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Simulation of braiding anyons using matrix product states
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Anyons exist as pointlike particles in two dimensions and carry braid statistics, which enable interactions that are
independent of the distance between the particles. Except for a relatively few number of models, which are analyti-
cally tractable, much of the physics of anyons remains still unexplored. In this paper, we show how U(1) symmetry
can be combined with the previously proposed anyonic matrix product states to simulate ground states and
dynamics of anyonic systems on a lattice at any rational particle number density. We provide proof of principle by
studying itinerant anyons on a one-dimensional chain where no natural notion of braiding arises and also on a two-
leg ladder where the anyons hop between sites and possibly braid. We compare the result of the ground-state ener-
gies of Fibonacci anyons against hardcore bosons and spinless fermions. In addition, we report the entanglement
entropies of the ground states of interacting Fibonacci anyons on a fully filled two-leg ladder at different interaction
strength, identifying gapped or gapless points in the parameter space. As an outlook, our approach can also prove
useful in studying the time dynamics of a finite number of non-Abelian anyons on a finite two-dimensional lattice.
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I. INTRODUCTION

Anyons are pointlike (quasi)particles which exist only in
two-dimensional systems and have richer exchange statistics
than bosons or fermions. One of the main interests in anyons
is in their application to implementing fault-tolerant (topolog-
ical) quantum computation [1–3]. Anyons have also garnered
a substantial theoretical interest since they are proposed to
exist in systems as diverse as fractional quantum Hall systems
and two-dimensional spin liquids [3–16], one-dimensional
nanowires [17–20], and ultracold atoms in optical lattices [21].
Recent experiments showing evidence for Majorana edge
modes (i.e., Ising anyons) in nanowires [20] might bring
us closer to working with anyons in the laboratory, with
far-reaching scientific and technological applications.

One-dimensional chains of static SU(2)k anyons with
a local antiferromagnetic Heisenberg-like interaction have
been studied extensively since, for example, they are critical
and realize all minimal models of conformal field theories
(CFTs) [22]. It is also natural to ask whether interesting states
and phases appear in anyon models where the anyons are
allowed to hop on a lattice and braid around one another.
Braiding pairs of anyons generally transforms the anyonic
state in a nontrivial way, in contrast with bosons and fermions,
which merely pick up a factor of ±1. For anyons, braiding is a
topological interaction, with the meaning that the interaction
is independent of the distance between the anyons and arises
only from the inherent anyonic statistics. In Refs. [23,24], the
authors report on some phases that appear in lattice models of
itinerant anyons, where the anyons—coupled by a Heisenberg
interaction—are located on the sites of a lattice, with vacancies,
which allow for anyons to hop between sites but without
braiding around one another. In Ref. [25], the authors study the
real-time dynamics of a single anyon moving between the sites
of a ladder lattice with static anyons pinned to the plaquettes
of the ladder, which serves as a model of coherent noise in
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topological quantum memories, and uncovers a signature that
distinguishes Abelian anyons from non-Abelian anyons based
on their transport properties. Noise models for medium sized
topological memories based on real time stochastic dynamics
of braiding Ising models anyons [26], Fibonacci anyons [27],
and quantum double model anyons [28] have also been studied.
In this paper, we describe how to simulate ground states of
1D and quasi-1D models of itinerant anyons, which may or
may not involve braiding, and possibly include a Heisen-
berg interaction. We benchmark our method by reporting
ground-state energies and ground-state entanglement for these
models.

Large anyonic systems, like generic quantum many-body
systems, are hard to simulate on a classical computer due to
the exponential growth in the dimension of the state space with
the number of particles. Until recently, numerical studies of
anyons have primarily used exact diagonalization [22,23,29–
31], which limits analysis to small system sizes and relies on
finite-size scaling to extract properties in the thermodynamic
limit. A more successful approach uses tensor networks (TNs),
which describes quantum many body states using a network of
low rank tensors which can be contracted together to compute
relevant quantities such as ground-state energy, correlations,
subsystem entropy, etc. One of the simplest tensor networks
is the matrix product state (MPS) which forms the basis of
highly successful algorithms, namely, the density matrix renor-
malization group (DMRG) [32–34] and the time-evolving
block decimation (TEBD) [35–37], to simulate the ground
state and dynamics of 1D and quasi-1D quantum many-body
systems. Exploiting translation invariance in TN states has
allowed the study of systems directly at thermodynamic limit,
circumventing the limitation on size encountered in exact
diagonalization [38].

Owing to their success for spin systems, tensor network
algorithms have recently been adapted to simulate quantum
many-body systems of anyons [39–41]. In particular, anyonic
versions of the matrix product states (MPS), and of the
TEBD and DMRG algorithms have been proposed and tested
with a high degree of accuracy for anyonic chains [42,43].
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Tensor network algorithms are adapted to anyons by explicitly
hardwiring the constraints implied by the fusion rules of the
anyon model into the tensor network ansatz. This provides
two important advantages. First, an anyonic TN representing a
many-body anyonic state contains fewer complex coefficients
than a nonsymmetric TN description of the same state that does
not explicitly encode the anyonic symmetry, thus providing for
computational speedup. Secondly, using an anyonic TN as an
ansatz in numerical simulations guarantees that one remains
in the physically relevant sector of the Hilbert state, namely,
one with the desired total anyonic charge, and thus avoiding
leakage into states that are not allowed by the physics of the
system, due to numerical errors.

In this paper, we describe how to simulate the ground state
of a system of itinerant anyons by means of the anyonic TEBD
algorithm that additionally incorporates a U(1) symmetry
corresponding to conservation of particle number density. Our
construction of the combined anyon × U(1) symmetric MPS is
the first to allow for simulating these systems with an arbitrary,
specified rational particle number density (or filling fraction),
and gives direct access to Hilbert space sectors enumerated by
anyonic charge and particle number density. Our MPS ansatz
also allows us to simulate bosons, fermions, and anyons using
the same algorithm, since bosons and fermions can be treated
as simple types of anyons.

Models of itinerant hardcore particles (bosons, fermions,
or anyons) in one dimension all have the same ground-state
properties since the particles do not exchange positions.
However, in two or higher dimensions, there are several paths
by which particles may exchange positions. Therefore, beyond
1D, ground-state properties of hardcore bosons, spinless
fermions and hardcore anyons should reflect the influence of
their exchange statistics. We test our method using itinerant
Fibonacci anyons on a chain and itinerant braiding (henceforth,
simply “braiding”) Fibonacci anyons on a two-leg ladder
and show how the ground-state energies differ from those
of hardcore bosons and spinless fermions. We also present
results for the ground-state entanglement of the Golden ladder
model comprised of Fibonacci anyons interacting by means of
ferromagnetic or antiferromagnetic Heisenberg interactions.

Thematically, the paper is divided into two parts. The first
part develops the anyon × U(1) symmetric TN formalism,
and the second part describes applications of this ansatz to
the simulation of models of itinerant and braiding anyons. The
anyon × U(1) symmetric MPS combines the recently proposed
anyonic MPS [42,43] with the implementation of a U(1)
symmetry in the MPS [44,45] and as such our presentation
contains some review of both elements separately, which
serves both as a reminder of important concepts and also
introduces useful terminologies that persist throughout the
paper. The structure of this paper is as follows: in Sec. II,
we review the anyonic MPS. In Sec. III, we review the
implementation of a U(1) symmetry in the MPS corresponding
to conservation of particle number density, in particular
showing how it can be achieved as an instance of the anyonic
MPS and how an arbitrary filling fraction is realized at the
level of the ansatz. In Sec. IV, we construct the combined
MPS ansatz that incorporates both the anyonic symmetry and
the U(1) symmetry. We present test models and benchmarking
results in Sec. V and some conclusions in Sec. VI.

II. ANYONIC MATRIX PRODUCT STATES

We give a brief review of the anyonic MPS constructed in
Refs. [42] and [43]. For more details, the reader can consult
these articles. The basis of the Hilbert space of anyons is
described by a labeled directed fusion tree (see Fig. 1) where
the charge c on any incoming edge at a vertex is determined
from the charges a and b of the two outgoing edges around the
same vertex, according to the fusion rules of the anyon theory

a × b →
∑

c

Nc
abc, (1)

which implies that charges a and b are allowed to fuse to,
possibly, several different charges c. The Nc

ab is the multiplicity
tensor, which encodes the number of ways of obtaining charge
c from charges a and b. We consider only multiplicity-free
anyon models in this work, with Nc

ab = 0,1, which includes
some of the models most relevant to current experiment such
as Ising anyons and Fibonacci anyons. When

∑
c Nc

ab > 1, the
anyon model is non-Abelian. Anyonic charges have quantum
dimensions analogous to the dimension of an irrep for a group,
and the dimensions da , db, and dc of three charges a, b, and c

must satisfy

dadb =
∑

c

Nc
abdc, (2)

though in contrast with group theory, there is no requirement
that the quantum dimensions be integer. The total quantum
dimension is then defined as D = √∑

a da summing over all
anyon charges a of the theory.

The labeled fusion/splitting tree in Fig. 1 contains many
charge labels, and can be extremely verbose when dealing
with large anyonic systems. While explicit labeling of fusion
trees is possible, in principle, it is not very practical for anyonic
tensor network simulations. A better alternative is to enumerate
the labeled fusion trees having a particular charge c at the
trunk of the tree. To this end, let c is the total charge at
the trunk of the fusion tree and introduce a new index μc

that enumerates each unique labeled fusion tree in increasing
numerical order, μc = 1,2, . . . ,νc. Here, μc is called the
degeneracy index, and νc is the degeneracy of the charge sector
c. The term “degeneracy” in symmetric TN does not refer to the

b2

bk−2

c

a1 a2 a3 ak

b1 · · ·

b2

bk−2

c

b1

· · ·

a1 a2 a3 ak

(i) (ii)

FIG. 1. (i) Splitting tree and (ii) fusion tree, defining the “ket”
and “bra” bases, respectively, for a total number k of anyonic charges
(a1,a2, . . . ,ak) on the leaves, and (b1,b2, . . . ,bk−2) as the fusion
products on the links of the trees. The charge c on the trunk can,
in principle, take all possible charge values permissible by the anyon
model. If, however, the fusion tree defines the basis of a pure quantum
state, the charge c can only be the vacuum charge I.
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“degeneracy of energy levels” as used in many-body physics,
but to the number of configuration states forming a basis in a
particular symmetry sector. All the fusion trees are therefore
concisely labeled by the multi-index gamma = (c,μc), with
c as the total charge label and μc as its degeneracy index. A
tensor network consists of connected tensors, which may be
a combination of, single-index tensors (or vectors), two-index
tensors (or matrices), or multi-index tensors. Similarly, the
tensor objects of our Anyonic-U(1) MPS ansatz are the anyonic
analog of the nonsymmetric tensors, although, for anyons, we
do not permit using tensors with more than three legs, as the
fusion tree labeling of non-Abelian tensors can no longer be
uniquely specified purely by multi-indices on the external legs.
The details of how to construct anyonic tensors are given in
Appendix A.

