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One- and many-electron self-interaction error in local and global hybrid functionals
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Electronic self-interaction poses a fundamental challenge in density-functional theory. It greatly limits, e.g.,
the physical interpretation of eigenvalues as electron removal energies. We here investigate whether local hybrid
functionals that are designed to be free from one-electron self-interaction lead to occupied Kohn-Sham eigenvalues
and orbitals that approximate photoemission observables well. We compare the local hybrid results to the ones
from global hybrid functionals that only partially counteract the self-interaction, and to the results that are
obtained with a Perdew-Zunger-type self-interaction correction. Furthermore, we check whether being nominally
free from one-electron self-interaction translates into a reduced many-electron self-interaction error. Our findings
show that this is not the case for the local hybrid functionals that we studied: In practice they are similar to
global hybrids in many respects, despite being formally superior. This finding indicates that there is a conceptual
difference between the Perdew-Zunger way and the local hybrid way of translating the one-electron condition
to a many-electron system. We also point out and solve some difficulties that occur when using local hybrid
functionals in combination with pseudopotentials.
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I. INTRODUCTION

Due to its favorable balance between accuracy and numer-
ical efficiency, Kohn-Sham density-functional theory (DFT)
[1,2] has become the standard method for electronic structure
calculations. Based on the electron density n(r) as the
central quantity, DFT provides an elegant and in principle
exact framework to solve the quantum-mechanical many-body
problem [3–5].

In practice, the quality of the results from a DFT calculation
decisively depends on the approximation to the exchange-
correlation (xc) energy Exc[n]. From the early years of DFT
on, there was a strong focus of research on developing
reliable density functional approximations. This research led
to functionals that successfully describe a range of physical
ground-state properties [6]. Even long-known (semi)local
functionals such as the local spin density approximation
(LSDA) [7–9] or the PBE generalized gradient approximation
[10,11] often yield reliable binding energies and structures.
Yet, DFT use and research also uncovered many deficiencies
of these established approximations. On the one hand there are
numerous limitations in quantitative accuracy. On the other
hand there are also qualitative problems. Among them are the
erroneous dissociation behavior of diatomic radicals [12–15]
and neutral molecules [16–21] and the drastic overestimation
of static electric polarizabilities and hyperpolarizabilities of
molecular chains [22–27]. The approximate interpretation
of Kohn-Sham eigenvalues and orbitals as photoemission
observables is of great practical interest, yet also problematic
(see, e.g., Refs. [28–36] and references therein). When using
common functionals in time-dependent DFT, e.g., via an adia-
batic approximation, further difficulties arise, in particular with
respect to charge-transfer excitations [37–40] and electronic
transport characteristics [41–44].

This diverse set of issues in practical DFT can be traced back
to a common conceptual problem: electronic self-interaction
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(SI). SI can be understood by the example of a single-
electron system with ground-state density n1e(r). In this case,
the Hartree energy EH has to be fully canceled by Exc,
i.e., EH[n1e] + Exc[n1e] = 0, since otherwise one obtains an
erroneous interaction of the electron with itself, the SI error
(SIE) [45].

For a system with more than one electron, it is less obvious
how to quantify the SIE. The most famous definition for
a system with N = ∑

σ Nσ electrons being free from SIE
[45,46] is based on identifying orbitals with electrons [47].
When making this identification, which goes beyond the usual
Kohn-Sham concept and in principle raises the question of
whether orbital densities are allowed to be inserted into the
ground-state energy functional despite them not being ground-
state densities [48], then the electrons are represented by the
spin-orbital densities niσ (r) = |ϕiσ (r)|2 of the occupied Kohn-
Sham orbitals ϕiσ (r). With this identification, the famous
Perdew-Zunger definition∑

σ=↑,↓

Nσ∑
i=1

{
EH[niσ ] + Eapprox

xc [niσ ,0]
} = 0 (1)

appears as a very natural concept. Here, i counts the Kohn-
Sham states and σ the electron spin. As this definition is di-
rectly linked to the single-electron case, a functional fulfilling
EH[n1e] + Exc[n1e] = 0 for any n1e(r), ore more generally
Eq. (1), is referred to as being free from the one-electron
self-interaction error. For brevity, we denote the one-electron
self-interaction error as one-error in the following.

However, as orbital densities cannot always be identified
with electrons, Eq. (1) does not unambiguously quantify the
SI problem. The more general concept of the many-electron
self-interaction error (in the following referred to as many-
error) [14,17] uses the straight-line energy condition [49] to
define the SIE in a many-electron system in a different way. A
functional is defined as being free from many-error if the total
energy E(N ) of an N electron system is piecewise linear as a
function of particle number,

E(N ) = (1 − ω)E(N0) + ωE(N0 + 1), (2)
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TOBIAS SCHMIDT AND STEPHAN KÜMMEL PHYSICAL REVIEW B 93, 165120 (2016)

with N = N0 + ω, where N0 ∈ N gives the number of elec-
trons in the singly ionized system and w ∈ [0,1[ denotes the
fraction of an electron that is added. The many-error is often
referred to as delocalization error, since the SI leads to a
spurious delocalization of the charge distribution [50]. It is
well established that standard, (semi)local functionals show
a convex, while Hartree-Fock (and pure exact exchange as
defined below) gives a concave energy curve [14,51,52].

Although systems with a fractional number of electrons
seem like rather abstract constructions, the implications of a
functional violating Eq. (2) are of direct physical relevance.
Especially the problem of predicting fundamental gaps from
Kohn-Sham eigenvalues is connected to the deviation from
piecewise linearity in the energy curves of the employed
functional [52–56]. Furthermore, it was demonstrated that it is
the violation of Eq. (2) that leads to the aforementioned incor-
rect description of molecular dissociation, because solutions
with fractional charges on separate atoms incorrectly become
energetically favorable [13,15,17,57–59].

In light of the problems caused by electronic SI, much
effort has been invested in addressing both the one- and the
many-error. Equation (1) sets the basis for SI correction (SIC)
schemes, that, by explicitly removing the one-error from SI
affected functionals, remedy the aforementioned shortcomings
to a large extent (see Ref. [60] and references therein for
a detailed discussion). Using SIC methods, e.g., electrical
response properties of molecular chains were predicted more
accurately [25,61], and the description of charge transport
characteristics [41,44] and charge-transfer excitations [40] was
qualitatively improved.

The recently proposed ensemble generalization of DFT
[52] addresses the many-error. Restoring piecewise linearity
to a large extent, its application leads to a better description
of ionization potentials (IPs) [56] and fundamental gaps
using Kohn-Sham eigenvalues [55], and eliminates fractional
dissociation [59].

A different approach to counteract SI is based on using
exact exchange (EXX). EXX is defined as the Fock exchange
integral evaluated with Kohn-Sham orbitals,

Eex
x = −1

2

Nσ∑
i,j = 1
σ = ↑,↓

∫∫
ϕ∗

iσ (r)ϕjσ (r)ϕiσ (r′)ϕ∗
jσ (r′)

|r − r′| d3r d3r ′.

(3)

EXX fulfills the condition (1) and is thus a natural “ingredient”
in functional constructions that try to address SI.

