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The Bogoliubov-Born-Green-Kirkwood-Yvon or time-dependent density matrix (TDDM) hierarchy of
equations for higher density matrices is truncated at the three-body level in approximating the three-body
correlation function by a quadratic form of two-body ones, closing the equations in this way. The procedure
is discussed in detail and it is shown in nontrivial model cases that the approximate inclusion of three-body
correlation functions is very important to obtain precise results. A small amplitude approximation of this
time-dependent nonlinear equation for the two-body correlation function is performed (STDDM*-b) and it
is shown that the one-body sector of this generalized nonlinear second random phase approximation (RPA)
equation is equivalent to the self-consistent RPA (SCRPA) approach which had been derived previously by
different techniques. It is discussed in which way SCRPA also contains the three-body correlations. TDDM and
SCRPA are tested versus exactly solvable model cases.

DOI: 10.1103/PhysRevB.93.165117

I. INTRODUCTION

Many-body theory is well defined at the lowest order,
that is, at the mean field level. Practically in all domains
of many-body physics the same type of mean field equa-
tions are applied, even though in detail there may be quite
important deviations. This concerns, for instance, density
functional theory, e.g., in the manner of Kohn-Sham [1], where
already important many-body correlations are incorporated
in an equation for the single-particle density (matrix). The
cases where, like in atomic physics, one can work with
a one-body theory built on a nonrenormalized bare force,
as is the case with the original Hartree-Fock theory, are
quite rare. In spite of the extraordinary success of these
“effective” mean field approaches, in many cases, there is
need to go beyond and treat two-, three-body, ... correlations
explicitly. Unfortunately, so far, no well-accepted universal
method applicable in practically the same way in all domains,
analogous to mean field theory, exists for higher correlation
functions. Rather, the situation is such that the way how
correlations are treated is tailored to the problem at hand.
There exists the Brueckner–Hartree-Fock (BHF) [2] approach
with extensions to treat the difficult hard-core problem of
the force as, e.g., in nuclear physics or in liquid 3He; there
is the Gutzwiller wave function [3] to deal with double
occupancies in lattice models; there are extensions of random
phase approximation (RPA) together with various forms of
time-dependent density matrix (TDDM) theory to be dealt
with again in this work. Coupled cluster theory (CCT) has
become quite in vogue in chemistry [4,5]. An important
branch of many-body physics is, of course, represented by the
quantum Monte Carlo (QMC) approaches [6,7] and also the
very successful density matrix renormalization group methods
(DMRG) [8,9]. The method of correlated basis functions [10]
is a further promising theory. The list could be extended with
many more examples.

In such a disperse situation, we find it promising to
present in this work the merging of two types of many-body
approaches which evolved so far independently from one
another. We, indeed, discovered, and this will be the main
subject of this paper, that the recently proposed extension of
TDDM where the Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy of coupled time-dependent density ma-
trices is truncated at the three-body level, approximating the
three-body density matrix by a quadratic form of two-body
densities leading to a self-consistent closed nonlinear equation
for the two-body density matrix, has a close relation to
the so-called self-consistent RPA (SCRPA) existing in the
literature under various forms since quite some time. Both
TDDM and SCRPA have in recent years shown their high
efficiency in applications to several nontrivial model cases as
well as to a few more realistic cases [11–17].

In this paper, we will demonstrate the nontrivial relation of
these two many-body theories which start from very different
ends, lending more credit to their well-foundedness and
their widespread applicability in several branches of physics.
Applications to several model cases will further elucidate the
structure of the theory.

The paper is organized as follows. In Sec. II, we describe
our new decoupling method of TDDM where we give an
expression for the three-body correlation function C3 in terms
of a quadratic form of the two-body correlation functions
C2. In Sec. III, the small amplitude limit (STDDM-b and
STDDM*-b) of the coupled equations for the one-body density
matrix and the two-body correlation functions is derived. In
Sec. IV, we study the relation between self-consistent RPA
(SCRPA) and STDDM and in Sec. V we demonstrate that to
good approximation the coupled cluster two-body subsystem
approximation (SUB2) wave function is the ground state of
SCRPA and, thus, to a certain extent also of STDDM-b and
STDDM*-b. In Sec. VI, a short outline of how SCRPA is
related to a many-body Green’s function approach is presented.
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In Sec. VII, we show results of applications to a couple of
exactly solvable models where the performances of the various
methods can be appreciated.