One convenient form of the conventional MPS ansatz is
that given by Vidal [35], which is an array of two-index and
three-index tensors forming a linear network of tensors. For
a finite lattice with open boundary condition, the tensors on
the boundary of the MPS (i.e., the first and last sites) are
two-index tensors while the “bulk” of the network consists
both of two-index tensors (Schmidt vectors) and three-index
tensors for each of the other (n − 2) sites.

Analogously, the MPS was adapted to anyons by Singh
et al. in Ref. [42], using the basic anyonic tensors (two-index
and three-index anyonic tensors) after the pattern of the
conventional MPS. Each three-index tensor is indexed by
both the charge and the degeneracy of the anyons making up
each site. The charges on the trivalent vertex of the tensor are
compatible in accordance with the fusion rules of the anyon
model. The Schmidt vectors, which are two-index tensors,
are charge-conserving diagonal matrices. The basis labeling
αi = (ai,μai

) for each site of the anyonic lattice is given
by the set of charges ai and the degeneracies μai

of each
charge. The labels μai

take fixed value 1 if there is only one
configuration for each possible charge labeling at each site,
e.g., if the possible physical states are merely the presence or
the absence of a charge.

Formally, for a lattice L of L sites with anyonic charges
α1 = (a1,μa1 ),α2 = (a2,μa2 ), . . . ,αL = (aL,μaL

), the anyonic
MPS encoding the ground state �GS is given diagrammatically
as

· · ·
Γ[1]

α1 α2 αL

Γ[2]

Γ[L]

Γ[3]

β1

λ[1]

λ[2]

λ[L−1]

β2

βL−1

α3

(3)

where the multi-indices βi+1 = (bi+1,μbi+1 ) on the bonds are
obtained by an iterative fusion of the multi-indices βi =
(bi,μbi

) and αi+1 = (ai+1,μai+1 ),

βi × αi+1 → βi+1, (4)

where, as before, the charge bi+1,

bi+1 =
∑

bi ,ai+1

N
bi+1
biai+1

(bi × ai+1), (5)

and the total degeneracy νbi+1 of the charge bi+1 is determined
by

νbi+1 =
∑

bi ,ai+1

N
bi+1
biai+1

νbi
νai+1 . (6)

It should be noted that this anyonic MPS has been
drawn with site indices going upwards, to make apparent the
visual similarity with anyonic fusion tree diagrams, but it is
essentially the same ansatz given in Ref. [42]. Due to the
iterative fusion process down the tree of the anyonic MPS the
dimensions of the tensors �[i] required to exactly construct
an arbitrary state will vary, but in practice an upper bound
is imposed on the bond dimension χ ahead of time. The
bound chosen usually depends on the amount of entanglement
and correlations needed to faithfully represent the state of the
system (and on computational resources available). As such,
anyonic MPS provides a systematic way of handling anyonic
systems, specifying both the basis (i.e., the fusion tree) and
encoding the amplitudes of the state in the tensors.

As a proof-of-principle example, this anyonic-MPS ansatz
has been used to simulate, together with the anyonic-TEBD
algorithm, a chain of interacting non-Abelian anyons (e.g.,
Fibonacci and Ising anyons) coupled by a Heisenberg inter-
action. The charge multi-index αi on each site i of the leaves
of the anyonic-MPS is set (in the case of Fibonacci anyons)
to αi = (τ,1), where τ is the Fibonacci anyon charge, and the
number 1 is the degeneracy of the τ charge on site i (i.e., the
number of different configurations on the site consistent with
a total charge of τ ). The anyonic MPS is, however, a general
ansatz capable of dealing with systems with any quantum
group symmetry, and hence, can be adapted to work with
other symmetries, Abelian or non-Abelian. For instance, by
replacing the anyonic charges with particle number charges,
the anyonic-MPS can serve as a U(1)-MPS [45], which can
be used to simulate physical systems having a global particle
number N on a finite lattice L.

On an infinite lattice with translation invariance of the
Hamiltonian, if the U(1) charge is identified with particle
number then the U(1)-MPS is primitively a zero-density ansatz
[i.e., one favoring a mean U(1) charge per site of 0], and cannot
directly be used to simulate an infinite lattice with a finite
nonzero particle density. In the next section, we show how
to tune the U(1)-MPS to simulate an infinite lattice system
at nonzero density, and in Sec. IV, we propose a modified
ansatz, the anyonic-U(1) MPS, that conserves both particle
density and anyonic charge symmetry, and which can be used
to simulate anyonic systems (including braiding of anyons) at
a specified rational filling fraction.

III. U(1)-MPS AND PARTICLE DENSITY CONSERVATION

In the last section, we alluded to the fact that the anyonic
MPS can serve as a U(1)-MPS by replacing the anyonic charge
labels with the particle number charge labels. Specifically,
let us consider a lattice L of L sites, where each site can
accommodate a finite number of particles, n = 0,1,2, . . . ,
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d − 1. The positive integers n can be regarded as the irreps
of the U (1) symmetry, which can intuitively be understood as
n = 0 is the absence of a particle, n = 1 is the presence of
one particle, n = 2 is the presence of two particles, and so on.
The total number of particles N on the lattice of L sites is
N = ∑L

i=1 ni , with a particle density of ν = N/L.
The Hilbert space of the lattice, VL = ⊗L

i=1 V
(i), can be

alternative written as, VL = ⊕N
n=0 Vn, a direct sum over

subspaces with fixed numbers of particles n. Utilizing this al-
ternative structure a particle-number conserving Hamiltonian
Ĥ can be directly diagonalized in the Vn subspace, offering
savings on the computational cost. The U(1)-MPS ansatz for
N particles on an L-site lattice can be derived from the anyonic
MPS by fixing the particle number N and degeneracy νN = 1
at the “right end” of the last tensor, and charge 0 (i.e., zero) on
the “left end” of the first tensor. The on-site multi-indices of
the “bulk” (L − 2) tensors carry αi = (ni,μi), where ni is the
U(1) charge on site i, and μi enumerates the degeneracy of that
charge, for all i ∈ L. The MPS bonds also carry charge and
degeneracy indices, but unlike systems of anyons where degen-
eracy comes from the fusion rules of the anyon model, degener-
acy in U(1)-symmetric lattice models comes from the number
of combinatorial arrangement of the charges on the lattice.

Therefore with a properly constructed ansatz and an
optimization algorithm like TEBD or DMRG [46], one
can compute the ground state of a local U(1)-symmetric
Hamiltonian on a finite lattice. If this finite U(1)-MPS is
naively extended to simulate an infinite lattice model, the
ansatz would correspond to a zero-density ansatz because of
the finite size of the bond dimension χ and the assumption that
the U(1) charge labels exhibited on this bond are finite. In the
next sections, we give a heuristic proof of this statement, and
we then propose a technique which can be employed to tune
the U(1)-MPS away from being a zero-density ansatz, to any
desired nonzero particle density.

A. Zero-density U(1)-MPS

Restricted to a finite bond dimension χ carrying finite U(1)
charges, the U(1)-MPS with integer charge labels on an infinite
lattice is a zero-density MPS ansatz. Consider a section of the
infinite MPS in Fig. 2 with the charge-degeneracy indices on
physical sites

α1 = (
n1,μn1

)
, α2 = (

n2,μn2

)
, α3 = (

n3,μn3

)
,

· · ·

· · ·

γa γb γc

ψ1

ψ2

ψ3

ψ4

Γ[a]

Γ[b]

Γ[c]

FIG. 2. An example of an infinite MPS with a block made up of
three tensors �[a], �[b], and �[c]. By translational invariance of the
Hamiltonian, an infinite MPS corresponds to an infinite repetition of
the block and hence optimization to ground state is performed only
on the tensors within a single block.

and on the links,

β1 = (
m1,μm1

)
, β2 = (

m2,μm2

)
, β3 = (

m3,μm3

)
,

β4 = (
m4,μm4

)
.

The on-site charges ni are set to take positive integer charges
corresponding to particle number (e.g., hardcore boson has
ni∈ {0,1}). The charges mi on the links take only a finite
number of charges with degeneracy index μmi

= 1,2, . . . ,νmi
.

The charges and degeneracies on the bond are constrained by
the finite bond dimension χ and given as χ = ∑

mi
νmi

, where
mi labels the charge on the link i. For any realistic computer
simulation, the charge labels on the MPS bonds are all finite.
Assume we cut the infinite lattice into two partitions. There
exists a finite amount of charge k on the link of the left partition,
corresponding to a finite number of particles, and the density
on the left half-chain is therefore ν = k/∞ → 0 and therefore
the infinite U(1) MPS is a zero-density ansatz. However, it
is possible to remedy this and have a nonzero density U(1)
MPS by shifting the on-site charges so that a U(1) charge of
zero corresponds to the desired filling fraction. We present this
transformation below.

B. Nonzero density U(1)-MPS

By employing translation invariance, an infinite U(1)-
symmetric MPS consists of a block of repeated U(1)-
symmetric tensors, albeit that such an ansatz is zero-density
and will yield a ground state of an empty lattice as seen above.
However, by transforming the on-site charges of the MPS, we
can cause a U(1) charge of zero to correspond to the desired
density.