Global hybrid functionals [62–64], as motivated by the adia-
batic connection [65–67], use a fixed, constant amount of EXX
in combination with (semi)local functional components. This
leads to a considerable improvement over purely (semi)local
functionals for ground-state properties if about 25% of EXX
are used. However, global hybrids with such a parametrization
often perform less well than, e.g., SIC schemes, in situations
that are known to be strongly influenced by electronic SI. The
reason for this is presumably that global hybrid functionals
with a small fraction of EXX are not one-error free.

Local hybrid functionals [68–71] take the idea of combining
nonlocal and (semi)local functional parts one step further.
Based on the concept of (nonuniquely [71–73]) expressing

the xc energy via the integral Exc[n] = ∫
n(r) exc(r) d3r ,

they approximate the xc energy density per particle exc(r)
as a spatially resolved mix of nonlocal and (semi)local
components. Local hybrids proved to be a powerful functional
ansatz for the description of thermochemistry and reaction
barriers [70,74–85] and appear promising in linear-response
time-dependent DFT [86].

The local hybrids’ mixing concept provides for much
more flexibility in the functional construction than the global
hybrids’ fixed fraction of exchange. Consequently, the two
types of functionals typically differ substantially in the formal
treatment of the SIE: In contrast to global hybrids, local hybrids
can be constructed to be inherently free from the one-error in
the sense of Eq. (1) [69,87,88]. Yet, despite this important
conceptual difference, local and global hybrids share more
features than one would intuitively expect. One of them is the
recently discussed incorrect asymptotic decay of the local xc
potential [89].

In the present paper, we systematically investigate the
differences and similarities that exist between local and global
hybrid functionals with respect to the SIE. In Sec. II we review
the global and local hybrid functionals that we employ in this
study. In Sec. III we present some insights on the influence
of SI on the description of physical quantities. Section IV
provides details of our calculations. In Sec. V A we contrast
manifestations of the one-error in calculations using global and
local hybrids to the ones found in calculations using full SIC
schemes. We focus on the interpretability of DFT eigenvalues
and orbitals as photoemission observables. In Sec. V B we
study the connection between the one- and many-error for
global and local hybrids with the help of total energy curves
E(N ) for fractionally charged systems. In our concluding
Sec. VI we discuss the implications that our findings have for
the construction and use of functionals that are only nominally
free from the one-error.

II. THE INVESTIGATED FUNCTIONALS

We use the PBEh functional [90,91] as a representative
for global hybrid functionals. Employing a constant amount
a ∈ [0,1] of the EXX energy density eex

x (r) as (implicitly)
defined by Eq. (3) together with corresponding amounts of
PBE xc energy densities ePBE

x,c (r), it approximates the overall
xc energy density per particle by

ePBEh
xc (a,r) = a eex

x (r) + (1 − a) ePBE
x (r) + ePBE

c (r). (4)

While PBEh with a ≈ 0.25 performs well for binding energies,
a ≈ 0.75 leads to [92–94] highest occupied (ho) Kohn-Sham
eigenvalues that approximate experimental IPs well via the
IP theorem, i.e., I = −εho [49,95–98]. In the following, we
explore how this functional’s performance with respect to the
one- and many-error depends on the value of a.

As a representative for the local hybrid functionals we use
the “ISO-functional” introduced in Ref. [88]. It replaces the
mixing constant a by a spatially resolved local mixing function
(LMF) (1 − fx[n](r)) and introduces a separate LMF fc[n](r)
for the correlation part:

eISO
xc (c,r) = (1 − fx[n](r)) eex

x (r) + fx[n](r) eLSDA
x (r)

+fc[n](r) eLSDA
c (r), (5)
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where the LMFs are given by

fx[n](c,r) =
1 − τW(r)

τ (r) ζ 2(r)

1 + ct2(r)
(6)

and

fc[n](r) = 1 − τW(r)

τ (r)
ζ 2(r). (7)

Here, τW(r) = |∇n(r)|2/(8n(r)) denotes the von Weizsäcker
and τ (r) = 1

2

∑
σ

∑Nσ

i=1 |∇ϕiσ (r)|2 the Kohn-Sham kinetic
energy density. The function t2(r) is the reduced density
gradient [10]

t2(r) =
(

π

3

)1/3
a0

16	2(ζ (r))

|∇n(r)|2
n7/3(r)

, (8)

with the Bohr radius a0, 	(ζ (r)) = 1
2 ((1 + ζ )2/3 + (1 − ζ )2/3)

and the spin polarization ζ (r) = (n↑(r) − n↓(r))/(n↑(r) +
n↓(r)). A detailed motivation and discussion of this functional
was given in Refs. [88,89]. In the context of the present work
it is important to be aware of three aspects.

First, the ISO-functional contains an initially undetermined
parameter c in the denominator of Eq. (6). We recently
demonstrated that c ≈ 0.5 is optimal for binding energies,
whereas c ≈ 5.0 is best for predicting IPs via ε−ho. The
parameter c determines the intrinsic amount of EXX in the
ISO functional, i.e., in this sense corresponds to a in Eq. (3).
The higher the value of c, the smaller fx(r) generally gets,
resulting in an intrinsically higher fraction of EXX.

Second, it can be shown that ISO obeys condition Eq. (1)
independently of the value of c. Based on the fact that
τW(r)/τ (r) → 1 and ζ 2(r) → 1 if evaluated on one-spin-
orbital densities of ground-state character (see Ref. [89] for
a more detailed discussion), both fx(r) and fc(r) in Eqs. (6)
and (7) vanish, leaving only pure EXX in Eq. (5), and thus
canceling the Hartree contribution completely. In this sense,
in contrast to global hybrid functionals, the local hybrid ISO
is free from one-error.

The third aspect regards the explicit occurrence of the
spin polarization ζ (r) in the LMFs of ISO. This function
was originally introduced in order to prevent the LMFs from
incorrectly identifying regions in space that are dominated
by two spatially identical orbitals with opposite spins as
one electron regions. However, for fully spin-unpolarized
systems ζ (r) = 0 ∀ r. Thus, the detection function τW(r)/τ (r)
in fx(r) and fc(r) is multiplied by zero for such systems.
One therefore might argue that effectively the LMFs are
not using the detection function, while at the same time
Eq. (1) is undoubtedly fulfilled. Therefore, we here introduce
a modification of the ISO functional without spin polarization.
It uses the LMFs

f II
x (c∗,r) =

1 − τW(r)
τ (r)

1 + c∗t2
II(r)

(9)

and

f II
c (r) = 1 − τW(r)

τ (r)
. (10)

Here, t2
II(r) = t2(ζ (r) = 1,r) = (π

3 )1/3 a02
2
3

16
|∇n(r)|2
n7/3(r) . Note that

also this construction (called ISOII in the following) has an
undetermined parameter, c∗. It plays a similar role as c does
in ISO. The modified ISOII, in contrast to ISO, reduces the
xc energy density to pure EXX also for two spatially identical
orbitals, and both functionals are free from one-error in the
sense of Eq. (1).

