5]. The relative strengths of these interactions stabilize new exotic ground states that provide a fertile ground for studying new physics. In particular, it is now recognized that strong SOI can drive novel narrow-gap Mott insulating states in iridates. The SOI is a relativistic effect that is proportional to Z^2 (Z is the atomic number), is approximately 0.4 eV in the iridates (compared to \sim 20 meV in 3d materials), and splits the t_{2g} bands into states with $J_{\text{eff}} = 1/2$ and $J_{\text{eff}} = 3/2$, the latter having lower energy. Since the Ir⁴⁺ (5d⁵) ions provide five 5d valence electrons, four of them fill the lower $J_{\text{eff}} = 3/2$ bands, and one electron partially occupies the $J_{\rm eff}=1/2$ band in which the Fermi level E_F resides. The $J_{\rm eff} = 1/2$ band is so narrow that even a reduced U ($\sim 0.50 \, {\rm eV}$ due to the extended nature of 5d-electron orbitals) is sufficient to open a gap ($\leq 0.62 \,\mathrm{eV}$) that induces a novel insulating state, which is contrary to expectations based upon the relatively large unsplit 5d bandwidth [1-3,6].

Adopting a distorted hexagonal structure with both face-sharing and corner-sharing ${\rm IrO_6}$ octahedra, ${\rm BaIrO_3}$ is particularly unique in that it exhibits a simultaneous onset of weak ferromagnetic transition due to a canted antiferromagnetic structure and charge-density wave (CDW) orders with Néel temperature $T_{\rm N}=183~{\rm K}$, comparable to that of other iridates, such as 240 K for ${\rm Sr_2IrO_4}$ [7] and 285 K for ${\rm Sr_3Ir_2O_7}$ [8], and a temperature-driven transition from a bad metal to an insulating ground state [9–11]. The ground state of ${\rm BaIrO_3}$ is extremely sensitive to lattice contractions that can be tuned by light doping or the application of hydrostatic pressures [4,12,13]. The extraordinary delicacy of the ground state in ${\rm BaIrO_3}$ implies a critical balance among orbital, electronic, and lattice

degrees of freedom [4,14]. The hexagonal structure of BaIrO₃ is similar to that of nine-layered rhombohedral BaRuO₃, which exhibits a crossover from metallic to insulating behavior and enhanced paramagnetism with decreasing temperature [15,16]. However, a monoclinic distortion extant in BaIrO₃ at room temperature and 90 K generates twisting and buckling of the cluster trimers (see Fig. 1) that give rise to two one-dimensional (1D) zigzag chains along the c axis and a two-dimensional layer of corner-sharing IrO₆ octahedra on the ab plane [9,12,17–19].

Although BaIrO₃ and BaRuO₃ have similar structures, they exhibit sharply contrasting physical properties, which underscore the critical role SOI (\sim 0.4 eV for iridates and \sim 0.15 eV for ruthenates) [3], and the lattice degrees of freedom can play in determining the ground state in iridates. In this paper, substituting Ru⁴⁺ (4d⁴) for Ir⁴⁺ (5d⁵) in single-crystal BaIr_{1-x}Ru_xO₃(0 $\leq x \leq$ 1) reduces the magnitude of the SOI, the structural distortions, and adds holes to the t_{2g} bands. The overall effect of Ru doping is to lower E_F and move the system away from the Mott instability toward a more robust metallic state. The emerging metallic state with delocalized electrons also accompanies a decrease in T_N .

II. EXPERIMENT

The single crystals of $BaIr_{1-x}Ru_xO_3$ were grown by conventional flux methods similar to earlier reports [9,15] using $BaCl_2$ as a self-flux. Crystals were grown in platinum crucibles using IrO_2 (99.98%, Alfa Aesar), RuO_2 (99.98%, Alfa Aesar), $BaCO_3$ (99.99%, Alfa Aesar), and anhydrous $BaCl_2$ (99.5%, Alfa Aesar). Starting powders were placed in a Pt crucible with a Pt lid, and this assembly was then put in an alumina crucible with a cover. The mixtures were heated up to $1480\,^{\circ}C$ and then cooled to $1350\,^{\circ}C$ at a rate of $5\,^{\circ}C$ per hour before cooling down to room temperature. The ratio of the sample to flux remains at 1:8 throughout the entire series of $BaIr_{1-x}Ru_xO_3$. The crystals have a hexagonal surface and a visible layered texture along the c axis as