For simplicity and without loss of generality, we consider
hardcore particles, with charge labels n∈ {0,1} on each site of
the U(1)-MPS lattice. Let the desired density on the infinite
lattice be ν = p/q, which can be interpreted as having an
average of p particles on every q sites. Using the additive
(Abelian) fusion rules of U(1) charges, a U(1)-MPS with p

particles corresponds to having p sites with charge n = 1 and
the remaining q − p sites with holes n = 0. In an infinitely
increasing block, the number of particles p increases infinitely,
but by “subtracting off” the p number of particles, we can
recenter the relevant subspace to be labeled by the charge 0,
which is retained in a practical simulation. Formally, by using
the transformation

n′ = q

(
n − p

q

)
= qn − p, p � q, (7)

the on-site charges transform as

n = 0 → n′ = −p,

n = 1 → n′ = q − p,

where multiplication by q in Eq. (7) is purely for convenience
and ensures that the n′ charges, like the n charges, are integer.
In essence, before this transform, the desired filling fraction
in the MPS would correspond to having p occurrences of
charge 1 and q − p holes 0, summing to a total charge of
p. But after the transform, the desired filling corresponds
to having p occurrences of particles with charge q − p, and
q − p holes with charge −p, which sums to a total charge of
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· · · · · ·0 +1 +1 0 +1 0

· · · · · ·−1 +1 +1 −1 +1 −1

( Original charge labels )

( “Shifted” charge labels )

(a)

(b)

FIG. 3. Schematic representation of an infinite lattice with (a) a
typical half-filled configuration with one particle on every two sites,
and (b) a “shifted” version of (a) but with average of zero particle on
every two sites.

zero. The charge distribution on any link on a U(1)-symmetric
infinite MPS is centered on the zero charge sector, which now
corresponds to a particle density of p/q. Thus it becomes
possible to tune the U(1)-MPS to the desired filling fraction
without using tensors with more than three legs [47]. An
example of how this transform applies to the half-filling is
presented as an example below.

1. Example: half-filled MPS ansatz for hardcore bosons

Consider a particular configuration of an infinite lattice at
half filling, where there is on average, one particle on every
two sites as shown in Fig. 3(a). Each box represents a site and
the charge on the site is indicated inside the box. There is on
average one particle for every two sites, and assuming that
this average density is maintained, this will correspond to half
filling on the infinite lattice. This is of course not the only way
to achieve half filling, but the example will suffice to illustrate
how to achieve a half-filled U(1)-MPS.

With only nonnegative charges on each site, i.e., n∈ {0,1},
the charges on the links of the MPS—which are derived
by fusion of all charges leading to that link—are also all
nonnegative. However, the implementation requirement that
the charge indices be finite (and the finite size of the bond
dimension) places an upper bound on the set of charges on
the links which are retained after truncation of the Hilbert
space of the link. Hence the dominant larger-N states in the
infinite lattice are truncated. However, by using n′ = 2n − 1,
the on-site charges are redefined as 0 → −1 and 1 → 1, to give
the “shifted” configuration in Fig. 3(b), for which the dominant
states now inhabit the zero particle sector. Nearby charge
sectors such as ±1 on the bonds represent small fluctuations in
filling fraction relative to a baseline of ν = 1/2. We emphasize
that the complex amplitudes of the state are not changed, only
that their index is relabeled.

IV. ANYON × U(1)-SYMMETRIC MPS

A. Composite charges and fusion rules

In the last section, we reviewed the U(1) MPS and explained
how to achieve an arbitrary rational filling fraction on the
infinite lattice. In this section, we investigate how anyonic
systems at arbitrary filling fractions can be simulated using

an ansatz that conserves both the anyonic (quantum group)
symmetry and the U(1) symmetry.

We first recognize that the two symmetry groups are
described by particle spectra with differing fusion rules.
Similar to creating a new group from the product of two
groups, we introduce the Cartesian product of the anyonic
charge spectrum A = {a,b,c, . . . ,d} and the U(1) charge
spectrum which will be designated as U = {n,m, . . . ,z} where
n are integer charges, n ∈ Z∞. The product of the two-
particle spectra is given as A × U = {(a,n) |a ∈ A,n ∈ U},
where the label (a,n) is referred to as the composite charge.
The charges on the physical site and on the links of the MPS
are taken from this set A × U .

The “new” fusion rules for the composite charges are
derived from the fusion rules of the two theories,

(a1,n1) × (a,n2) = (a1 × a2,n1 × n2)

=
∑
a12

(
Na12

a1a2
a12,n1 + n2

)
, (8)

where as aforementioned n1 × n2 has a unique outcome (n1 +
n2) with an additive fusion rule, while the non-Abelian anyons
have generally more than one fusion outcome, hence the need
for the summation

∑
a12

over all possible charge outcomes a12.
We consider only hardcore anyonic particles, meaning that

either there is a nontrivial anyonic particle on a site or the site is
vacant. The vacuum charge of the composite charge spectrum
A × U is (I,0). The presence of a single nontrivial anyonic
charge is represented by (a,1) where a ∈ A \ I and the U(1)
charge 1 imposes a hardcore constraint of a single charge on
the site. The use of the U(1) charge allows the counting of
the anyonic charges fusing into a particular fusion channel
irrespective of the outcome anyonic charge. A simple example
is shown in Fig. 4.

The anyonic MPS ansatz and the U(1) symmetry discussed
in previous sections can be used together to realize an anyon ×
U(1)-symmetric MPS ansatz with the desired particle density.
The minor modification needed in the new ansatz involves

(τ, 1)
(I, 0)

(τ, 1)

(τ, 1)

(I, 2)
(τ, 2)

(I, 0)

(I, 2)
(τ, 2)

(τ, 1)

(I, 3)
(τ, 3)
(τ, 3)

FIG. 4. Fusion of composite charges situated on a manifold which
supports either a single nontrivial anyonic Fibonacci charge (τ,1) or a
vacuum charges (I,0) at each point. A lattice may then be embedded
into the manifold. In the figure, a linear ordering has been defined and
fusion proceeds from left to right. The total charge outcomes which
are ((I,3),(τ,3),(τ,3)), indicates that there are in total three Fibonacci
charge τ on the manifold fusing either into the vacuum charge (I) or
the Fibonacci anyon τ channel. As there are two charges with label
(τ,3), we would also introduce a degeneracy index μ(τ,3) = 1,2 to
enumerate these outcomes.

165128-5



AYENI, SINGH, PFEIFER, AND BRENNEN PHYSICAL REVIEW B 93, 165128 (2016)

using the composite charges along with the composite fusion
rules. To have an ansatz for a particular anyonic filling fraction,
the method of shifting the U(1) charges can be employed.
This only amounts to a shift in the U(1) charge labels, while
the labels on the anyonic fusion space are not altered. The
diagrammatic representation of tensors with the new symmetry
group and the MPS ansatz constructed from them are the same
as given in Appendix A and we will not reproduce them here.

B. Manipulations of anyon × U(1) tensors

Topological manipulations such as F moves, R moves,
and vertical bends applied to anyonic fusion trees are also
modified in the case of a anyon × U(1) symmetry. Let the label
ã = (a,n) be the composite charge where a is the anyonic
charge and n is the U(1) charge. Below we present typical
manipulations needed to contract anyonic tensors during
optimization of anyonic MPS.

1. F moves

The first topological manipulation required is that of
changing the fusion order of the composite charges represented
by the fusion tree. Let the basis fusion tree where the fusion of
charges proceeds from left to right be referred to as the standard
basis. If instead a different fusion ordering is chosen, such as
fusion from right to left, the charge outcomes are still the same,
a fact guaranteed by the constraint of associativity. Formally,
this associativity constraint corresponds to the pentagon
equations, as given in, e.g., Ref. [48]. The corresponding
operation of F move transforms from one fusion basis to
another one, and is given diagrammatically as

= f̃ F ãb̃c̃
d̃

f̃

ẽ

ã b̃ c̃

ẽ

d̃

ã b̃ c̃

f̃

d̃

,

(9)

where the coefficient (F ãb̃c̃

d̃
)
f̃

ẽ
decomposes into its anyonic and

U(1) counterparts as

(
F ãb̃c̃

d̃

)f̃

ẽ
= (

Fabc
d

)f

e

(
Fnanbnc

nd

)nf

ne
. (10)

The factor (Fabc
d )

f

e
is given by the F coefficients of the

anyon model, while the U(1) factor is given by (Fnanbnc
nd

)nf

ne
=

Nne
nanb

Nnd
nenc

N
nf

nbnc
Nnd

nanf
, which equals one if the charges are

compatible or zero otherwise. F moves may also be applied to
pairs of contiguous vertices appearing within a larger diagram.

It was noted in Ref. [49] that a symmetric tensor decom-
poses into a linear superposition of the degeneracy tensor and
its spin network for systems with nontrivial symmetries such
as SU(2), and more generally also for quantum symmetries.
Therefore any section of the anyonic MPS can be decomposed

into its degeneracy tensor and anyonic network as

β γ

Γ[b]

Γ[c]

α

δ

μb̃ μc̃

μẽ

Γ[b]

Γ[c]

μã

μd̃

b̃ c̃

ẽ

ã

d̃

=
ãb̃c̃d̃ẽ

The F move is then applied on the anyonic diagram and the
resulting F factors are absorbed into the tensor resulting from
contraction of the degeneracy tensor network. As shown, this
process is valid for any portion of the diagram where the
F-move operation can be applied.

2. R moves

Anyons have very rich particle exchange statistics, which
are neither bosonic nor fermionic. The exchange factors are
encoded in the R matrix, which is a matrix representation of the
braid (or R) move. The braid operator for composite anyonic
charges is given diagrammatically as

= Rãb̃
c̃ ,

b̃ã

c̃ c̃

b̃ã

(11)

where the factor Rãb̃
c̃ decomposes as

Rãb̃
c̃ = Rab

c Rnanb

nc
,

and Rnanb
nc

= 1 if na + nb = nc. The factors Rab
c are given by

the anyon model.
To model the braiding of anyons by exchanging the

positions of anyons, the Hamiltonian Ĥ should contain the
braid operator. Later, we construct a Hamiltonian for the
braiding of anyons supported on the vertices of a ladder.