III. MANIFESTATIONS OF SELF-INTERACTION

The interpretation of occupied Kohn-Sham eigenvalues as a
physical density of states (DOS), as frequently done to interpret
experimental photoemission spectra, markedly illustrates the
one-error. Even though only the ho Kohn-Sham eigenvalue
is rigorously physically meaningful, it has been argued that
also lower lying eigenvalues can be good approximations
to electron removal energies [30,36,99,100]. However, the
spectra obtained by standard functionals can be very much
distorted due to electronic SI. In Ref. [32] the orbital self-
interaction error (OSIE) was introduced as a criterion to
quantify the influence of one-error on the eigenvalue structure.
The OSIE is defined as

eiσ = 〈ϕiσ |vH[|ϕiσ |2]|ϕiσ 〉 + 〈ϕiσ |vxcσ [|ϕiσ |2,0]|ϕiσ 〉, (11)

with vH[|ϕiσ |2](r) denoting the Hartree and vxcσ [|ϕiσ |2,0](r)
the xc potential evaluated on single spin-orbital densities.

The OSIE is a valuable indicator for the quality of eigen-
value spectra. If Eq. (11) gives a different OSIE for all Kohn-
Sham states, i.e., self-interaction affects different eigenvalues
to a different degree, then a completely distorted spectrum is
to be expected and the DOS will not even qualitatively reflect
the spectrum that is observed in a photoemission experiment
[32,33,100–102].

Evaluating Eq. (11) with an explicitly density-dependent
functional is straightforward, but calculating eiσ for an explic-
itly orbital-dependent functional is more difficult. The problem
is that no explicitly density-dependent expression for vxcσ

exists that could be directly evaluated on a single spin-orbital
density. However, also for orbital-dependent functionals the
following relation holds:

vxcσ [|ϕiσ (r)|2,0] = δExc[{ϕjν[n]}]
δnσ

∣∣∣∣
n=|ϕiσ |2

. (12)

The functional derivative can be evaluated using the
optimized effective potential (OEP) formalism [60,103]. In the
Supplemental Material to this paper [104], we demonstrate
how to evaluate Eq. (11) for explicitly orbital-dependent
functionals. In particular, for the OSIE of the global hybrid
we find

ePBEh
iσ (a) = (1 − a)〈ϕiσ |(vH[|ϕiσ |2] + vPBE

xσ [|ϕiσ |2,0]
)|ϕiσ 〉

+ 〈ϕiσ |vPBE
cσ [|ϕiσ |2,0]|ϕiσ 〉. (13)

Note that the OSIE of Eq. (13) depends on a in a structure
similar to the xc energy in Eq. (4). This is consistent with
the limiting cases: For a = 0 the OSIE reduces to the one
of pure PBE, while for a = 1, i.e., full EXX with PBE
correlation, the Hartree term as well as the PBE exchange
are fully canceled, and only PBE correlation contributes to the
OSIE.
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For the local hybrids ISO and ISOII, on the other hand, it can
be demonstrated that the Hartree term is completely canceled
by the xc term in Eq. (11), since the latter reduces to pure EXX
if evaluated on single spin-orbital densities only. Consequently,
these functionals give an OSIE of zero independently of the
parameter used, i.e.,

eISO
iσ (c) = eISOII

iσ (c∗) = 0 ∀ c,c∗. (14)

The cancellation is triggered by the single spin-orbital detec-
tion functions τW(r)/τ (r) in the LMFs.

However, there is also a completely different approach to
eliminate the one-error. Traditional SIC schemes [45,60] rely
on Eq. (1) and define

ESIC
xc = Eapprox

xc −
∑
iσ

{
EH[niσ ] + Eapprox

xc [niσ ,0]
}

(15)

as the self-interaction corrected version of the approximate
functional E

approx
xc .

It is important to note that Eq. (15) is not invariant
under unitary transformations of the Kohn-Sham orbitals.
Evaluation of Eq. (15) with orbitals that are transformed
via ϕ̃iσ (r) = ∑Nσ

j=1 Uσ
ij ϕjσ (r) results in an altered xc and,

consequently, total energy, while leaving the electron den-
sity unchanged: n(r) = ∑

iσ |ϕiσ (r)|2 = ∑
iσ |ϕ̃iσ (r)|2. Kohn-

Sham SIC schemes that incorporate a unitary transformation
Uσ

ij into the OEP equation are referred to as generalized OEP
SIC (GSIC) [40,47,105].

In the following, we discuss the consequences of removing
the one-error (a) directly via a GSIC scheme, (b) nominally
via the local hybrids ISO and ISOII and (c) partially via
the global hybrid PBEh. For doing so we compare the
corresponding Kohn-Sham eigenvalue spectra to experimental
photoemission data for six prototypical organic molecules (see
Fig. 1): the aromatic rings benzene, pyridine and pyrimidine,
the polycyclic aromatic hydrocarbons pentacene and perylene
as well as 1,4,5,8-naphthalene tetracarboxylic dianhydride
(NTCDA), a model organic semiconductor. These systems are
paradigm test cases for questions of treating SI and orbital
localization with DFT.

In addition to the one-error we also examine the many-error.
For this, we investigate the total energy curve as a function of
particle number for the local hybrids ISO and ISOII as well
as the global hybrid PBEh. We explicitly calculate the energy
curves E(N ) for eight atoms and diatomic molecules between
their neutral (N0 + 1) and singly ionized state (N0 electrons).
In order to allow for a comprehensive evaluation of our results,
we introduce (following Ref. [106]) the squared integrated
many-electron SIE

� =
√∫ N0+1

N0

[(E(N ) − Eisl(N )]2 dN. (16)

Here, Eisl(N ) denotes the straight line between adjacent
integer particle numbers based on Eq. (2). It is obtained by
linear interpolation between the calculated energy values at
N0 and N0 + 1. The definition of � was chosen such that
Eq. (16) gives a measure of the many-error in energy units.
Importantly, energy curves with both convex and concave parts
are not falsely detected as obeying the straight-line criterion,
since squaring the energy difference in Eq. (16) prevents an

FIG. 1. Schematic illustration of the molecules studied in this
paper. Carbon atoms are represented in black, hydrogen in white,
nitrogen in blue, and oxygen in red.

erroneous cancellation of terms under the integral. Instead, �

gives zero only for exact piecewise-linear behavior. Further,
note that Eq. (2) provides a meaningful measure only for finite
systems, as it has been demonstrated that the curvature of the
energy curve naturally vanishes in the solid-state limit even
for (semi)local density functionals [107].

IV. METHODOLOGY

The calculations of the E(N ) curves were carried out
using the highly accurate real-space grid program DARSEC
[88,108,109]. We calculate the energy curves for the atoms
He, C, O, and Mg, as well as for the molecules BeH, CO,
N2, and NO. For the molecules, we use experimental bond
lengths [110]. The integral in Eq. (16) is computed using
the trapezoidal rule with a step size of  = 0.05 for the
fractional electron number N . Throughout this work, all
orbital-dependent functionals are evaluated self-consistently
by using the KLI approximation [111,112].