II. EXTENDED TIME-DEPENDENT DENSITY
MATRIX (TDDM) METHOD

A. General formalism

We will base our considerations on the following second
quantized Hamiltonian with two-body interactions written in
a single-particle basis where the single-particle part of the
Hamiltonian is diagonal (think, e.g., of kinetic energy in plane-
wave basis, or harmonic oscillator basis if the system is in an

external quadratic potential as is mostly the case for trapped
cold atoms):

H =
∑

α

eαa+
α aα + 1

4

∑
αβγ δ

v̄αβγ δa
+
α a+

β aδaγ . (1)

Here, the eα’s are the single-particle energies figuring together
with the two-body interaction part where the antisymmetrized
matrix element of the force is defined by v̄αβγ δ = 〈αβ|v|γ δ〉 −
〈αβ|v|δγ 〉.

The BBGKY hierarchy for density matrices with their
equation of motion (EOM) is well documented in the literature
(see, e.g., [18] and references therein). It is straightforward to
write the first two of these equations which involve the one-,
two-, and three-body density matrices:

iρ̇αα′ = (eα − eα′ )ραα′ + 1

2

∑
λ1λ2λ3

[v̄αλ1λ2λ3ρλ2λ3α′λ1 − ραλ1λ2λ3 v̄λ2λ3α′λ1 ], (2)

iρ̇αβα′β ′ = (eα + eβ − eα′ − eβ ′ )ραβα′β ′ + 1

2

∑
λ1λ2

[v̄αβλ1λ2ρλ1λ2α′β ′ − v̄λ1λ2α′β ′ραβλ1λ2 ]

+ 1

2

∑
λ1λ2λ3

[v̄αλ1λ2λ3ρλ2λ3βα′λ1β ′ + v̄λ1βλ2λ3ρλ2λ3αα′λ1β ′ − v̄λ1λ2α′λ3ραλ3βλ1λ2β ′ − v̄λ1λ2λ3β ′ραλ3βλ1λ2α′], (3)

where ραα′ = 〈�(t)|a+
α′aα|�(t)〉, ραβ,α′β ′ = 〈�(t)|a+

α′a
+
β ′aβaα|�(t)〉, ραβγ,α′β ′γ ′ = 〈�(t)|a+

α′a
+
β ′a

+
γ ′aγ aβaα|�(t)〉 are the one-,

two-, and three-particle density matrices, respectively. The time-dependent state is given by |�(t)〉 = e−iH t |�(0)〉. For a system
consisting of two particles, Eqs. (2) and (3) without the three-body density matrix are exact.

It is preferable to introduce in Eqs. (2) and (3) instead of the two- and three-body density matrices their fully correlated
counterparts C2 and C3:

ραβα′β ′ = A(ραα′ρββ ′ ) + Cαβα′β ′ , (4)

ραβγ,α′β ′γ ′ = AS(ραα′ρββ ′ργγ ′ + ραα′Cβγβ ′γ ′) + Cαβγ,α′β ′γ ′ , (5)

where A and S shall indicate that the products in parentheses are properly antisymmetrized and symmetrized, respectively.
The resulting equations can be found, e.g., in [19]. For completeness, we will present them here again:

iρ̇αα′ =
∑

λ

(εαλρλα′ − ραλελα′ ) + 1

2

∑
λ1λ2λ3

[v̄αλ1λ2λ3Cλ2λ3α′λ1 − Cαλ1λ2λ3 v̄λ2λ3α′λ1 ], (6)

iĊαβα′β ′ =
∑

λ

(εαλCλβα′β ′ + εβλCαλα′β ′ − ελα′Cαβλβ ′ − ελβ ′Cαβα′λ) + B0
αβα′β ′ + P 0

αβα′β ′ + H 0
αβα′β ′

+ 1

2

∑
λ1λ2λ3

[v̄αλ1λ2λ3Cλ2λ3βα′λ1β ′ + v̄λ1βλ2λ3Cλ2λ3αα′λ1β ′ − v̄λ1λ2α′λ3Cαλ3βλ1λ2β ′ − v̄λ1λ2λ3β ′Cαλ3βλ1λ2α′], (7)

where Cαβγα′β ′γ ′ is the correlated part of the three-body density matrix in (5) which is neglected in the original version of TDDM
[20]. The energy (mean field) matrix εαα′ is given by

εαα′ = eαδαα′ +
∑
λ1λ2

v̄αλ1α′λ2ρλ2λ1 . (8)