3. Fusion tensor and loop factors

A trivalent tensor can be used to define a linear map
from the tensor product of two Hilbert spaces V(A) and
V(B) (which can possibly be degenerate) to a new composite
space V(C). The dimension of the new space dim(V(C)) =
dim(V(A)) × dim(V(B)). The linear map can be written as

T =
∑
a,b,c

T c
ab |c〉 〈a| ⊗ 〈b| , (12)

which sends a product basis |a〉 ⊗ |b〉 to the basis state |c〉.
This assignation can be manually defined by, for instance,
iterating slowly over the basis labeled by a and fast over the
basis labeled by b, sending them to a unique new basis indexed
by c. The coefficients of T c

ab are 1 for a valid map (ab → c)
and zero when there is no valid map. Consider the following
example. Let V(A) be a vector space of dimension dA: V(A) =
spanC{|x〉A}dA−1

x=0 and similarly let V(B) be a vector space of
dimension dB : V(B) = spanC{|y〉B}dB−1

y=0 . The tensor product
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TABLE I. The mapping from tensor product state |a,μa〉 ⊗
|b,μb〉 to a new basis |c,μc〉 using the Z2 fusion rule. Degeneracy
basis labels μx for each charge x ∈ (a,b,c) have been included to
count fusion into a particular charge.

a μa b μb c μc

0 1 0 1 0 1
0 1 1 1 1 1
1 1 0 1 1 2
1 1 1 1 0 2

space V(C) = V(A) ⊗ V(B) can be labeled by states {|z〉C} using
the simple assignment map |x〉A ⊗ |y〉B → |z = dBx + y〉C .

However, more structure can be included into the linear
map by defining some relationship between the basis labels of
the spaces. For example, assume we include a Z2 fusion rule
defined by

1 × 1 → 0; 0 × a → a ∀a. (13)

The charge outcome c = 1, resulting from the fusion 0 × 1
and 1 × 0, is degenerate, as is c = 0, which results from 0 × 0
and 1 × 1. The degenerate outcomes are then indexed by a
degeneracy index μc. The linear map using the Z2 fusion rule
is given in Table I.

Therefore, as per [44], the linear map tensor can in general
be written as

T =
⊕
a,b,c

Nc
ab

∑
μaμbμc

(
T c

ab

)μc

μaμb
|c,μc〉 〈a,μa| 〈b,μb| , (14)

where the tensor T is constructed blockwise from tensors T c
ab,

with each block being identified by the charge triple (a,b,c).
Each block tensor T c

ab then has its entries indexed by the
corresponding degeneracy indices (μa,μb,μc).

We generalize this to anyonic systems admitting anyon
× U(1) symmetries as follows: let two sites of an anyonic
system be described by a degenerate Hilbert space V(A)

and V(B) with basis {α = (ã,μã)} and {β = (b̃,μb̃)}, and
let the anyonic fusion product define a “fusion map” Ñ

γ

α,β

from multi-indices α and β to a new multi-index γ . The
anyonic fusion map creates a new vertex and we normalize
it according to diagrammatic isotopy convention. As was
discussed previously, the map is created by iterating slowly
over basis label α and fast over β, and enumerating pairs
(α,β) by a new label γ . The fusion tensor is represented in
Fig. 5(a). However, unlike the case of Abelian symmetry, for
anyons normalized according to the diagrammatic isotopic
convention the coefficients of a valid fusion map α × β → γ

take the value of the vertex normalization factor ( dc̃

dãdb̃
)
1/4

. As
for Abelian anyons, the coefficients are zero if there is no valid
fusion map.

The anyonic fusion tensor Ñ
γ

αβ and its Hermitian conjugate,
the splitting tensor Ñαβ

γ , are linear maps and fulfill the

condition that Ñ
αβ

γ ′ Ñ
γ

αβ = I
γ

γ ′ (Einstein summation convention
assumed) which is an identity operator on the new (degenerate)
space V(C), as shown in Fig. 5(b). The loop resulting from
the contraction in Fig. 5(b) is eliminated using the relation
in Fig. 5(c). It should be noted that the vertex normalization

Ñ
Ñ

Ñ †

= Iα β

γ

α β

γ

γ γ

γ

ã b̃

c̃

c̃

(a)

(c)

(b)

= dãdb̃

dc̃
c̃δc̃,c̃

FIG. 5. (a) The diagrammatic representation of the anyonic fusion
tensor Ñ , which can be expressed in its block structure Ñ

γ

αβ =
(Ñ c̃

ãb̃
)
μc̃

μãμb̃

= ( dc̃

dãdb̃
)
1/4

for valid map α × β → γ and zero otherwise.

(b) The fusion tensor Ñ
γ

αβ and its Hermitian conjugate Ñ
αβ

γ ′ are linear
and hence their product contracts to the identity operator defined
on the new multi-index γ . (c) Elimination of loops from anyonic
diagrams as given in Ref. [48].

√
dc̃

dãdb̃
in the definition of the fusion tensor Ñ and splitting

tensor Ñ † cancels with the loop factors
√

dãdb̃

dc̃
and hence the

identity matrix operator in Fig. 5(b) does not contain any factor
of the quantum dimension dã of anyonic charge ã. Also note
that the quantum dimension dã decomposes as the product
dã = dadna

where da is the anyon quantum dimension and dna

is the dimension of U(1) charge, which is trivially equal to
one.

4. Vertical bends

Bending a charge line horizontally is trivial, as timelike
(i.e., horizontal) slices of the fusion tree are invariant under
topology-preserving deformations. However, vertically bend-
ing an anyon charge line is nontrivial and involves reversing
the orientation of the anyon worldline. The details of how
to resolve the vertical bends in terms of F moves have been
given in Ref. [48] and also in Ref. [43]. We do not repeat the
derivations here but only mention the minor changes in the
presence of U(1) charges.

We adapt the left bend given in Ref. [43] to the case of
anyon × U(1). This is given as

(15)

where the U(1) charges on the vertex satisfy the condition
na + nb = nc. The dual of the anyonic a and that of the U(1)
charge n are denoted respectively as ā and −n, which will be
the new charge label on the left-bent leg. In addition there is
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also an implicit F coefficient from the U(1) charge sector, but
this is always equal to 1. Similarly, the right bend is given by

(16)

In summary, by constructing the appropriate tensor objects
with anyon × U(1) symmetry (e.g., two index and three index
tensors, fusion tensors, etc.), one can construct an MPS ansatz
for anyonic systems at any fixed rational filling. This ansatz
may then be used to construct an an approximation to the
ground state of a system by means of anyonic algorithms such
as the anyonic TEBD algorithm proposed by Singh et al. [42]
or the anyonic DMRG [43], ground-state properties such as
entropy scaling and correlation functions can be computed
using approaches similar to those for conventional tensor
networks, but modified to account for anyonic statistics by
normalizing vertices, removing loops and bending anyonic
charge lines in accordance with the prescriptions given in
Ref. [48].

V. TEST MODELS AND RESULTS

We provide some examples to demonstrate that an anyon ×
U(1)-symmetric MPS ansatz may be used to simulate itinerant
anyonic systems at any rational filling fraction, and also to
provide an example of a tensor network where more than one
symmetry is exploited in the algorithm, with one of these
symmetries being anyonic. The anyonic models we consider
are itinerant hardcore Fibonacci anyons with variable filling
fractions and interactions, on a one-dimensional chain (the
golden chain [29]), and on a ladder (the golden ladder).
We compute their ground-state energies and entanglement
entropies, using the definition of entanglement entropy for
non-Abelian anyons given in Ref. [50]. From this, we extract
the central charges of the conformal field theories associated
with the infrared limits of these models. Analytical solutions
for these models are not generally known, but we establish
the validity of our method by using it to compute equivalent
known results for spinless fermions and hardcore bosons, and
also by comparing results for selected anyonic systems with
those obtained using anyonic DMRG [43]. In general, our
results are found to be accurate to 4 or 5 decimal places.

A. Itinerant hardcore particles on a one-dimensional chain

We give some diagnostic test results for hopping and inter-
acting anyons on a chain using an anyonic t-J Hamiltonian
which is analogous to the t-J model for electrons. To make
the analogy more apparent, we briefly review the electronic
t-J model.

1. Electronic t- J model

The electronic t-J Hamiltonian consists of two competing
terms: a term corresponding to the kinetic energy of the
electrons, and an interaction between their spin degrees of

freedom. The t-J Hamiltonian is

Ĥ = −t
∑
〈ij〉

ĉ
†
i ĉj + J

∑
〈ij〉

Ŝi · Ŝj , (17)

where the first term is the kinetic energy with hopping strength
t and ĉ

†
i (ĉi) is the creation (annihilation) operator which

satisfies fermionic anticommutation relations. The second term
is the Heisenberg spin-spin interaction, which can be rewritten
in terms of projector of nearest spins to the singlet state using
the fact that

Ŝi · Ŝj = 1
2

[
(Ŝi + Ŝj )2 − Ŝ2

i − Ŝ2
j

]
. (18)

The addition of two spin-1/2 charges is given by the rule

1
2 ⊗ 1

2 = 0 ⊕ 1. (19)

Let Ŝ = Ŝi + Ŝj and choose units such that � = 1. Then the
relation

Ŝ2 |s,m〉 = s(s + 1) |s,m〉 , (20)

means Ŝ2 has two eigenvalues, 0 (when s = 0) and 2 (when
s = 1). Therefore Ŝ2 can be written in terms of projectors to
the singlet and triplet subspaces as (Ŝi + Ŝj )2 = 0π̂

(0)
ij + 2π̂

(1)
ij ,

where π̂ (0) and π̂ (1) are the projectors to singlet and triplet
subspaces. Therefore

Ŝi · Ŝj = −π̂
(0)
ij + 1

4 , (21)

where the identity, I = π̂ (0) + π̂ (1) has been used in the last
step. Therefore the t-J Hamiltonian simplifies to

Ĥ = −t
∑
〈ij〉

ĉ
†
i ĉj − J

∑
〈ij〉

π0
ij + const. (22)

For J > 0, the Hamiltonian favors neigboring spins forming
singlets (antiferromagnetic), and for J < 0, it favors triplet
formation (ferromagnetic). We adapt the electronic t-J to
anyons.