^{*}Corresponding author: sjyuan.shu@gmail.com †cao@uky.edu

FIG. 1. Comparison of the nine-layer crystallographic form (a) BaIrO₃ and (b) BaRuO₃ crystal structure. Note the corner-sharing Ir₃O₁₂ and Ru₃O₁₂ trimers that are connected through the vertices of the top and bottom octahedra of the trimers and the schematic of the M-O₂-M bond angle θ (M = Ir or Ru).

shown in the inset of Fig. 2(a). The crystal structures were determined using a Nonius Kappa CCD x-ray diffractometer or a Rigaku x-ray diffractometer XtaLAB PRO equipped with a PILATUS 200-K hybrid pixel array detector at 90 or 240 K, and they were refined by full matrix least squares using the SHELX-97 programs [20]. The standard deviations of all lattice parameters and interatomic distances are smaller than 0.1%. The atomic parameters for BaIr_{1-x}Ru_xO₃ are available in the Supplemental Material [21]. Chemical compositions of the single crystals were estimated using a combined unit of

FIG. 2. The magnetic susceptibilities $\chi(T)$ along the c axis for $\mathrm{BaIr}_{1-x}\mathrm{Ru}_x\mathrm{O}_3$ where (a) $0 \leqslant x \leqslant 0.15$ and (b) $0.42 \leqslant x \leqslant 1$. The data were collected after a field cooling procedure at $\mu_0H = 0.1\,\mathrm{T}$. The inset in (a) shows a representative single crystal of $\mathrm{BaIr}_{1-x}\mathrm{Ru}_x\mathrm{O}_3$ with x=0. The inset in (b) shows an enlarged $\chi_c(T)$ for x=0.15.

Hitachi/Oxford SwiftED 3000 for energy dispersive x-ray spectroscopy. The magnetization M(T), electrical resistivity $\rho(T)$, and specific heat C(T) were measured between 1.7 and 400 K using a Quantum Design 7T superconducting quantum interference device (SQUID) magnetometer and a Quantum Design 9T physical property measurement system, respectively.

III. RESULTS AND DISCUSSION

The two end members BaIrO₃ and BaRuO₃ both have nine-layer rhombohedral phases with different space groups as shown in Figs. 1(a) and 1(b). The C2/m(12) space group of BaIrO₃ features three face-sharing IrO₆ octahedra forming Ir₃O₁₂ trimers that are corner and face shared via IrO₆ octahedra (containing Ir₁ and Ir₃ sites) to form 1D chains along the c axis [12,16-19] [see Fig. 1(a)]. A monoclinic distortion generates twisting and buckling of the trimers (tilted $\sim 12^{\circ}$ relative to each other), which gives rise to two 1D zigzag chains along the c axis and a two-dimensional layer of corner-sharing IrO₆ octahedra on the ab plane. Substituting Ru⁴⁺ for Ir⁴⁺ preserves the monoclinic structure in the entire doping range $(x \le 0.90)$ except for x = 1 as shown in Table I. It results in a nearly uniform reduction in lattice parameters a-c axes and the unit-cell volume V. This behavior is expected because the ionic radius of Ru⁴⁺ (0.620 Å) is slightly smaller than that of Ir⁴⁺ (0.625 Å). In addition, the Ir/Ru-O-Ir/Ru bond angle θ increases linearly with increasing Ru concentration x and eventually reaches 180° for x = 1 (i.e., BaRuO₃), indicating a significantly less distorted lattice. BaRuO₃ or x = 1 exhibits a similar crystal structure with the $R\bar{3}m$ (166) space group as shown in Fig. 1(b). Three RuO₆ octahedra share faces in a partial chain, facilitating direct Ru-Ru d-orbital interactions between the octahedra. Each of these triple units or trimers of the octahedra shares corners with its neighbors along the hexagonal axis via nearly 180° bond angles that favor superexchange coupling [Fig. 1(b)].