The matrix B0
αβα′β ′ in Eq. (7) does not contain Cαβα′β ′ and describes the 2p-2h and 2h-2p excitations:

B0
αβα′β ′ =

∑
λ1λ2λ3λ4

v̄λ1λ2λ3λ4 [(δαλ1 − ραλ1 )(δβλ2 − ρβλ2 )ρλ3α′ρλ4β ′ − ραλ1ρβλ2 (δλ3α′ − ρλ3α′)(δλ4β ′ − ρλ4β ′ )]. (9)

Particle-particle and h-h correlations are described by P 0
αβα′β ′ :

P 0
αβα′β ′ = 1

2

∑
λ1λ2λ3λ4

v̄λ1λ2λ3λ4 [(δαλ1δβλ2 − δαλ1ρβλ2 − ραλ1δβλ2 )Cλ3λ4α′β ′ − (δλ3α′δλ4β ′ − δλ3α′ρλ4β ′ − ρλ3α′δλ4β ′ )Cαβλ1λ2 ]. (10)
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H 0
αβα′β ′ contains the p-h correlations:

H 0
αβα′β ′ =

∑
λ1λ2λ3λ4

v̄λ1λ2λ3λ4 [δαλ1 (ρλ3α′Cλ4βλ2β ′ − ρλ3β ′Cλ4βλ2α′ ) + δβλ2 (ρλ4β ′Cλ3αλ1α′ − ρλ4α′Cλ3αλ1β ′)

− δα′λ3 (ραλ1Cλ4βλ2β ′ − ρβλ1Cλ4αλ2β ′) − δβ ′λ4 (ρβλ2Cλ3αλ1α′ − nαλ2Cλ3βλ1α′)]. (11)

So far, things have been straightforward. The difficulty lies
in the fact that the hierarchy of equations has to be decoupled
in order to be applicable and to yield a self-contained system of
equations. Many decoupling schemes have been proposed in
the past (see, e.g., [18]). In nuclear physics, the decoupling
scheme of Cassing and Wang is often applied. It consists
in neglecting the three-body correlation function in (7) (C3)
altogether [20]. This then leads to a closed system of equations
where the two-body correlation matrix (C2) figures linearly.
Recently, the present authors have shown that three-body
correlations are very important [21]. Since they are difficult
to incorporate fully, it was proposed not to skip C3 entirely
but to replace it by a quadratic form in C2 [19]. This then
yields a closed system of nonlinear equations for the two-
body correlation functions C2. This approximation scheme is
explained in the next section and in Appendix A.

B. Quadradic form of C3 in terms of C2’s

Roughly speaking, the way how to express the three-body
correlation functions C3 as a quadratic form of two-body ones
(C2) goes as follows. It is well known that the in-medium
three-body Green’s function can be expanded in analogy to the
free three-body problem into a series of two-body in medium
T matrices, the equivalent of our C2 correlation functions [22].

In Fig. 1, we show graphically the second-order contribu-
tion to the three-body propagator in terms of the in-medium
T matrices. The first-order terms are the ones Cassing and
Wang have considered. We want to keep also the second-order
terms. Imposing a specific time ordering where two particles
and one hole (2p-1h) (or 2h-1p) are traveling together as
it may be deduced from the three-body terms in (7), we
obtain for the second-order terms the second graph in Fig. 1.
One easily checks that there are nine combinations of this
type possible. Such contributions are contained in the 2p-1h

FIG. 1. One-line-reducible contributions to the 2p-1h (2h-1p)
propagator. T denotes the in-medium two-body T matrix.

(2h-1p) propagator and are known as their one-line-reducible
part since they can be separated into two pieces in just cutting
one line. The remainder is the so-called one-line-irreducible
part and enters, e.g., the dynamic part of the single-particle
self-energy in Dyson’s equation for the single-particle propa-
gator [23]. The fact that an important part of the 2p-1h (2h-1p)
many-body propagator can be separated into some quadratic
form of two-body propagators is already manifest at this point.
Let us, however, be more analytic since this will be a basic
aspect of our theory. In [23], Appendix F, it is shown that
the one-line-reducible part of the 2p-1h (2h-1p) propagator
can be expressed in a way which is shown in Appendix A 1
and graphically interpreted in Fig. 1. A more direct but less
intuitive way is obtained using identity relations of density
matrices via their trace relations (see Appendix A 2). We give
here the final result on which our approach will be based.
Let us consider the first three-body term in Eq. (7) that is the
three-body correlation matrix Cλ2λ3βα′β ′λ1 is written as