2. Anyonic t- J Hamiltonian in 1D: hopping term

Anyonic operators are written as matrices on the fusion
space of the participating anyons. A local two-site Hamiltonian
Ĥ = ∑

i H
[i,i+1] can be written diagrammatically as

Ĥ [i,i+1] = ai,ai+1,
ai,ai+1,c

H(ai, ai+1, ai, ai+1, c)

ai ai+1

ai ai+1

c ,

(23)
where the values of the function H (ai,ai+1,a

′
i ,a

′
i+1,c) are

determined by the model being constructed. The conservation
of charge c resulting from fusion puts the Hamiltonian into
block-diagonal form as Ĥ [i,i+1] = ⊕

c Ĥ [i,i+1]
c .

The anyonic t-J Hamitonian consists of two terms: a
hopping term and an interaction term. To give a systematic
and concrete treatment of both terms, We give the explicit
construction for Fibonacci anyons.
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The hopping of a Fibonacci anyon in 1D means the
neigboring site has to be vacant, corresponding to the vacuum
charge I. The kinetic operator can thus be represented as

(24)
being analogous to the fermionic terms (ĉ†iσ ĉi+1,σ + h.c) that
translate a fermion between sites i and i + 1. Since the anyonic
hopping term requires there is a vacant site with vacuum charge
I, this implies that the hopping term is nonzero only when
(ai = I,ai+1 = τ,a′

i = τ,a′
i+1 = I) or when (ai = τ,ai+1 =

I,a′
i = I,a′

i+1 = τ ). For dynamics, in one dimension with
hardcore constraints, the underlying exchange statistics of the
particle do not affect the ground-state properties (though the
degeneracy of the ground states may differ for different particle
species). Therefore, for free itinerant hardcore Fibonacci
anyons, spinless fermions and hardcore bosons all have the
same ground-state energies at any rational filling on the 1D
lattice.

We use the anyon × U(1) symmetric TEBD algorithm
to compute the ground-state energies of itinerant Fibonacci
anyons, spinless fermions and hardcore bosons on a 1D lattice.
We obtained the same ground-state energies for these three
cases up to 4 to 5 decimal places. This is owing to the fact
that particles are not allowed to exchange positions on the
lattice, and thus particle statistics do not affect the ground-state
properties.

In Fig. 6, we plot the numerical ground-state energy of
itinerant Fibonacci anyons against the analytical ground-state
energy of an equivalent system of spinless fermions given by

E(t,ν) = −2t
sin(πν)

π
. (25)

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0  0.2  0.4  0.6  0.8  1

E

HCFib

HCB Theory

FIG. 6. Ground-state energy (E) of itinerant hard-core Fibonacci
anyons on an infinite chain at different filling fractions (ν). The data
points result from numerical simulations, while the smooth curve is
the ground-state energy for an equivalent system of spinless fermions
at the thermodynamic limit.

Numerical ground-state energies for spinless fermions and
hardcore bosons result in an identical curve and so are not
reproduced here.

3. Anyonic t- J Hamiltonian in 1D: Heisenberg interaction term

Next, we include an anyonic Heisenberg interaction term
in addition to the hopping term. The anyonic Heisenberg
interaction is constructed by analogy to the Heisenberg
spin-spin interaction. For 100% filling, this model was first
proposed and studied by Feiguin et al. [29], and is known as
the golden chain. The anyonic Heisenberg interaction takes
the form

(26)
where JI > Jτ corresponds to an antiferromagnetic interaction
favoring fusion of the two Fibonacci anyons to the vacuum
charge I, and JI < Jτ corresponds to a ferromagnetic interac-
tion favoring projection to the Fibonacci charge τ .

When a Heisenberg interaction is introduced into a system
of itinerant Fibonacci anyons, the extensive degeneracy of the
free anyon system is lifted. The Hilbert space of the interacting
itinerant anyon system admits the decomposition

H = Hconfig ⊗ Hfusion, (27)

where Hconfig is the space of particle configurations, and
Hfusion is the space of valid labelings of the fusion tree.
The Hamiltonian admits an equivalent decomposition, and the
Hamiltonian for a system of free particles (acting on Hconfig is
associated with a central charge of 1. When a Heisenberg-type
interaction is added, this acts on Hfusion, lifting the degeneracy
of the states in this subspace. For a critical interaction, the total
central charge is additive, and may be written 1 + c where
1 is the contribution from the itinerant anyon model acting
on Hconfig and c is the contribution from the interactions on
the fusion portion of the Hilbert space [23]. This is alluded
to as spin charge separation. From our numerical simulations,
when JI > Jτ (antiferromagnetic), we obtained c = 0.708 and
when JI < Jτ (ferromagnetic), we obtained c = 0.84, for total
central charges of 1.708 and 1.84. These are very close to the
expected central charges of 1 + 7/10 for antiferromagnetic
interaction and 1 + 4/5 for ferromagnetic interaction.

B. Anyonic t- J model on ladder

Non-Abelian anyons have nontrivial braid factors, mak-
ing their simulation difficult. For such systems, numerical
approaches based on Monte Carlo schemes are plagued by
a form of the sign problem. We offer numerical evidence
that anyonic tensor networks (such as the anyonic MPS) are
able to simulate anyonic systems on geometries beyond one
dimension, in situations where the anyons experience braiding.
To model how braiding statistics affect the ground state of
anyons, we introduce the anyonic t-J model on the ladder, as
a generalisation of the model already considered on a chain.
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FIG. 7. A ladder of itinerant anyons. Ficticious strings are
attached to each nontrivial charge to indicate that they can participate
in nontrivial braids as they exchange positions with neigboring
anyons. For example, the nontrivial anyonic charge ai braids with
the nontrivial anyonic charge bi−1 as it hops horizontally to a new
site with ai−1 = 0. The labels Jv and Jh represent the amplitudes for
projecting the corresponding circled pairs into the vacuum sector.

Each site on the ladder supports only two types of charges,
namely, either a vacuum charge I or a single Fibonacci anyon
τ . Unlike in one dimension, anyons on the ladder can exchange
positions and consequently braid.

To model the braiding of anyons on the ladder in a consistent
manner, we impose a linear ordering to the anyons by attaching
ficticious “strings” to the anyons and oriented them leftward of
their on-site position (see Fig. 7). When an anyon hops from
one site to another on either the top or bottom chain of the
ladder, it braids with any adjacent anyonic charge along its
trajectory, with the strings acting as a convenient mnemonic
to visualize the orientation of the braid.

With reference to Fig. 7, the anyonic t-J Hamiltonian can
be written as

Ĥ = −th

N−1∑
i=1

(
b̂ai→ai+1=I + b̂bi→bi+1=I + H.c.

)
− Jh

(
�̂I

ai ,ai+1
+ �̂I

bi ,bi+1

)
− tv

2

N∑
i=1

(
b̂ai→bi=I + b̂ai+1→bi+1=I + H.c.

)

− Jv

2

(
�̂I

ai ,bi
+ �̂I

ai+1,bi+1

)
, (28)

where (th,tv) and (Jh,Jv) are the hopping and interaction
amplitudes for anyons on the legs and rungs of the ladder.
The vacuum charge is denoted by I. The operator b̂x→y=I

moves a nontrivial charge x into a new site having trivial
vacuum charge y = I while it braids the charge x with any
other charge along its path. The projector �̂I

x,y projects the
nontrivial anyonic charges x and y into a vacuum charge
I. The anyonic interaction is antiferromagnetic when J > 0
and the interaction becomes ferromagnetic when J < 0. The
Hamiltonian along the rung has been symmetrized with half a
contribution from each of the rungs on sites i and i + 1.

Below, we show an explicit derivation of the Hamiltonian
terms which can be arranged as a charge-conserving matrix
operator. The local Hamiltonian ĥ is derived on a plaquette
whose vertices are labeled (a,b,c,d) for brevity as shown in

i)( ii)(

d

c c

dbb

aa

a b c d

α β

γ

a c d d

κ
λ

γ

FIG. 8. The two convenient fusion orderings, with their respective
fusion trees shown underneath. The first fusion order couples charges
(a,b) and (c,d), while the second couples charges (a,c) and (b,d).

Fig. 8. The local Hamiltonian is written as

ĥ = −th(b̂a→c=I + b̂b→d=I + H.c.) − Jh

(
�̂I

a,c + �̂I
b,d

)
− tv

2
(b̂a→b=I + b̂c→d=I + H.c.) − Jv

2

(
�̂I

a,b + �̂I
c,d

)
.

(29)

Depending on the imposed fusion order, some of the
operators will be diagonal in the fusion basis. The two most
convenient fusion order are shown in Fig. 8. Let the first
basis be denoted as |I〉 = |(ab; α)(cd; β)(αβ; γ )〉 with the
fusion order ((a,b)(c,d)) where the anyons (a,b) and (c,d)
are first fused independently, then fuse their outcomes and let
the second basis be |II〉 = |(ac; κ)(bd; λ)(κλ; γ )〉 with fusion
order ((a,c)(b,d)). Using a series of F moves and R moves,
the first basis transforms into the second basis according to

κ,λ Qκ,λ
α,β

=

a c b d

κ λ

γ

,

a b c d

α β

γ

(30)

where the tensor Q
κ,λ
α,β is given by

Q
κ,λ
α,β =

∑
η,θ

[(
Fαcd

γ

)−1]η

β

(
Fabc

γ

)θ

α
Rbc

θ

[(
Facb

γ

)−1]κ

θ

(
Fκbd

γ

)λ

η

(31)
with its derivation being given in Appendix C 1. The rest of
the derivation of the matrix expression for the Hamiltonian ĥ

is performed as an illustrative example in Appendix C 2.

1. Itinerant Fibonacci anyons, spinless fermions,
and hardcore bosons on a ladder

We exploit the anyonic and U(1) symmetries of the model
both in the MPS ansatz and in the Hamiltonian Ĥ , and use
the TEBD algorithm to compute the ground-state energies of
itinerant Fibonacci anyons on the ladder at different filling
fractions. Since the MPS has a one-dimensional structure, we
map the ladder to a chain by fusing the anyonic charges on each
rung to make a new single site. The vertical and the horizontal
hopping rates are set equal to one, th = 1 and tv = 1, while the
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FIG. 9. The ground-state energies of hardcore bosons (HCB),
spinless fermions and itinerant Fibonacci anyons (HCFib) on a two-
leg ladder when only hopping is turned on. The line is a guide to the
eye.

vertical and horizontal Heisenberg interactions Jv and Jh are
set to zero.