Ru doping induces pronounced changes in a wide range of physical properties of single-crystal $\mathrm{BaIr}_{1-x}\mathrm{Ru}_x\mathrm{O}_3$. Representative data for the c-axis magnetic susceptibility $\chi_{\mathrm{c}}(T)$ that shows the weak magnetic transition at T_{N} is depressed from 183 K for x=0 to 145 K for x=0.04 and vanishes for $x\geqslant 0.41$ is presented in Fig. 2.

The magnetic anisotropy also decreases with Ru additions as shown in Fig. 3. Magnetic anisotropy is in general a result of SOI; Ru doping weakens the SOI, therefore, leading to a smaller magnetic anisotropy. Furthermore, Hund's rule coupling competes with the SOI and thus weakens the relative strength of the SOI. With increasing x, the c-axis susceptibility $\chi_c(T)$ becomes relatively stronger and larger than the basalplane susceptibility $\chi_{ab}(T)$ [see Figs. 3(b) and 3(c)]. This change suggests a spin flop from the basal plane to the c axis due to Ru doping. For x = 1, the basal-plane $\chi_{ab}(T)$ is larger than $\chi_c(T)$ again [see Fig. 3(d)]. Similar phenomena were also observed in Ca₂Ru_{1-x}Ir_xO₄ [22] and Sr₂Ir_{1-x}Ru_xO₄ [23]. This behavior could be due to the strong interaction between Ru 4d and Ir 5d electrons.

It is already established that the bond angle θ is critical to the electronic and magnetic structures of iridates [4]. As shown in Fig. 4(a), θ increases linearly with increasing x and

TABLE I. The crystal structure and refinement details of $BaIr_{1-x}Ru_xO_3$ at 90 K for x = 0, 0.10, 0.63, and 1 and at 240 K for x = 0.82 and 0.90. The diffracometer is a Nonius Kappa CCD, and the aborption correction is a multiscan SADABS. The Ir/Ru-O₂-Ir/Ru bond angle is defined in Fig. 1.

	x = 0 (90 K)	x = 0.10 (90 K)	x = 0.63 (90 K)	x = 0.82 (240 K)	x = 0.90 (240 K)	x = 1 (90 K)
			Crystal data			
Crystal system,	Monoclinic,	Monoclinic,	Monoclinic,	Monoclinic,	Monoclinic,	Trigonal,
space group	C12/m1(12)	C12/m1(12)	C12/m1(12)	C12/m1(12)	C12/m1(12)	$R\bar{3}m$ (166)
a-c (Å)	a = 9.9935(2),	a = 9.9839(2),	a = 9.9440(2),	a = 9.9999(5),	a = 9.9923(4),	a = 5.7366(1),
	b = 5.7352(1),	b = 5.7377(1),	b = 5.7429(1),	b = 5.7759(4),	b = 5.7733(3),	c = 21.5933(6)
	c = 15.2376(3)	c = 15.1107(4)	c = 14.8102(4)	c = 14.8916(4)	c = 14.8882(8)	
β (deg)	103.411(1)	103.3402(9)	102.8574(9)	102.939(5)	102.882(4)	NA
$V(\mathring{A}^3)$	849.10(6)	842.25(3)	824.57(3)	838.28(8)	837.26(7)	615.40(3)
Z	12	12	12	12	12	9
Bond angle (deg)	161.671(1)	163.678(0)	174.296(1)	175.1(3)	176.1(1)	180.0
			Data collection			
Number of measured, independent, and observed $[I > 4\sigma(I)]$	6066,398,350	7075,396,369	7210,398,353	14459,1643,1525	14071,1769,1633	7256,401,398
reflections						
Rint	0.021	0.031	0.035	0.027	0.038	0.025
			Refinement			
$R[F^2 > 4\sigma(F^2)],$ $wR(F^2), S$	0.016,0.035,1.05	0.02,0.049,1.15	0.025,0.069,1.17	0.067,0.1847,1.085	0.0720.205,1.024	0.02,0.035,1.09

eventually reaches an ideal 180° for x = 1. The increase in θ directly enhances the electron hopping and favors a more metallic state with a concurrent decrease in T_N [see Fig. 4(b)].