Cλ2λ3βα′β ′λ1 = 1

3 − nλ2 − nλ3 − nβ − nα′ − nβ ′ − nλ1

×
∑

γ

(−Cλ2λ3α′γ Cβγβ ′λ1 − Cλ2λ3λ1γ Cβγα′β ′

−Cλ2λ3γβ ′Cβγα′λ1 − Cλ2βα′γ Cγλ3β ′λ1

−Cλ2ββ ′γ Cλ3γα′λ1 − Cλ2βγλ1Cλ3γα′β ′

−Cλ2γα′β ′Cλ3βλ1γ − Cλ2γα′λ1Cλ3βγβ ′

−Cλ2γβ ′λ1Cλ3βα′γ ), (12)

where we supposed that the single density matrices are
diagonal, that is,

ραα′ = nαδαα′ (13)

with nα the single-particle (s.p.) occupation numbers (one can
always work in the basis where ραα′ is diagonal but, below, we
will argue that the nondiagonal terms of the s.p. density matrix
are of higher order anyway). As predicted from the graphical
analysis, there are nine terms. They may not all be of the
same importance. On the other hand, the correlated part of the
single-particle occupations in the denominator may give raise
to contributions which are of the same order of magnitude as
the genuine four-body correlations which have been neglected
in (12). So, we will replace the occupation numbers by their
mean field values 1 or 0. Before we come to these further
approximations, let us analyze the content of the nine terms
in (12). Inserting the expression (12) into (7) one may realize
that this integral equation for the C2’s couples all channels,
that is, the C2’s in the quadratic terms are interconnected
in all possible ways. This is reminiscent of what is done in
parquet diagram technique (see, e.g., [24]). However, there is
an important difference: in parquet diagrams the correlation
functions are dynamic ones depending in general on three
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energies whereas here the correlation functions only depend
on one energy which corresponds to the channel considered
from the outset.

The above equations constitute our most general nonlinear
set for the calculation of the two-body correlation function C2.

C. Static limit: Restriction to particle and hole indices

Let us write (7) for the static case

0 = (εα + εβ − εα′ − εβ ′)Cαβα′β ′ + B0
αβα′β ′ + P 0

αβα′β ′

+H 0
αβα′β ′ + Tαβα′β ′ , (14)

where we supposed to work in a single-particle basis where
the single-particle energies (8) are diagonal. As above, the
three-body part is given by

Tαβα′β ′ = 1

2

∑
λ1λ2λ3

[v̄αλ1λ2λ3Cλ2λ3βα′λ1β ′ + v̄λ1βλ2λ3Cλ2λ3αα′λ1β ′

− v̄λ1λ2α′λ3Cαλ3βλ1λ2β ′ − v̄λ1λ2λ3β ′Cαλ3βλ1λ2α′]. (15)

In general, we will not consider the two-body correlation
functions with arbitrary indices. Since, with particle (p)
indices above and hole (h) indices below the Fermi level,
the inhomogeneous term B0, in the uncorrelated limit, is
only nonzero for Cp1p2h1h2 and Ch1h2p1p2 = C∗

p1p2h1h2
, they are

dominant but we consider additionally the following three
index combinations

Cp1h1p2h2 ; Cp1p2p3p4 ; Ch1h2h3h4

because they couple each other. One can suppose that they give
the dominant contributions. One easily imagines that C2’s with
an odd number of either p or h indices are suppressed with
respect to the ones with an even number of p (h) indices.

In the past, the three-body term T was usually neglected
[20]. Here, we want to treat it in the approximate form given
above. We have four index combinations of T . In addition, at
least for situations not close to a macroscopic phase transition
or to systems with a Goldstone (zero) mode, the single
following term out of the nine possible is dominant:

Cp1h1h2,p2h3h4 �
∑

p

Cp1ph3h4Ch1h2p2p, (16)

that is the product of two correlation functions with 2p-2h

indices is the most important one. There exists only one further
three-body correlation function which has this specific product
property

Ch1p1p2,h2p3p4 �
∑

h

Cp1p2h2hChh1p3p4 . (17)

Respecting this approximation, we obtain for the four
possible three-body terms

Tp1p2h1h2 = 1

2

∑
pp′hh′

[v̄p1phh′Cp2p′h1h2Chh′pp′ − (p1 ↔ p2)]