There are no known analytical results for the ground state of
itinerant Fibonacci anyons on a ladder, but we test the validity
of our method against the ground-state energies of itinerant
hardcore bosons and spinless fermions on the ladder shown in
Fig. 9. The phase diagram of this model for unit filling fraction
was studied in Ref. [51].

It can be seen from the figure that incorporating the capacity
for anyons to braid around one another results in an increase in
the ground-state energy per particle. This fact is reminiscent
of the property that a system of identical fermions have a
higher energy than bosons due to Pauli exclusion principle
in real space. This also implies that there might exist a
Pauli-like exclusion principle for anyons too, at least in some
regimes [52]. We also see from the figure that while the bosons
and fermions have a paricle-hole symmetry, which is reflected
in the symmetric ground-state energy around half-filling ν =
1
2 , the system of Fibonacci anyons on the ladder does not
display this symmetry. One of the consequences of particle-
hole symmetry is that the ground-state energies E at filling
fractions ν and 1 − ν should be equal. While this is known for
fermions and bosons, and reproduced by our numerical results
as shown in Table II, we see from our numerical results that
this no longer holds for some non-Abelian anyon model such
as Fibonacci anyons, though in this instance the breakdown of
particle-hole duality is weak in the sense that it has only a very
small impact on ground-state energies. Interference of braiding
particles raises the ground-state energies, and thus the higher
filling fractions ν> 1/2, e.g., ν = 5/8, have slightly higher
energies than the 1 − ν states, e.g., ν = 3/8.

The origin of the breakdown in the particle-hole duality is in
the difference of the fusion degrees of freedom of the particle
types. For systems of bosons or fermions, the fusion space
is one-dimensional, independent of the number of particles.
While, for non-Abelian anyon models, such as the Fibonacci
model, the fusion space grows exponentially with the number
of anyons and hence is not symmetric under particle hole
exchange. Braiding acts nontrivially on the fusion degrees
of freedom and changes the ground-state energy in way that
is not particle hole symmetric. In contrast, if particles are

TABLE II. The values of the ground-state energy E at various
filling fractions ν corresponding to figure Fig. 9. The subscripts in
E(•) are “HCB” for hardcore bosons, “HCFib” for hardcore Fibonacci
anyons, and “SF” for spinless fermions. The values are given to five
decimal places. The ground-state energies of bosons and fermions are
symmetric around half-filling, but not so for Fibonacci anyons.

ν EHCB EHCFib ESF

0 0 0 0
1/8 −0.71162 −0.70397 −0.70015
2/8 −1.26597 −1.19102 −1.13658
3/8 −1.61707 −1.44620 −1.35273
4/8 −1.74300 −1.52085 −1.43534
5/8 −1.61707 −1.41803 −1.35271
6/8 −1.26597 −1.15486 −1.13660
7/8 −0.71162 −0.68857 −0.70015
1 0 0 0

confined to one dimension then braiding cannot take place,
and, in the absence of other interactions such as Heisenberg-
like interactions, the expanded Hilbert space has no effect on
the ground-state energies. Thus the ground-state energies for
Fibonacci anyons on the ladder do not exhibit particle/hole
duality, as braiding is possible (Fig. 9 and Table II), whereas
in 1D, the ground-state energy is symmetric and independent
of particle statistics (Fig. 6).

2. Phase diagram of the golden ladder

We further test our ansatz by studying the entanglement
structures of ground states of interacting Fibonacci anyons
on the ladder at unit filling. This model has been studied
in Ref. [51], and we verify our ansatz by reproducing
known phases of the model at specific values of the tunable
parameters. At unit filling, there is a single localized Fibonacci
anyons per site of the ladder and therefore hopping rates are
everywhere zero. This is a quasi-1D generalisation of the
golden chain [29], which might be called the golden ladder.
The relative interaction strengths of the legs and rungs of the
ladder, including both antiferromagnetic and ferromagnetic
couplings, may be parameterized on a circle (see Fig. 10,

θ

Jh

Jv

AFM - FM

AFM - AFMFM - AFM

FM - FM

FIG. 10. The horizontal and vertical interaction strengths (Jh,Jv)
on the legs and rungs of the ladder are parameterized by (cos θ, sin θ )
along the legs and rungs respectively. The labels within each quadrant
indicate the nature of the interaction, whether antiferromagnetic or
ferromagnetic.
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FIG. 11. Scaling of entanglement entropy S as a function of block
size r , for different angles on the circle (θ ), which correspond to
different ratios of coupling strength between the legs and rungs of the
ladder.

where the ferromagnetic or antiferromagnetic natures of the
interactions in each sector are indicated).

We evolve this model to ground state using TEBD, and
compute the scaling of the block entanglement entropy from
von Neumann’s relation,

S(r) = −Tr(ρ̂r ln ρ̂r ), (32)

where ρ̂r is in general the reduced density matrix of a block of
r sites, here r rungs. From conformal field theory, the scaling
of entanglement entropy on a system with an open boundary
is

S(r) = c

3
ln r, (33)

where c is the central charge of the system at criticality.
This relation means that, for a critical model, the entangle-
ment block scaling—computed from the MPS ground-state
representation—should display a logarithmic relation with the
block size. The central charge c can then be extracted from the
relationship

c = 3
S(r2) − S(r1)

ln r2 − ln r1
. (34)

The block entanglement entropy for various parameter
regimes is shown in Fig. 11, and their central charges are
indicated in Fig. 12. As seen in Fig. 11, the finite bond
dimension of the MPS causes entanglement to an artificial
plateau over larger distances r = |r2 − r1|, but calculation of c

using Eq. (34) may be performed for any separation r prior to
this plateau, where an appropriate linear correlation is obtained
between S(r2) − S(r1) and T r2 − ar1.

One can interpret this Fig. 12 by considering how the
physics of the interacting Fibonacci anyon changes as the
parametrization angle θ is varied. When θ = 0, there are no
couplings along the rungs and we have 2 chains of Fibonacci
anyons with antiferromagnetic interactions. The system in this
parameter regime is gapless and has a central charge, which
is twice that of a single chain, i.e., 2 × 7/10. Even though the
MPS most naturally yields exponentially decaying correlators,
we are nevertheless able to extract an approximate value for
the central charge, c = 1.405, from the linear part of the
curve. When θ = π/4 and 3π/4, the vertical couplings are

Jh

Jv

c = 2 × cAFM Chain

gapped

gapped

gapped

c = 2 × cFM Chain

cFM Chain cAFM Chain

gapped

FIG. 12. The central charge of the underlying CFT extracted from
the scaling of the entanglement entropy of Fig. 11 are shown at the
parameter points we considered. When vertical coupling is set to zero
and Jh range from −1 to +1, we obtain central charge, which doubles
that of single critical FM or AFM chains which lies on the equator.
The theoretical values of cAFM Chain and cFM Chain are cAFM Chain = 7/10
and cFM Chain = 4/5. Phase boundaries for this model may be found
in Fig. 11(a) of Ref. [51]. A summary of the central charges of this
model is given in Table III.

antiferromagnetic favoring pairs of Fibonacci anyon fusing
into the vacuum charge. This phase is gapped with central
charge c = 0. When θ = π/2, the Hamiltonian favors fusion
of pairs of τ charges on each rung to the vacuum charge, and is
hence a product state which is unique and gapped. The phase is
not critical and has a central charge c = 0. At the θ = π point,
the horizontal coupling Jh = −1 is ferromagnetic, while the
vertical coupling Jv is zero, and the ladder reduces to two
copies of a ferromagnetic golden chain. From our numerical
simulation, we computed a central charge of c = 1.629 which
is close to the expected theoretical value of c = 2 × 4/5. At
the point θ = 5π/4, the horizontal and vertical couplings are
ferromagnetic. Fusion of the τ charges on the rungs and
legs favors projection to the τ channel (triplet state). This
can easily be pictured by considering a linearized version of
the ladder. Nearest-neighbor τ charges on the rung becomes
nearest neighbor on the chain and nearest neighbors on the
legs becomes next-to-nearest neighbor on the chain [30].
Heuristically, fusion to the τ fusion channel makes the ladder
effectively like a single Fibonacci chain and therefore has the
same central charge as a single chain. We obtain a central
charge of c = 0.801 which is close to the expected c = 4/5.
When θ = 3π

2 , the vertical coupling Jv = −1 is ferromagnetic
while the horizontal coupling is zero. This favors projection
of neighboring τ charges on the rungs into the τ channel. The
ladder reduces to a chain of decoupled τ charges, which has an
exponentially large degeneracy in intermediate fusion degrees
of freedom. Hence a generic ground state at this point obeys a
volume law rather than area law. This system is gapped and not
described by conformal field theory. The parameter point θ =
7π/4 correspond to horizontal antiferromagnetic coupling on
the leg and vertical ferromagnetic coupling which is effectively
an antiferromagnetic interacting chain. The obtained central
charge is c = 0.704, being close to the expected value of
c = 7/10. Our findings are in agreement with known results
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TABLE III. The table shows the obtained central charges cSim

from our numerical simulations, compared against their theoretical
values cTheo known from conformal field theory, at the interaction
strengths parameterized by θ according to Fig. 10. The values
correspond to the points shown in Fig. 12. Where a model is not
critical, and hence not described by CFT, we have substituted their
central charge c with zero.

θ csim cTheo

0 1.405 2 × 7/10
π/4 0 0
π/2 0 0
3π/4 0 0
π 1.629 2 × 4/5
5π/4 0.801 4/5
3π/2 0 0
7π/4 0.704 7/10

showing that the entire upper semicircle is gapped while the
lower semicircle is gapless with the exception of the indicated
point at θ = 3π/2. Table III compares the extracted central
charges with their expected theoretical values.

VI. CONCLUSION

In this paper, we show how the anyonic tensor network
formalism of Refs. [39,42,43] may be applied in the context
of particles admitting multiple charge labels, specifically
an anyonic charge and a U(1) charge, here corresponding
to particle number. We constructed test models involving
both hopping and interaction terms, with this construction
being explicitly elaborated in Appendix. Application of the
anyonic infinite TEBD algorithm [42] permitted calculation
of the ground states of these systems, their entanglement
entropies, and central charges. In doing so, we successfully
reproduced elements of the phase diagrams for these systems
which have previously been obtained using exact diagonaliza-
tion [22,23,29,30].