The systems in Fig. 1 are calculated using the Bayreuth
version [31] of the program package PARSEC [113]. Core
electrons are treated only implicitly via the pseudopotential
(PP) approximation. Throughout this work, we employ con-
sistent norm-conserving PPs of Troullier-Martins type [114]
for (semi)local functionals. For orbital-dependent xc approxi-
mations such as hybrid functionals, constructing a consistent
pseudopotential is very demanding [60]. We therefore here
adopt a workaround strategy. For PBEh satisfying results for
the Kohn-Sham eigenvalues can be obtained by employing
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PBE or EXX [115] PPs (depending on a). We here use PBE
PPs for the global hybrid with 25% EXX, while for higher
fractions of EXX we use EXX PPs in combination with a
Giannozzi-type PP for hydrogen [116] (see Appendix B for
details regarding the PPs used in this paper).

For the local hybrids ISO and ISOII the question of a proper
PP is yet more difficult. Using these functionals on top of PPs
constructed with a different functional leads to eigenvalues that
deviate noticeably from the ones of all-electron calculations.
We explicitly checked this by comparing DARSEC and PARSEC
results. However, there is a way to restore satisfying agreement
in the Kohn-Sham eigenvalues for these functionals without
having to go through the heavy work of constructing a truly
consistent PP. The important step is to introduce a sort of
“core-correction,” based on the following idea: Since the
crucial difference between global and local hybrids is the
spatially resolved mixing of various functional ingredients, one
must try to reproduce the all-electron structure of the LMFs of
Eqs. (6), (7), (9), and (10) for ISO and ISOII, respectively,
as close as possible in the PP calculation. In standard PP
calculations, the xc energy and potential are obtained using
only the valence density nv(r). However, it is well understood
that the core density nc(r) around the atomic center has a large
influence on detection functions such as τW(r)/τ (r) [117].
Therefore, it is important to explicitly include nc(r) in the
construction of the LMFs in order to correctly detect all spatial
regions as intended in the construction of the xc energy density
in Eq. (5).

For this, we replace the functions τW(r), τ (r) and t2(r) in
Eqs. (6), (7), (9), and (10) by their core-density (cd) corrected
modifications

τ cd
W (r) = |∇(nv(r) + nc(r))|2

8(nv(r) + nc(r))
, (17)

τ cd(r) = 1

2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

∑
iσ

valence
states

∣∣∇ϕv
iσ

∣∣2

⎞
⎟⎟⎟⎟⎟⎠ + ∣∣∇(nc(r))

1
2
∣∣2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, (18)

(tcd(r))2 =
(

π

3

)1/3
a0

16	2(ζ (r))

|∇(nv(r) + nc(r))|2
(nv(r) + nc(r))7/3 . (19)

In our implementation the spin polarization only features
the valence density, i.e., ζ (r) = (nv↑(r) − nv↓(r))/(nv↑(r) +
nv↓(r)).

In Eq. (18) one identifies the second term on the RHS with
the core contribution to the Kohn-Sham kinetic energy density,
i.e.: ∑

kν
core states

∣∣∇ϕc
kν(r)

∣∣2 ≈ ∣∣∇(nc(r))
1
2
∣∣2

. (20)

Equation (20) is exact for atoms with one (doubly occupied)
core orbital of s character, since here ϕc(r) = (nc(r))

1
2 . There-

fore, the organic molecules investigated in this publication
are covered exactly, as they only consist of C, N, and O
atoms in combination with H. For systems with more core
orbitals (especially of p character), Eq. (20) would only be an
approximation.

In the Supplemental Material [104] we compare the Kohn-
Sham eigenvalues of ISO and ISOII obtained in PARSEC using
EXX PPs to all-electron eigenvalues from DARSEC for the
molecules NH, N2, and CO. We find that the core-density
corrected LMFs are crucial for reaching satisfying agreement
with the all-electron results. Especially the higher lying
valence states, on which we focus in Sec. V A, are described
much more accurately by implicitly taking the core density
into account.

In Ref. [89] it was demonstrated that the xc potential of
local hybrids asymptotically decays with vxcσ → −γσ /|r| for
|r| → ∞ instead of the correct −1/|r| behavior [96,97]. Here,

γσ = 1 − 1

2

∫
fx(r)|ϕNσ σ |2d3r, (21)

i.e., the asymptotical decay is not a global constant, but
rather determined by the electronic structure of each system
individually. The value of γσ offers a convenient way to
compare the LMFs from the all-electron and the PP runs with
and without the core-density correction in a single numerical
value. Indeed we find that applying the core-density correction
brings γσ in closer agrement with the all-electron calculations
(see Ref. [104]).

In our GSIC calculations we use complex-valued energy-
minimizing orbital transformations (labeled E-min GSIC). A
local, multiplicative potential is obtained via the generalized
OEP (GOEP) formalism. We here use the generalized KLI
approximation (GKLI) [47] with the gradient-line-search algo-
rithm for the energy-minimizing transformation as described
in Ref. [105]. We apply the GSIC scheme of Eq. (15) to the
LSDA, for the reasons given in Refs. [48,105], and use LSDA
PPs as justified in Ref. [105].

V. RESULTS

A. Hybrid functionals and one-error: Simulated
photoemission observables

In this section, we simulate photoemission spectra (PES) for
the molecules of Fig. 1 by interpreting our calculated occupied
Kohn-Sham eigenvalues as physical electron removal energies.
For this, we align each eigenvalue spectrum to the first peak
in the experimental gas phase photoemission spectrum and
chose this as the zero of energy. Additionally, for evaluating
the corresponding functional’s performance with respect to
the IP theorem, both the experimental IP and the (unshifted)
negative ho eigenvalue are reported for each system. Further,
we broaden the relative Kohn-Sham eigenvalue spectra by
convolution with a Gaussian using a standard deviation of
0.08 eV in order to mimic the broadening of the experimental
data. However, no uniform stretching [118] is applied to our
computed spectra.

In order to discuss the connection between one-error and
the interpretation of Kohn-Sham eigenvalues as a physical
DOS, we here show the OSIE obtained by the global and local
hybrids for the six organic molecules. For both ISO and ISOII
we rely on the analytical argument of Eq. (14), i.e., a vanishing
OSIE is obtained for all states independently of the functional
parameter. The OSIE for PBEh is numerically evaluated using
Eq. (13) after self-consistency is reached in the Kohn-Sham
equations. In order to give a transparent overview over the
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FIG. 2. Relative OSIE in eV for benzene, pyridine, pyrimidine,
pentacene, perylene, and NTCDA. For PBEh the OSIE is numerically
computed using Eq. (13) for different values of a. For the local hybrids
ISO and ISOII the OSIE is zero according to Eq. (14).

distortions introduced by SIE, the relative OSIEs ei − eho are
plotted in Fig. 2 by taking the OSIE of the ho Kohn-Sham state
as reference.

We start our discussion with some general observations.
For benzene, pyridine, pyrimidine, and NTCDA the OSIEs
computed with pure PBE (black squares) show values that
vary greatly from one state to another. Consequently, a large
impact of the one-error on the Kohn-Sham DOS is to be
expected in agreement with Refs. [32,100,102]. For pentacene
and perylene, however, all higher valence states show almost
the same OSIEs with respect to the ho state, resulting in a DOS
that is expected to be much less distorted by SI [100].