Indeed, the evolution from the insulating to the itinerant state upon Ru doping is clearly illustrated in the electrical resistivity $\rho(T)$. For x = 0, both the *ab* plane and the *c* axis $\rho_{ab}(T)$ and $\rho_c(T)$ exhibit a sharp kink at $T_N = 183$ K, consistent with previous results in which the energy gap is estimated to be 0.1 eV [9,17]. With Ru doping, both $\rho_{ab}(T)$ and $\rho_c(T)$ decrease rapidly (see Fig. 5). It is noted that the metallic

FIG. 3. The magnetic susceptibilities $\chi(T)$ on the ab plane and along the c axis for representative compositions (a) x=0, (b) x=0.10, (c) x=0.82, and (d) x=1, respectively. The magnetization was measured after field cooling at $\mu_0 H=0.1$ T.

behavior at higher temperatures for x = 0.04 [see Fig. 5(b)] does not seem to follow the general trend displayed by other compositions although the behavior is highly reproducible.

FIG. 4. The Ru concentration x dependence of (a) the Ir/Ru-O₂-Ir/Ru bond angle θ and (b) $T_{\rm N}$. The inset: schematic of the Ir/Ru-O₂-Ir/Ru bond angle θ . Note that θ increases linearly with increasing x.

FIG. 5. The temperature dependence of the resistivity $\rho(T)$ for representative compositions (a) x=0, (b) x=0.04, (c) x=0.15, (d) x=0.41, (e) x=0.63, (f) x=0.82, (g) x=0.90, and (h) x=1. The vertical arrows indicate the kink that corresponds to the weak magnetic transition at $T=T_{\rm N}$.

The origin of this brief occurrence of the metallic state is yet to be understood. Nevertheless, dilute Ru substitutions for Ir result in a reduced $\rho(T)$ and an emerging metallic state for x>0.15. For x=1 or BaRuO₃, a broad upturn in $\rho_{ab}(T)$ at low temperatures might be a result of a pseudogap formation and 1D-CDW fluctuations according to Ref. [16].

The temperature dependence of the specific heat C(T)for various x's is given in Fig. 6(a). Fitting the data to $C(T) = \gamma T + \beta T^3$ for 7 < T < 17 K yields the Sommerfeld coefficient γ for the electronic contribution to C(T) [see Fig. 6(b)], which serves as a measure of the electronic density of states at the Fermi level $N(E_F)$ and the effective mass of the carriers. There is a substantial increase in γ with dilute Ru concentration; in particular, γ reaches 11.75 mJ mol⁻¹ K⁻² for x = 0.04 and 15.09 mJ mol⁻¹ K⁻² for x = 0.15, compared to $\gamma = 2.34 \,\mathrm{mJ} \,\mathrm{mol}^{-1} \,\mathrm{K}^{-2}$ for the parent compound (x = 0.0). The γ for $0.04 \leqslant x \leqslant 0.15$ in which the metallic state is not fully developed is unexpectedly high, and this is likely due to spin fluctuations existent in the system. Nevertheless, $N(E_F)$ and γ eventually decrease with x as shown in Fig. 6(b). In the case of BaRuO₃, the smaller values reflect pseudogap formation due to the CDW instability [16].

IV. CONCLUSIONS

We have investigated the structural, magnetic, transport, and thermal properties of $BaIr_{1-x}Ru_xO_3$. Ru doping rebalances

FIG. 6. (a) The specific heat C(T)/T vs T^2 and (b) the Sommerfeld coefficient γ vs x for BaIr_{1-x}Ru_xO₃.

the competition among the SOI, electron correlations, and the lattice degrees of freedom to generate a metallic state for x > 0.15. The Ru doping alters the relative strength of the SOI that dictates the ground state, which, in turn, affects the band gap near E_F . Unlike the situation in $\mathrm{Sr_2IrO_4}$ that features an unconventional correlation between the magnetic transition and the charge gap, the evolution of the ground state in $\mathrm{BaIr_{1-x}Ru_xO_3}$ appears to indicate a strong coupling between the magnetic order and the metal-insulator transition. All results suggest the critical role of lattice degrees of freedom that, along with the SOI, dictate the ground state of the heavy transition-metal oxides.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation via Grant No. DMR-1265162 (G.C.) and Department of Energy (BES) through Grants No. DE-FG02-98ER45707 (P.S.) and No. DE-FG02-97ER45653 (L.E.D.).