This paper consequently demonstrates the feasibility of
applying anyonic TEBD to systems of particles admitting both
anyonic and U(1) conserved charges. The method presented
here can be used to probe new regimes of the physics of anyons
such as equilibrium phases of quasi-1D systems of braiding
anyons at arbitrary density as well as nonequilibrium dynamics
of anyons in two-dimensional systems at low density. The
later could be used to study the robustness of large size
topological quantum computers/memories to errors induced by
coherent propagation of erroneous anyons created by thermal
fluctuations which braid around logical degrees of freedom.
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APPENDIX A: BASICS OF ANYONIC
TENSOR NETWORKS

Using tensor networks to simulate quantum systems in-
volves choosing a network pattern of connected tensors along

with a choice of an algorithm that optimizes the representation
of the many body state [53]. In what follows, we review the
basic objects common to most anyonic tensor networks (TN).
In the main text, we used these objects to construct the anyonic
MPS, and our modified Anyonic-U(1) MPS ansatz.

1. Components of anyonic tensor networks

In the discussion below, we assume some familiarity with
theory of anyons as described in Refs. [48,54,55]. For a
pedagogical introduction to anyons, see, e.g., Refs. [21,56].

The basic objects in any tensor network include vectors
(or one-index tensors), matrices (or two-index tensors), and
more generally, n-index tensors. We start by examining how
the basis of states for a system of anyons can be enumerated,
and how it is used in constructing the anyonic equivalents of
the above-named TN objects.

a. Anyonic basis enumeration and fusion lookup tables

The basis of the Hilbert space of anyons is described by a
labeled directed fusion tree (see Fig. 1) where the charge c on
any incoming edge at a vertex is determined from the charges
a and b of the two outgoing edges around the same vertex,
according to the fusion rules of the anyon theory

a × b →
∑

c

Nc
abc, (A1)

which implies that charges a and b are allowed to fuse to
possibly several different charges c. For example, in the fusion
tree in Fig. 1(ii) charges b1 and a3 fuse into all possible
charges b2. We restrict to multiplicity-free anyon models in this
paper, i.e., Nc

ab ∈ {0,1}, which includes some of the models
most relevant to current experiment such as Ising anyons
and Fibonacci anyons. The iterative fusion process described
by a fusion tree makes the mathematical description of the
collective state space to be nonlocal and hence not naturally
reducible to a tensor product space of individual anyonic
degrees of freedom.

The description of labeled fusion trees can become ex-
tremely verbose in the limit of large system sizes. The amount
of data needed to specify the labeling of a fusion tree can be
greatly reduced if one only enumerates the labelings having a
particular total charge at the trunk. To this end, let c be total
charge at the trunk of the fusion tree [see Fig. 1(i)] and assign
an index μc = 1,2, . . . ,νc in increasing numerical order to
each unique labeling of the fusion tree. The index μc is called
the degeneracy index and νc is called the degeneracy of charge
c [39]. All the fusion trees are therefore concisely labeled by
the multi-index γ = (c,μc), with c as the total charge label
and μc as its degeneracy index.

This assignment can be described using a “fusion lookup
table” where the sets of charges corresponding to unique
labelings of the fusion tree are recorded in rows, and each
row is additionally labeled with (i) the total charge c and (ii)
an index value μc such that each pair (c,μc) is unique. The
use of fusion lookup tables serve a twofold purpose in anyonic
tensor networks. First they can serve as a “cache,” allowing for
a total recovery of all the charges labeling a particular fusion
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tree which may be useful when performing diagrammatic
(topological) manipulations of the fusion tree. Secondly, they
can be used to significantly reduce the computational cost of
contracting an anyonic TN, a fact which has previously been
discussed in the context of nonanyonic symmetric TNs (see
Refs. [42,43,45] for more details). When constructing a fusion
table, it is required that there be a one-to-one correspondence
between the charge labelings of the fusion tree and the
charge/degeneracy multi-indices which are assigned to these
labelings.

b. Anyonic state vector

An anyonic quantum state |�〉 can be written as a weighted
superposition of all labelings of a fusion tree having a total
vacuum charge I [57]. More compactly, in the multi-index
notation, the quantum state can be written as

|�〉 =
∑

γ

�γ |γ 〉 , (A2)

where γ = (I,μI) is an index enumerating all the valid fusion
trees. If all the enumerated fusion trees are associated with
normalized anyonic diagrams, which is referred to as the
implicit normalization scheme, then the state amplitudes �γ

can be arranged as a column vector in the standard basis.
Following the diagrammatic notations employed for anyonic
tensors in Ref. [39], we depict the anyonic quantum state by a
filled circle with a central leg enumerating all the multi-indexed
bases, and an unlabeled tree structure, as shown in Fig. 13(i).
It should be noted that if topological manipulations were to
be performed on the fusion tree, such as vertically bending
a line opposite to its orientation, it is preferable to use
diagrammatic isotopy convention. In such a case, we adopt
the prescription given in Ref. [48], where the fusion diagrams
are weighted with certain pre-factors of quantum dimensions
of the anyonic charges on the fusion tree. For the fusion

basis shown in Fig. 1, the pre-factor would be ( dc

da1 da2 ···dak

)
1/4

.
These normalization factors are then also absorbed into the
amplitudes defining the anyonic state vector. This is referred
to as the explicit normalization scheme. During topological
manipulations, all the charges labeling a particular fusion tree
can be recovered from the fusion lookup tables and used in
computing the necessary data associated to that operation.
We work exclusively in the explicit normalization scheme,
where each vertex is normalized according to diagrammatic
isotopic convention. The differences between working in

Ψ

γ

Ψ†

γ

i)( ii)(

· · ·

· · ·

FIG. 13. (i) Anyonic state vector and (ii) its Hermitian conjugate.

implicit and explicit normalization scheme, collectively called
mixed normalization, are treated in the recent anyonic DMRG
paper [43].

The Hermitian conjugate of the state |�〉, written as

〈�| =
∑

γ

�†
γ 〈γ | , (A3)

is represented diagrammatically as in Fig. 13(ii) where the
unlabeled fusion tree is reflected vertically and all its arrows
are reversed. The coefficients of the vector are also complex-
conjugated.

c. Anyonic matrix operator

In conventional quantum theory, an operator Ô : V → V′
is written in the bra-ket notation as

Ô =
∑
j ′,j

Oj ′,j |j ′〉 〈j | , (A4)

where the indices j and j ′ enumerates basis states in V and
V′. Example of such operators include Hamiltonians, density
matrices, projectors, etc.

In a similar vein, an anyonic operator acting on a set
of anyonic charges with total charge c does not change the

total charge. The operator Ôc : Va1,a2,...,ak
c → V

a′
1,a

′
2,...,a

′
k′

c takes
states of anyons a1,a2, . . . ,ak to states of anyons a′

1,a
′
2, . . . ,a

′
k′

without changing the conserved total charge c. As such, the
operator Ô = ⊕

c Ôc can be constructed as a block-diagonal
matrix with each block indexed by the conserved anyonic
charge c. Each block matrix Ôc is constructed by enumerating
(as in Fig. 1) all the fusion tree bases fusing to that charge.
As such the charge-conserving matrix is indexed by the
multi-index γ = (c,μc) for fusion trees and γ ′ = (c,μ′

c) for
splitting trees. The anyonic operator can therefore be written
as

Ôc =
∑
γ ′,γ

Ôγ ′,γ |γ ′〉 〈γ | , (A5)

where γ = (c,μc) and γ ′ = (c,μ′
c) implying charge conserva-

tion. The matrix elements will depend on the particular physics
of the system. The anyonic matrix operator is represented
diagrammatically by Fig. 14(i), where the multi-indices γ =
(c,μc) and γ ′ = (c,μ′

c) enumerate all the fusion and splitting
trees. The vertex normalization factors of the fusion/splitting
trees are absorbed into the matrix operator.

d. Anyonic rank-3 tensor

The anyonic matrix operator can be extended to a rank-3
tensor where the tensor elements are indexed by three multi-
indices α, β and γ . An anyonic rank-3 tensor T α,β

γ may
be represented in the manner shown in Fig. 14(ii) where
the leaves on each branch of the tree are enumerated and
assigned a multi-index notation α = (a,μa), β = (b,μb), and
γ = (c,μc). All the vertices on the leaves fulfill the fusion
rules during enumeration of the basis, and the implicit vertex
contained within the grey circle also obeys the fusion rules of
the anyon model. The tensor T α,β

γ is indexed by γ = (c,μc),
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(i) (ii)

Ô

γ

γ

· · ·

· · ·

T

γ

· · ·

α β

FIG. 14. (i) The anyonic matrix operator Ô and (ii) the anyonic
rank-3 tensor T . The tree has been normalization according to
diagrammatic isotopy.

α = (a,μa), and β = (b,μb), where the charge triplet (a,b,c),
obtained from each of the subtrees, has to be compatible with
the orientation of the vertex on the tensor, i.e., a × b → c. The
explicit form of the tensor T is

T =
⊕
a,b,c

Nc
ab

νa,νb,νc∑
μa,μb,μc=1

(
T a,b

c

)μa,μb

μc
|μaμb〉 〈μc| . (A6)

The direct sum implies that tensor T is composed blockwise
from tensors indexed by the charges of the subtrees, with
each block then being indexed by the degeneracy index of
the compatible fusion trees.

There are more objects that can be implemented to
manipulate anyonic tensor networks [39,40,43], but as the
MPS is a trivalent tensor network, the anyonic tensors we
have reviewed are sufficient to construct the anyonic MPS.