Second, Fig. 2 shows that for all systems an increasing value
of a in PBEh leads to smaller values of the relative OSIEs. For
benzene, pyridine, pyrimidine, pentacene, and, except for the
ho-4 and ho-3 state, also perylene, a higher amount of EXX has
a “straightening” effect. For a = 1.0, i.e., using 100% EXX
in combination with PBE correlation, the OSIEs are reduced
to virtually zero for all systems, coinciding with the analytical
results for the local hybrids. For NTCDA, this straightening
effect also exists but is less obvious to discuss, as an increase
in the amount of EXX leads to a change in both the OSIEs and
the ordering of the Kohn-Sham orbitals, resulting in a more
complicated curve.

Third, the OSIE curves obtained with PBEh(a = 0), i.e.,
pure PBE exchange and correlation, are similar to the ones

FIG. 3. Kohn-Sham DOS for pyridine obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [119].

from other (semi)local functionals, as for example the LSDA.
Therefore, it is justified to discuss the Kohn-Sham DOS of the
LSDA in connection to the OSIEs of PBEh (a = 0).

Pyridine exhibits the strongest deviations in the relative
OSIEs with values up to 3 eV for pure PBE. Indeed the Kohn-
Sham DOS obtained from LSDA describes the experimental
photo-emission spectrum insufficiently. Figure 3 shows that
in the shifted spectrum especially the second and third peak
are off by ≈0.5–1 eV, while also the ho eigenvalue of −εho =
6.03 eV drastically underestimates the experimental IP.

Explicit removal of the one-error leads to better agreement
with the experimental spectrum, as the second and third
eigenvalues obtained by E-min GSIC are shifted towards
the corresponding experimental peaks. However, here the ho
eigenvalue significantly overestimates the experimental IP. We
attribute this to the “overcorrection” that can be seen in energy-
minimizing SIC schemes, as discussed in Ref. [27]. The global
hybrid PBEh moves the second and third eigenvalue towards
the GSIC results when going from a = 0.25 to a = 0.5, as the
one-error is increasingly compensated by the higher amount
of EXX.

Interestingly, ISO and ISOII show Kohn-Sham eigenvalue
spectra that are similar to the PBEh spectra. The fact that for
global and local hybrids the description of the IP via −εho

depends decisively on the value of the respective functional
parameter was investigated in detail in Refs. [56,88], finding
a close connection with the incorrect asymptotical decay of
vxc(r) for both types of hybrids [89].

Also the occupied Kohn-Sham eigenvalues below the ho
state show striking similarities for the global and local hybrids.
Here, the agreement with physical removal energies improves
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FIG. 4. Kohn-Sham DOS for pyrimidine obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [120].

if the value of the corresponding functional parameter is
increased. Especially the Kohn-Sham eigenvalues of the ho-2
and ho-3 state are moved towards the experimental peaks,
similar to the ones of PBEh. From the perspective that the local
hybrids are nominally free from one-error with systematically
vanishing OSIEs, one would intuitively expect a spectrum
closer to the one obtained by GSIC. Our results show that
it is in principle possible to obtain a DOS comparable to
GSIC with ISO and ISOII using relatively large parameters.
However, the eigenvalues of GSIC and the local hybrids
do not describe physical energies with the same accuracy
independent of the value of the functional parameter, as their
systematically vanishing OSIE might suggest. Consequently,
the fact that the interpretability of Kohn-Sham eigenvalues
as physical energies for these functionals depends on the
amount of EXX rather than on the property of being free
from one-error demonstrates a fundamental point: the OSIE is
a necessary, but not sufficient criterion for judging the quality
with which Kohn-Sham eigenvalues approximate physical
electron removal energies.

The calculated eigenvalues of pyrimidine depicted in Fig. 4
confirm these statements. Here, increasing the functional
parameter of the local hybrids has a large impact on the
relative position of the ho-1 and ho-3 orbital, shifting them
towards physically meaningful energies. However, the DOS
of ISO and ISOII for large values of their parameter deviates
from the GSIC spectrum. While GSIC predicts the ho-1 and
ho-2 state to be nearly degenerate, the local hybrid functionals
open up a gap between these eigenvalues and shift the ho-1
towards the corresponding experimental peak. Using such a
parametrization, the local hybrids therefore even outperform

FIG. 5. Kohn-Sham DOS for benzene obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [119].

GSIC for this system, while at the same time delivering a more
realistic prediction of the IP via the ho eigenvalue.

The results for benzene in Fig. 5 underline how the relative
OSIEs predict the problem of describing the experimental
photoemission spectrum via the LSDA. Removing the one-
error via GSIC significantly opens up the gap between the
twofold degenerate ho and ho-1 and the ho-2 and ho-3 states.

Interestingly, both PBEh and ISOII show a reduced de-
pendency on their functional parameter for the position of
the ho-2 and ho-3 states. The local hybrid ISO on the other
hand moves these states towards the experimental peak and the
GSIC results. For values of c � 2.5 ISO offers the possibility
to describe the photoemission spectrum of benzene with an
accuracy comparable to GSIC, while again it remedies the
overestimation of the IP using −εho.

As discussed earlier in this section, the molecules pentacene
and perylene show only small differences in the relative OSIEs
for the valence states. Indeed Figs. 6 and 7 show that the
(shifted) LSDA eigenvalues describe the experimental spec-
trum reasonably well. Furthermore, removing the one-error
explicitly via GSIC has almost no effect on the Kohn-Sham
DOS, but only results in a uniform shift on the spectrum, as
the corresponding eigenvalue of the ho state indicates.

Similarly, an increase in the amount of EXX has no
considerable effect on the Kohn-Sham DOS of the global and
local hybrids. Figures 6 and 7 depict the simulated spectra
using PBEh (a = 0.25), ISO (c = 0.5) and ISOII (c∗ = 0). The
spectra using larger values for the corresponding parameter
look very similar (see Supplemental Material [104] for all
spectra).
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TOBIAS SCHMIDT AND STEPHAN KÜMMEL PHYSICAL REVIEW B 93, 165120 (2016)

FIG. 6. Kohn-Sham DOS for pentacene obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [121].

Our findings confirm that for systems for which the OSIEs
of (semi)local functionals suggest negligible distortions in the
Kohn-Sham eigenvalue spectrum, any additional mechanism
to counteract one-error has no considerable effect on the
aligned spectrum. This was demonstrated in Ref. [100] for
global hybrid functionals and is here confirmed for local
hybrids and GSIC. Note that in such cases as, e.g., pen-
tacene and perylene, both local and global hybrids offer a
more satisfying description of the photoemission spectrum,
because when their respective functional parameter is chosen
large enough, the agreement between the experimental IP and
−εho improves [122].

Figure 8 shows the comparison of Kohn-Sham eigenvalues
to the experimental spectrum for NTCDA. Here, especially the
position of the ho-1 state suffers from one-error, as its OSIEs in
Fig. 2 suggest. Consequently, the LSDA predicts a DOS with
a too narrow gap between the ho and ho-1 state. Applying the
GSIC to this system opens up this gap drastically and shows
eigenvalues that can better be interpreted as physical ionization
energies.

FIG. 7. Kohn-Sham DOS for perylene obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [121].

FIG. 8. Kohn-Sham DOS for NTCDA obtained from different
functionals compared to the experimental gas phase photoemission
spectrum [123].