+ 1

2

∑
hh′pp′

[v̄pp′h1hCp1p2h2h′Ch′hpp′ − (h1 ↔ h2)],

(18)

Tp1h1p2h2 = 1

2

∑
pp′hh′

v̄p1hh′pCp′ph2hCh1h′p2p′

+ 1

2

∑
pp′p′′h

v̄p1pp′p′′Cp′p′′hh2Ch1hp2p

− 1

2

∑
pp′hh′

v̄ph′p2hChh1pp′Cp1p′h′h2

− 1

2

∑
pp′p′′h

v̄p′p′′p2pCp1ph2hChh1p′p′′

− 1

2

∑
pp′hh′

v̄h1pp′hCh′hp2pCp′p1h′h2

+ 1

2

∑
phh′h′′

v̄h1hh′h′′Ch′h′′p2pCpp1hh2

+ 1

2

∑
pp′hh′

v̄ph′h2p′Cp1p′hh′Ch1hp2p

− 1

2

∑
phh′h′′

v̄h′h′′hh2Cpp1h′h′′Ch1hp2p. (19)

The exchange matrix Th1p1p2h2 of Tp1h1p2h2 is given not by
changing p1 and h1 on the right-hand side of Eq. (19) but by
using Eqs. (15), (16), and (17). Then, the exchange property
Th1p1p2h2 = −Tp1h1p2h2 is satisfied. Furthermore, we have

Tp1p2p3p4 = 1

2

∑
phh′h′′

[v̄p1hph′Cpp2hh′′Ch′′h′p3p4 − (p1 ↔ p2)]

− 1

2

∑
phh′h′′

[v̄ph′p3hCp1p2hh′′Ch′′h′pp4 − (p3 ↔ p4)],

(20)

Th1h2h3h4 = 1

2

∑
pp′p′′h

[v̄h1pp′hChh2p′′pCp′p′′h3h4 − (h1 ↔ h2)]

− 1

2

∑
pp′p′′h

[v̄p′hh3pCh1h2p′′p′Cpp′′hh4 − (h3 ↔ h4)].

(21)

Inserting these four three-body terms into (14), one obtains
a set of four coupled equations for the four possible two-
body correlation functions. It is this set of equations which
will be used in the TDDM applications presented below. In
principle, it is straightforward to include into the three-body
terms all nine quadratic forms deduced with their specific
combinations of particle and hole indices from (12). However,
this leads to a much more extended set of equations. In
the numerical examples treated below, this does not seem
necessary. However, as already mentioned, there may exist
situations where the full set of equations is needed.

The above four coupled equations for the four different
C2’s have a number of appealing properties. They are totally
antisymmetric and they are number and energy conserving.
The latter properties can easily be verified in just taking into
account the (anti)symmetry properties of the equations. Other
properties will be discussed in Sec. IV B. To obtain the exact
solution for a general two-body problem, we have to discard
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the three-body density matrix in (3). So, our equations which
approximately include three-body correlations are only valid
for particle numbers N � 3.

D. Procedures to obtain a static solution

Two methods have been used to obtain a stationary state
(ground state) of Eqs. (6) and (7). One is the gradient method
[25,26] and the other a time-dependent method. Since the
latter is used in the applications of TDDM to the model
Hamiltonians below, we explain it in some detail. The starting
point is a noninteracting ground state where the single-particle
states below the Fermi level are completely occupied. (In the
application to 16O [27], we have also used the HF ground
state where the mean field effect is already included.) Then,
we solve Eqs. (6) and (7) by gradually increasing the strength
of the interaction such that v(r,t) = v(r) × t/T . To suppress
mixing of excited states, we must take sufficiently large T :
For example, T � 2π/E2p-2h where E2p-2h is the excitation
energy of a 2p-2h state. This method is motivated by the
Gell-Mann–Low theorem [28] and has often been used to
obtain nearly stationary solutions of time-dependent problems
[29,30].