Durairaj, G. Cao, and E. Rotenberg, Phys. Rev. Lett. **101**, 076402 (2008).

^[1] B. J. Kim, H. Jin, S. J. Moon, J. Y. Kim, B. G. Park, C. S. Leem, J. Yu, T. W. Noh, C. Kim, S. J. Oh, J. H. Park, V.

- [2] B. J. Kim, H. Ohsumi, T. Komesu, S. Sakai, T. Morita, H. Takagi, and T. Arima, Science 323, 1329 (2009).
- [3] G. Cao and L. E. DeLong, in *Frontiers of 4d- and 5d-Transition Metal Oxides* (World Scientific, Singapore, 2013).
- [4] O. B. Korneta, S. Chikara, S. Parkin, L. E. DeLong, P. Schlottmann, and G. Cao, Phys. Rev. B 81, 045101 (2010).
- [5] T. F. Qi, O. B. Korneta, L. Li, K. Butrouna, V. S. Cao, X. Wan, P. Schlottmann, R. K. Kaul, and G. Cao, Phys. Rev. B 86, 125105 (2012).
- [6] J. Dai, E. Calleja, G. Cao, and K. McElroy, Phys. Rev. B 90, 041102 (2014).
- [7] G. Cao, J. Bolivar, S. McCall, J. E. Crow, and R. P. Guertin, Phys. Rev. B 57, R11039 (1998).
- [8] G. Cao, Y. Xin, C. S. Alexander, J. E. Crow, P. Schlottmann, M. K. Crawford, R. L. Harlow, and W. Marshall, Phys. Rev. B 66, 214412 (2002).
- [9] G. Cao, J. E. Crow, R. P. Guertin, P. F. Henning, C. C. Homes, M. Strongin, D. N. Basov, and E. Lochner, Solid State Commun. 113, 657 (2000).
- [10] M. L. Brooks, S. J. Blundell, T. Lancaster, W. Hayes, F. L. Pratt, P. P. C. Frampton, and P. D. Battle, Phys. Rev. B 71, 220411 (2005).
- [11] M. A. Laguna-Marco, D. Haskel, N. Souza-Neto, J. C. Lang, V. V. Krishnamurthy, S. Chikara, G. Cao, and M. van Veenendaal, Phys. Rev. Lett. 105, 216407 (2010).

- [12] G. Cao, X. N. Lin, S. Chikara, V. Durairaj, and E. Elhami, Phys. Rev. B 69, 174418 (2004).
- [13] M. A. Laguna-Marco, G. Fabbris, N. M. Souza-Neto, S. Chikara, J. S. Schilling, G. Cao, and D. Haskel, Phys. Rev. B 90, 014419 (2014).
- [14] W. Ju, G.-Q. Liu, and Z. Yang, Phys. Rev. B **87**, 075112 (2013).
- [15] M. Shepard, S. McCall, G. Cao, and J. E. Crow, J. Appl. Phys. 81, 4978 (1997).
- [16] Y. S. Lee, J. S. Lee, K. W. Kim, T. W. Noh, J. Yu, Y. Bang, M. K. Lee, and C. B. Eom, Phys. Rev. B 64, 165109 (2001).
- [17] A. V. Powell and P. D. Battle, J. Alloys Compd. **191**, 313 (1993).
- [18] M. H. Whangbo and H. J. Koo, Solid State Commun. 118, 491 (2001).
- [19] R. Lindsay, W. Strange, B. L. Chamberland, and R. O. Moyer, Jr., Solid State Commun. 86, 759 (1993).
- [20] G. M. Sheldrick, Acta Cryst. A64, 112 (2008).
- [21] See Supplemental Material at http://link.aps.org/supplemental/ 10.1103/PhysRevB.93.165136 for substantial information on crystal refinements.
- [22] S. J. Yuan, J. Terzic, J. C. Wang, L. Li, S. Aswartham, W. H. Song, F. Ye, and G. Cao, Phys. Rev. B 92, 024425 (2015).
- [23] S. J. Yuan, S. Aswartham, J. Terzic, H. Zheng, H. D. Zhao, P. Schlottmann, and G. Cao, Phys. Rev. B 92, 245103 (2015).