For this system, all hybrid functionals shift the ho-1
eigenvalue towards the experimental energy if the value of the
respective parameter is increased. Here, it is worth to discuss
the performance of ISO using c = 0.5 in contrast to PBEh
with a = 0.25. In these respective parametrizations, both
functionals show their best performance for thermochemical
properties [88,90]. However, the corresponding Kohn-Sham
DOS in Fig. 8 demonstrates that ISO(c = 0.5) delivers
eigenvalues of a higher interpretability, as it noticeably opens
the gap between the ho and ho-1 state when compared to PBEh
(a = 0.25).

The hybrid functionals offer the possibility to reproduce
the Kohn-Sham eigenvalue structure of GSIC, requiring large
values of the respective functional parameter. On the one
hand such a choice enhances the description of the overall
IP via −εho and remedies the systematical overestimation of
this quantity in GSIC. Yet, it conflicts with the performance
of hybrid functionals for other ground-state properties. Im-
portantly, the ISO and ISOII spectra agree acceptably well
with the E-min GSIC result only for large values of c and
c∗. This underlines the finding that a nominal freedom from
one-error does not universally guarantee the same quality of
results compared to a direct removal of the SIE in the sense
of Eq. (15). Instead, in analogy to global hybrids, the amount
of EXX plays the dominant role for the interpretability of
Kohn-Sham eigenvalues.

It has been demonstrated that SI not only affects the quality
of Kohn-Sham eigenvalues, but also hinders the interpretation
of intensity patterns observed in angular-resolved photoemis-
sion spectroscopy (ARPES) [32,33,35,36,124,125]. Based on
the assumption that during the emission process the electron
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method ordering
ARPES map [35] A - B

E-min GSIC A - B

LSDA C - A

PBEh(a = 0.00) C - A
PBEh(a = 0.25) A - C
PBEh(a = 0.50) A - C
PBEh(a = 0.75) A - C
PBEh(a = 1.00) A - B

ISO(c = 0.0) C - A
ISO(c = 0.2) A - C
ISO(c = 0.5) A - C
ISO(c = 1.0) A - C
ISO(c = 1.5) A - B
ISO(c = 2.0) A - B
ISO(c = 2.5) A - B

ISOII(c∗ = 0.0) A - C
ISOII(c∗ = 0.5) A - B
ISOII(c∗ = 1.0) A - B
ISOII(c∗ = 1.5) A - B
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FIG. 9. Left side: Orbital ordering of the ho and ho-1 state
for NTCDA calculated with different functionals in comparison
to the ordering obtained in ARPES experiments. Agreement with
experiment is marked in boldface. Right side: ARPES momentum

maps of three NTCDA Kohn-Sham orbitals at |k| = 2.75 Å
−1

.

performs a transition from one particular molecular orbital to
a plane-wave final state (see details in Refs. [126,127]), the
photoemission intensity can be expressed as

I (kx,ky,Ekin) ∝ |ϕiσ (k)|2|k|=const.. (22)

Equation (22) directly relates the emission intensity mea-
sured in ARPES experiments to the Fourier transform of a
molecular orbital |ϕiσ (k)|2, with |k| denoting the momentum
of the outgoing electron. In order to discuss the relation
between one-error and the interpretation of higher lying
Kohn-Sham orbitals as ARPES momentum maps, we present
two-dimensional representations of the corresponding fourier-
transformed orbitals for the NTCDA molecule. Due to energy
conservation and the relation Ekin = |k|2/2, |ϕiσ (k)|2 has to
be evaluated on a sphere with radius |k|. This translates
into a spherical cut through the three-dimensional orbital in
k-space, as it is shown in color code in the following. For our
discussion we make use of the finding that for the molecule
and momentum range studied here, the Kohn-Sham orbitals
obtained with different functionals are in most cases quite
similar and therefore result in quite similar momentum maps.
In other words, we here focus on the relative ordering of the
states.

Figure 9 shows the plots for the relevant transformed π (A
and B) and σ orbitals (C) as a function of kx and ky , evaluated
at a fixed kinetic energy. Experimentally confirmed by ARPES
are the momentum maps A and B of the two π orbitals, with
A having the smaller binding energy. Therefore, map A can
be identified with the ho and B with the ho-1 state of the

NTCDA molecule. Purely (semi)local functionals such as the
LSDA and PBE do not reproduce this ordering, as they predict
the ho state to be of type C, originating from a σ orbital not
observed in ARPES experiments among the first two peaks.
PBEh interchanges the ordering of the ho and ho-1 Kohn-Sham
orbitals for intermediate values of the parameter a, while the
correct ordering A–B is only reproduced for large amounts of
EXX. Explicit removal of the one-error via GSIC gives the
experimentally observed orbital ordering [35].

For ISO, a picture in analogy to PBEh occurs. ISO(c = 0)
reduces to pure LSDA for spin-unpolarized systems, and it
consequently predicts a momentum map of type C for the ho
state. Increasing the amount of EXX puts the map of type A
in the first position, while incorrectly predicting the ho-1 state
to be of type C. The correct ordering of momentum maps for
both the ho and ho-1 state is only reproduced for large values
of the functional parameter. The same mechanism emerges for
ISOII, even though here the amount of EXX introduced via
the modified LMF in Eq. (9) is intrinsically larger, resulting
in the orbital ordering A–C for c∗ = 0, while higher values of
this parameter lead to the correct ordering.

These results again support the conclusion that the lo-
cal hybrid functionals, despite being nominally free from
one-error, reliably predict photoemission observables only
for sufficiently large values of their respective functional
parameter. We conclude that counteracting the one-error via
spatially resolved single-orbital detection functions does not
guarantee that Kohn-Sham eigenvalues and orbitals are as close
to the physical quantities as the eigenvalues and orbitals that
are found when the one-error is removed based on Eq. (15).

B. Hybrid functionals and many-error: Energy curves
for fractional charges

In the previous subsection we discussed that global and
local hybrids formally treat the one-error very differently,
yet show a similar performance for quantities influenced by
one-error. Naturally, the question arises whether the nominal
freedom from one-error of local hybrids influences the many-
error. In Ref. [106], E(N ) was discussed in detail for several
local hybrids, focusing on the influence of range-separated
components in the hybrid construction. In this paper, we
concentrate on the question of how the conceptual freedom
from one-error in a local hybrid functional affects the energy
curves.

In this discussion we restrict ourselves to the different
types of hybrid functionals and leave out SIC schemes based
on Eq. (15). This has two reasons. First, an interesting SIC
scheme employing fractional particle numbers has been put
forward [15]. Yet, as it is based on off-diagonal Lagrangian
multipliers [128] it goes beyond the Kohn-Sham concept of
DFT on which we focus in this paper. Second, the previously
discussed Kohn-Sham GSIC [40,47,105] requires a unitary
orbital transformation which we so far could not extend to
fractional particle numbers.