APPENDIX B: ANYON MODEL DATA

An anyon model is minimally specified by the following
data: a set of charges A, fusion rules for the charges Nc

ab, the
braid matrix R, and the F tensor F . All other quantities can be
derived from these data. The anyon models we used for testing
our numerical method in this paper are Fibonacci anyons, Z2

(spinless) fermions andZ∞ bosons, but the charge spectrum of
the physical site is restricted to AHCB = {0,1} corresponding
to the hardcore constraint.

a. Fibonacci anyon data

The Fibonacci anyon model consists of two charges,
vacuum (I) and Fibonacci anyon (τ ). Hence A = {I,τ }, where
the charges have quantum dimensions, dI = 1, dτ = 1+√

5
2

respectively. The fusion rules obeyed by charges are

I × I = I, I × τ = τ × I = τ, τ × τ = I + τ. (B1)

The fusion tensor N has components Nc
ab = 0 when a × b � c

for all a,b,c ∈ A. The nonzero components are given by

NI
II = Nτ

τI = Nτ
Iτ = NI

ττ = Nτ
ττ = 1 . (B2)

The R matrix has nonzero components

Rττ
I = e−4πi/5, Rττ

τ = e3πi/5, RIτ
τ = RτI

τ = RII
I = 1,

(B3)

for compatible charges and zero otherwise. The nontrivial F -
move coefficients are

(
F τττ

τ

)f

e
=

(
φ−1 φ− 1

2

φ− 1
2 −φ−1

)
, (B4)

where φ = 1+√
5

2 , and e,f ∈ {I,τ }. The remaining F -move
coefficients are given by

(
Fabc

d

)f

e
= Ne

abN
f

bcN
d
ecN

d
af . (B5)

b. Fermions and bosons data

Fermions and bosons can be studied within the theory of
anyons and consequently using anyonic tensor networks such
as the anyonic MPS. The wave functions of fermions and
bosons acquire phase factors of −1 and +1, respectively, under
particle pair exchange.

The particle spectrum Z∞ of bosons is the set of positive
integer charges, denoted as Z∞ = {0,1,2, . . .} with the fusion
rule being ordinary addition, while the charge spectrum of
fermions is Z2 = {0,1} with fusion rules corresponding to
addition modulo 2, so 1 × 1 → 0. The quantum dimensions
are trivial with d0 = d1 = 1 for fermions and dq = 1∀q for
bosons. The fermionic exchange factors (permutation factors)
are encoded in the fermionic R matrix as

R00
0 = R10

1 = R01
1 = 1, R11

0 = −1, (B6)

while for bosons all valid entries are trivially equal to one. The
F matrix for both particle types fulfills

(
Fabc

d

)f

e
= Ne

abN
f

bcN
d
ecN

d
af . (B7)

APPENDIX C: DERIVATION OF THE ANYONIC t- J
HAMILTONIAN ON A LADDER

We now give the explicit derivation of the Hamiltonian
ĥ on a plaquette. This Hamiltonian consists of itinerant and
(Heisenberg) interaction terms written as

ĥ = −th(b̂a→c=I + b̂b→d=I + H.c.) + Jh

(
�̂I

a,c + �̂I
b,d

)
− tv

2
(b̂a→b=I + b̂c→d=I + H.c.) + Jv

2

(
�̂I

a,b + �̂I
c,d

)
.

(C1)

We derive the matrix representation of each term of the
Hamiltonian in the first basis {|I 〉} shown in Fig. 8(i). For
operators like b̂a→c=I, �0

ac, etc., which couple anyons on the
legs of the plaquette, we transform the basis |I 〉 to the basis
|II 〉 in Fig. 8(ii), derive the action of the Hamiltonian in the
basis |II 〉, then transform back to the basis |I 〉. Therefore we
first show how the two bases transform, and later show the
derivation of the Hamiltonian for the plaquette.
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1. Fusion Tree Basis Transformation

The transformation between the two chosen bases of Fig. 8 are obtained as follows:

=

a b c d

α β

γ

b dca

θ
η

γ

F abc
η

θ

α= η,θ Fαcd
γ

−1 η

β

Rbc
θ

F acb
η

−1 κ

θ
F abc

η
θ

α
=

η,θ,κ Fαcd
γ

−1 η

β
Rbc

θ

b dca

κ
η

γ

Fκbd
γ

λ

η
F acb

η
−1 κ

θ
F abc

η
θ

αη,θ
κ,λ

Fαcd
γ

−1 η

β
Rbc

θ=

a c b d

κ λ

γ

,

.

,
η Fαcd

γ
−1 η

β

c dba

α
η

γ

(C2)

The above equation can be written more succinctly as

κ,λ Qκ,λ
α,β

=

a c b d

κ λ

γ

,

a b c d

α β

γ

(C3)

where the tensor Q
κ,λ
α,β is defined according to

Q
κ,λ
α,β =

∑
η,θ

κ,λ

[(
Fαcd

γ

)−1]η

β

(
Fabc

η

)θ

α
Rbc

θ

[(
Facb

η

)−1]κ

θ

(
Fκbd

γ

)λ

η
.

(C4)

Using Dirac bra-ket notation, Eq. (C2) can alternatively be
written as

|(ab; α)(cd; β)(αβ; γ )〉 =
∑
κ,λ

Qκλ
αβ |(ac; κ)(bd; λ)(κλ; γ )〉 .

(C5)

2. Anyonic t- J Hamiltonian on a plaquette

The anyonic local Hamiltonian ĥ on a plaquette is given by

ĥ = −th(b̂a→c=I + b̂b→d=I + H.c.) − Jh

(
�̂I

a,c + �̂I
b,d

)
− tv

2
(b̂a→b=I + b̂c→d=I + H.c.) − Jv

2

(
�̂I

a,b + �̂I
c,d

)
.

(C6)

Whereas charge label a may take any value from the particle
spectrum, the vacuum charge will be denoted by I and a
nontrivial anyonic charge by a0. For example, in the Fibonacci
anyon theory, a0 = τ . The derivation is quite general and
can be used with any anyon model. Note that numerical
factors such as vertex normalization factors and loop factors
are not accounted for here. We account for them during the
implementation of the anyonic TEBD algorithm.

We proceed by first deriving all the kinetic energy terms and
then derive all the interaction terms similarly. All the operators

in the Hamiltonian are applied to the fusion tree on the left hand
of Eq. (C2), which is represented in Dirac notation in Eq. (C5).

Kinetic terms. The terms contributing to the kinetic energy
are the braid operators, whose matrix elements are derived
below.

(i) The matrix element of the braid operator b̂a→b=I is given
by

〈b̂a→b=I〉 = δa,a0δb,I,δa′,bδb′,aδc′,cδd ′,dδα′,αδβ ′,β , (C7)

where we have used, for the sake of conciseness, the notation
〈b̂a→b=I〉 as a shorthand for

〈(a′b′; α′)(c′d ′; β ′)(α′β ′; γ )b̂a→b=I(ab; α)(cd; β)(αβ; γ )〉.
(C8)

(ii) The matrix element of the braid operator b̂c→d=I is
given by

〈b̂c→d=I〉 = δc,c0δd,I,δa′,aδb′,bδc′,dδd ′,cδα′,αδβ ′,β . (C9)

(iii) The matrix element of the operator b̂a→c=I involves
braiding of anyonic charge a with b. The charge c has to be
vacuum for the process to have a nonzero amplitude. Its action
on the basis |(ab; α)(cd; β)(αβ; γ )〉 is given by

b̂a→c=I |(ab; α)(cd; β)(αβ; γ )〉
=

∑
κ,λ

Qκλ
αβ b̂a→c=I |(ac; κ)(bd; λ)(κλ; γ )〉 ,

=
∑
κ,λ

Qκλ
αβδa,a0δc,I |(ca; κ)(bd; λ)(κλ; γ )〉 .

The expectation value 〈b̂a→c=I〉 is

〈b̂a→c=I〉 =
∑
κ ′,λ′
κ,λ

〈(a′c′; κ ′)(b′d ′; λ′)(κ ′λ′; γ )| Q∗κ ′λ′
α′β ′ Qκλ

αβ

×δa,a0δc,I |(ca; κ)(bd; λ)(κλ; γ )〉 , (C10)
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which simplifies to

〈b̂a→c=I〉 =
∑
κ,λ

Qκλ
αβ(Q†)α

′β ′
κλ δa,a0δc,Iδa′,cδc′,aδb′,bδd ′,d . (C11)

(iv) The expectation value 〈b̂b→d=I〉 is similarly given by

〈b̂b→d=I〉 =
∑
κ,λ

Qκλ
αβ(Q†)α

′β ′
κλ δb,b0δd,Iδa′,aδc′,cδb′,dδd ′,b.

(C12)
Interaction terms. The interaction terms consist of projec-

tors whose matrix elements are derived similarly to the braid
terms. The projection favors fusion of nontrivial anyons to the
vacuum charge.

(i) The action of the projector �̂I
a,b on the fusion basis is

given as

�̂I
ab |(ab; α)(cd; β)(αβ; γ )〉 = �α

ab |(ab; α)(cd; β)(αβ; γ )〉 ,

(C13)

where the element �α
ab = 1 if α = I (vacuum) and a = a0,

b = b0 (i.e., nontrivial charges). The expectation value of the
projector �̂I

ab is thus〈
�̂α=I

ab

〉 = δa′,a0δb′,b0δa′,aδb′,bδα′,αδα,Iδc′,cδd ′,dδβ,β ′ . (C14)

(ii) The matrix element �̂I
cd of the projector is similarly

given as〈
�̂

β=I
cd

〉 = δa′,aδb′,bδα′,αδc,c0δd,d0δβ,0δc′,cδd ′,dδβ,β ′ . (C15)

(iii) The action of the projector �̂I
ac on the basis

|(ab; α)(cd; β)(αβ; γ )〉 is

�̂I
ac |(ab; α)(cd; β)(αβ; γ )〉
=

∑
κ,λ

Qκλ
αβ�κ

ac |(ac; κ)(bd; λ)(κλ; γ )〉

=
∑
κ,λ

Qκλ
αβδa,a0δc,c0δκ,I |(ac; κ)(bd; λ)(κλ; γ )〉 .

The matrix element 〈�̂I
ac〉 is〈

�̂I
ac

〉 =
∑
κ,λ

Qκλ
αβ(Q†)α

′β ′
κλ δκ,Iδa,a0δc,c0δa′,aδc′,cδb′,bδd ′,d . (C16)

(iv) The matrix element 〈�̂I
bd〉 is similarly given by〈

�̂I
bd

〉 =
∑
κ,λ

Qκλ
αβ(Q†)α

′β ′
κλ δb,b0δd,d0δλ,Iδa′,aδb′,bδc′,cδd ′,d .

(C17)
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