Therefore, we explicitly evaluate total energy curves E(N )
for the global and local hybrids and compare our calculated
curves to the expected piecewise linear behavior, Eq. (2). We
here focus on systems with particle numbers between their
neutral and singly ionized state, i.e., N = N0 + ω with N0 ∈ N
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FIG. 10. E(N ) − Eisl(N ) as a function of the fractional electron
number N = N0 + ω for the magnesium atom. The curves were
obtained using the LSDA, pure EXX and the global hybrid PBEh
(upper panel) as well as the local hybrids ISO and ISOII (lower
panel) for different values of the respective functional parameter. The
piecewise-linear result is indicated by the dashed line.

and w ∈ [0,1[. Instead of plotting the calculated energy curves
directly, it is beneficial to illustrate the difference E(N ) −
Eisl(N ).

Figure 10 shows these curves for the magnesium atom. We
clearly see the concave behavior found for pure EXX, and
the convex deviation from piecewise linearity observed for the
LSDA and PBE. Naturally, for global hybrid functionals one
expects that there exists a certain mixing ratio of nonlocal and
(semi)local components that minimizes the deviation from the
straight-line behavior [92]. Figure 10 indeed demonstrates that
an increasing amount of EXX in PBEh reduces the convexity
until it is (almost) fully canceled and turned to concavity for
large values of a.

For local hybrid functionals, due to their approach of
flexible instead of rigid mixing, it is less clear what energy
curve to expect. We find that the ISO functional also shows
curves with reduced convexity for increasing values of c.
However, in contrast to the results of LSDA, PBEh and
EXX calculations, the local hybrid curves are noticeably
asymmetrical. This asymmetry is introduced by the sensitivity
of the LMF [Eq. (6)] to the electronic structure of the
underlying system. Especially the explicit occurrence of the
spin polarization in the LMF leads to an asymmetry in E(N ),
as can be explained on the example of ISO using c = 0: The
neutral magnesium atom has ζ (r) = 0, reducing ISO(c = 0) to
the LSDA since in this case fx(r) = fc(r) = 1. Consequently,
for ω → 1 the energy curves of ISO(c = 0) and LSDA agree
well. Towards ω → 0 a finite spin-polarization ζ (r) �= 0 is
built up due to the fractional electron missing, resulting in
fx(r) < 1 and a partial inclusion of EXX. Therefore, the energy

FIG. 11. E(N ) − Eisl(N ) as a function of the fractional electron
number N = N0 + ω for the helium atom. The curves were obtained
using the LSDA, pure EXX and the global hybrid PBEh (upper panel)
as well as the local hybrids ISO and ISOII (lower panel) for different
values of the respective functional parameter. The piecewise-linear
result is indicated by the dashed line.

curve is shifted upwards, leading to the observed asymmetry.
Note that not only ζ (r), but also the other functional ingredients
τW(r)/τ (r) and t2(r) contribute to the asymmetry in E(N ).
Thus, a similar effect is observed for the energy curves
obtained with ISOII, though with smaller magnitude.

In the case of the helium atom, this effect leads to an
interesting feature in the energy curves. Figure 11 shows
rather symmetrical energy curves for the LSDA, EXX, and
PBEh. ISO, on the other hand, gives curves with both convex
and concave parts, i.e., E(N ) shows an inflection point and
an intersection with the piecewise linear curve for ω �= 0,1.
This peculiarity can also be explained with the example of
ISO(c = 0). While for ω → 1 the functional reduces to the
LSDA, the singly ionized helium atom at ω → 0 only has
one remaining electron, for which ISO reduces to pure EXX.
Consequently, varying ω from 0 to 1 changes the functionals
character from fully nonlocal to purely local, resulting in the
observed curves.

An increase in the functional parameter c smoothens the
curves and reduces the deviation from piecewise linearity. The
energy curves obtained via ISOII for the helium atom coincide
with the results of a pure EXX computation independently of
c∗, due to the fact that setting ζ = 1 leads to vanishing LMFs
in Eq. (9) and (10) for a density built up of two identical
Kohn-Sham orbitals of opposite spin.

Connected to this qualitative discussion of exemplary
energy curves, we present a quantitative analysis of the
deviation from piecewise linearity for the hybrids, using LSDA
and EXX results as references values. For this, we rely on � as
introduced in Eq. (16). The corresponding results are presented
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FIG. 12. � [Eq. (16)] in eV for the atoms helium, carbon, oxygen
and magnesium obtained using the LSDA, EXX, PBEh, ISO, and
ISOII.

for the atoms He, C, O, and Mg in Fig. 12 and the molecules
BeH, CO, N2, and NO in Fig. 13. These system were chosen as
they represent a small, transparent set of atoms and molecules
which yet is diverse enough to lead to different electronic
configurations in their ground and singly ionized states.

The LSDA and PBE perform similarly, being the function-
als that deviate the most from piecewise linearity for almost
all systems investigated. Interestingly, the magnesium atom
in general shows small deviations with � = 0.54 eV for the
LSDA in contrast to, e.g., helium with � = 1.55 eV. Pure
EXX reduces � considerably for all systems when comparing
to (semi)local functionals, and the remaining error always
originates from concavity. As already indicated for magnesium
and helium, PBEh with a large fraction of EXX can nearly
restore piecewise linearity by mixing convex (semi)local with
concave functional components. As a result, most of the
atoms and molecules in Figs. 12 and 13 show a minimum
in � around a ≈ 0.75. This finding supports the connection
between piecewise linearity and the description of IPs via
−εho, since PBEh was found to perform best in the latter
category using this parametrization as well [56].

The local hybrid ISO evaluated with c = 0 already reduces
� in comparison with the (semi)local LSDA and PBE
especially for the atoms and the BeH molecule. For these
systems, we further observed that ISO(c = 0.5) outperforms

FIG. 13. � [Eq. (16)] in eV for the molecules BeH, CO, N2, and
NO obtained using the LSDA, EXX, PBEh, ISO, and ISOII.

the comparable global hybrid PBEh(a = 0.25), meaning that it
reduces the many-error while performing similar for quantities
related to thermochemistry. The reduction of � for ISO in
contrast to the comparably parametrized global hybrid is
mostly due to the explicit inclusion of ζ (r) in the functional
construction and the consequences for piecewise linearity
described in detail above. For the molecules CO, N2, and NO
this effect appears less pronounced, as here the removal of one
electron has a smaller impact on the spin polarization.

Apart from these features, both ISO and PBEh display
a similar dependence of � on their respective functional
parameter. Our calculations show that the local and global
hybrid systematically reduce � when the amount of EXX is
increased. ISO minimizes � for values between c ≈ 5–10 for
the systems C, CO, NO, O, while the other molecules and
atoms require even larger values of the functional parameter to
considerably reduce the deviation from piecewise linearity in
their energy curves. Again, this result agrees with the finding
that describing IPs via the ho Kohn-Sham eigenvalue using
this local hybrid functional requires a similar parametrization
[88].

Our results support the conclusion that the formal criterion
of a functional being free from one-error does not guarantee
a good performance with respect to the energy curves E(N ),
a manifestation of the many-error. This finding is in line with
the results of Ref. [58]. Thus, we arrive at the same principle
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discussed in Sec. V A for the influence on the one-error: For
both local and global hybrids, the amount of EXX included
plays the decisive role regarding the performance for properties
dominated by the many-error. In that sense, global and local
hybrids can be thought of as two sides of the same medal.

This finding is further supported by evaluating � for ISOII
in Figs. 12 and 13. Setting ζ (r) = 1 in its LMFs in Eqs. (9) and
(10) systematically reduces the values that these functions take,
resulting in instrically higher portions of EXX. Consequently,
ISOII shows the smallest deviations from piecewise linearity.
Especially the energy curve for the magnesium atom in Fig. 10
shows how this local hybrid restores the correct total energy
dependency on fractional charges for large values of the
functional parameter c∗. However, also here the performance
with respect to many-error depends strongly on the functional’s
parameter, and in this sense ISOII can be understood as a
continuation of ISO with larger functional parameter.

VI. CONCLUSIONS

In this work we shed light on the manifestation of the
one- and many-electron self-interaction error in global and
local hybrid functionals. Our first focus was on investigating
whether local hybrids that are formally one-electron self-
interaction free are superior to global hybrids with respect
to the interpretation of their Kohn-Sham eigenvalues and
orbitals as photoemission observables. To this end, we also
compared the iso-orbital indicator (τW(r)/τ (r)) based self-
interaction correction of the local hybrids to the GSIC, i.e.,
a Perdew-Zunger type Kohn-Sham self-interaction correction.
We found that compared to LSDA and a GGA, the local hybrid
functionals can considerably increase the interpretability of
Kohn-Sham eigenvalues as electron removal energies, similar
to GSIC. However, the local hybrids’ performance depends
very much on the value of a parameter that appears in these
functionals. Large values for the parameter, corresponding to a
large exact exchange component, are necessary to obtain phys-
ically meaningful eigenvalues. In this sense, local hybrids are
much like global hybrids. With a properly chosen parameter,
hybrid functionals lead to highest occupied eigenvalues that
approximate experimental IPs better than GSIC eigenvalues.

In a second step we discussed the total energy as a function
of particle number for local and global hybrids. For the
smaller systems in our study we found that a local hybrid
can lead to a reduction of many-electron self-interaction in
comparison to a global hybrid due to the mixing function’s
sensitivity on the systems’ spin polarization. The latter
changes naturally upon addition or removal of an electron.
For larger systems, however, removal of one electron only
causes a relatively small change in the spin densities, and the
local hybrid again becomes more similar to a global hybrid. A
similarity between local and global hybrids also emerges for
the electron-transfer characteristics in hydrogen chains that
we discuss in Appendix A.

Our findings demonstrate that there is a conceptual
difference between the different ways of how the one-electron
condition Eq. (1) is used in a many-electron system.
While Eq. (1) poses a stringent test for functionals in the
one-electron case, it does not provide a unique construction
rule for density functionals, and obeying Eq. (1) does not

guarantee reliable results for many-electron systems. In
particular, under different perspectives we arrive at the
conclusions that although local hybrids can be formally made
one-electron self-interaction free with the help of detection
functions such as τW(r)/τ (r), this does not necessarily
remove self-interaction in the same way as the Perdew-Zunger
concept of Eq. (15). Thus, local hybrid functionals based
on the concept of canceling self-interaction with the help of
semilocal detection functions appear as elaborate extensions
of global hybrids, sharing some of their basic shortcomings,
while offering some additional benefits through the flexible
mixing of non and semilocal functional components.
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APPENDIX A: ELECTRON TRANSPORT
IN HYDROGEN CHAINS

We here investigate the charge transfer (CT) properties
of a model system consisting of two hydrogen chains, each
containing eight hydrogen atoms separated by 1 Å. These
chains are aligned along the x axis, located at a distance of
8 Å as illustrated in the inset of Fig. 14. We then switch on
a constant electric field in the x direction, which induces CT
from the right (donor) to the left (acceptor) hydrogen chain.
In order to quantize the simulated CT from the donor to the
acceptor chain, we investigate the charge density integrated
in the acceptor’s semisphere as a function of the applied field
strength. Figure 14 shows the results obtained using the LSDA,
E-min GSIC, and ISO with c = 0.5 and c = 5.0. Note that
for some values of the electric field no convergence could
be reached for ISO, since the calculation repeatedly jumped
between different solutions.

Due to their large separation and small coupling, CT
between the hydrogen chains must occur via integer electron
jumps at certain field strengths [42,44]. However, the LSDA
gives a qualitatively wrong picture of the CT: Beginning
at a field strength of ≈2.0 × 109 V

m , fractional charges are

FIG. 14. Integrated charge density on the acceptor in dependence
on the strength of the external electrical field.
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gradually transferred from the donor to the acceptor chain. At
≈7.8 × 109 V

m one whole electron has migrated, while higher
field values again induce fractional CT. In contrast, removal of
the one-error via GSIC results in the physical integer electron
transfer, occurring at a field strength of ≈5.1 × 109 V

m [129].
We now investigate the performance of a nominally one-

error free local hybrid functional. Figure 14 shows that using
ISO with a parameter of c = 0.5 slightly improves over
the LSDA curve by shifting the appearance of fractional
CT towards higher field strengths, while at the same time
broadening the plateau around ≈7–8 × 109 V

m . Increasing the
functional parameter to c = 5.0 further improves the simulated
CT properties, as here fractional charge transfer sets in at even
higher field strengths.

It thus becomes apparent that the performance of the local
hybrid decisively depends on the amount of EXX included,
a feature that is also observed for global hybrids [42].
Consequently, the CT studied here is another example for the
similarity between local and global hybrids functionals.

APPENDIX B: PSEUDOPOTENTIALS DETAILS

We here specify all details regarding the PPs used through-
out this work. Table I lists which functional is used with which
PP. For each atom the corresponding cutoff radii are given in

TABLE I. Specifications of the PPs. DF denotes the density
functional.

DF DF PP atom rc(s) rc(p)

LSDA, E-min GSIC LSDA H 1.39
C 1.60 1.60
N 1.50 1.50
O 1.45 1.45

PBE, PBEh (a = 0.25) PBE H 1.40
C 1.49 1.53
N 1.50 1.50
O 1.45 1.45

PBEh (a � 0.50) Giannozzi H
EXX C 1.20 1.20

N 1.19 1.19
O 0.99 0.94

ISO (c) Giannozzi H
ISOII (c∗) EXX C 1.20 1.20

with nc N 1.19 1.19
O 0.99 0.94

bohrs. For the local hybrid functionals, the explicit use of the
core densities as explained in Sec. IV is marked by the note
“with nc.”
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[21] A. Makmal, S. Kümmel, and L. Kronik, Phys. Rev. A 83,
062512 (2011).

[22] B. Champagne, E. A. Perpete, S. J. A. van Gisbergen, E. J.
Baerends, J. G. Snijders, C. Soubra-Ghaoui, K. A. Robins, and
B. Kirtman, J. Chem. Phys. 109, 10489 (1998).

[23] S. J. A. van Gisbergen, P. R. T. Schipper, O. V. Gritsenko, E.
J. Baerends, J. G. Snijders, B. Champagne, and B. Kirtman,
Phys. Rev. Lett. 83, 694 (1999).
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[107] V. Vlček, H. R. Eisenberg, G. Steinle-Neumann, L. Kronik,
and R. Baer, J. Chem. Phys. 142, 034107 (2015).
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