Let us explain how this method works using an illustrative
case. We try to obtain a perturbative expression for np

assuming that only Cpp′hh′ and Chh′pp′ are important. Under
this assumption, Eq. (6) for np is written as

iṅp = 1

2

∑
hh′p′

[v̄pp′hh′Chh′pp′ − v̄hh′pp′Cpp′hh′]. (22)

If we keep only the B0
pp′hh′ term in Eq. (7), the equation for

Cpp′hh′ is

iĊpp′hh′ = (εp + εp′ − εh − εh′)Cpp′hh′ + v̄pp′hh′
t

T
. (23)

Equation (23) is solved as

Cpp′hh′ = −iv̄pp′hh′

∫ t

0

t ′

T
eiEpp′hh′ t ′dt ′e−iEpp′hh′ t , (24)

where Epp′hh′ = εp + εp′ − εh − εh′ . Under the assump-
tion Epp′hh′T > Epp′hh′ t � 1, Eq. (24) gives Cpp′hh′ ≈
−v̄pp′hh′ t/T Epp′hh′ , which is the perturbative expression for
the two-body correlation matrix. Inserting Eq. (24) into
Eq. (22) and assuming that Epp′hh′ t � 1, we arrive at the
perturbative expression for the occupation probability of an
unoccupied state

np ≈ 1

2

∑
hh′p′

|v̄pp′hh′)|2
E2

pp′hh′

(
t

T

)2

. (25)

Having approximate expressions for very small times t/T

for np and Cpp′hh′ , we insert those into the right-hand side of
Eqs. (6) and (7), assuming that single-particle density matrix is
diagonal and make one further time integration, incrementing
time by a small step. This creates on on the left-hand side a
s.p. density matrix and a new C2. Repeating this procedure
until t = T , one arrives at the stationary solution for C2 and
the single-particle density matrix ραβ . Most of the time, at
the end of the calculation, one either works in the basis (the
“canonical” basis) which diagonalizes the density matrix as in

(13) or one supposes that the density matrix is approximately
diagonal what generally is verified to a good approximation.

III. SMALL AMPLITUDE LIMIT OF TDDM
(STDDM AND STDDM*)

A. Derivation of STDDM with nonlinear terms (STDDM*)

It is well known that time-dependent HF leads to standard
RPA (with exchange) in the small amplitude limit [23]. So, HF
is the consistent ground state when the two-body correlations
C2 are neglected. On the contrary, considering in addition the
inclusion of two-body correlations, i.e., the coupled system of
Eqs. (6) and (7), the corresponding ground state will contain
correlations. It will be interesting to see in how far we can give
an explicit expression for this ground state and in which way
standard RPA is modified due to the inclusion of ground-state
correlations. So, let us take the small amplitude limit of present
form of TDDM, i.e., Eqs. (6) and (7). With

ρ1 = ρ
(0)
1 + δρ1, C2 = C

(0)
2 + δC2

and

δρ1 =
∑

ν

[χ̃ νe−iν t + χ̃ ν,+eiν t ],

δC2 =
∑

ν

[X̃ νe−iν t + X̃ ν,+eiν t ],

we obtain coupled equations for the one- and two-body
transition amplitudes χ̃ ν

αα′ = 〈ν|a+
α′aα|0〉 and X̃ ν

αβα′β ′ = 〈ν| :
a+

α′a
+
β ′aβaα : |0〉:(

a b

c d̃

)(
χ̃ ν

X̃ ν

)
= ν

(
χ̃ ν

X̃ ν

)
. (26)

The matrix d̃ is written as d̃ = d + �d where d stems from
variation of the linear terms of the two-body correlation
matrix whereas �d comes from the variation of the three-body
correlation matrix when it is approximated as, e.g., in Eqs. (16)
and (17) by quadratic forms of C2’s (that is the leading
contributions). The matrices c and �d include the two-body
correlation matrix. The matrices in Eq. (26) are given in
Appendix B. Equation (26) with �d = 0 has been called in the
past STDDM (small TDDM) equations [31]. With inclusion
of the nonlinear terms �d, we want to call those STDDM*
equations.

B. Derivation of STDDM and STDDM* from an extended
second RPA (ESRPA) and connection with SCRPA

Let us consider the equation of motion (EOM) approach
[23,32] with one- and two-body sectors included fully, that
is without restriction on indices (Greek labels). We define a
generalized RPA operator

Q+
ν =

∑[
χν

λλ′a
+
λ aλ′ + X ν

λ1λ2λ
′
1λ

′
2

: a+
λ1

a+
λ2

aλ′
2
aλ′

1
:
]
, (27)

where : a+
λ1

a+
λ2

aλ′
2
aλ′

1
:= a+

λ1
a+

λ2
aλ′

2
aλ′

1
− [ρλ1λ

′
1
ρλ2λ

′
2
−

ρλ1λ
′
2
ρλ2λ

′
1
].

As usual with EOM for such an ansatz, we suppose

Q+
ν |0〉 = |ν〉 and Qν |0〉 = 0.
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Minimizing the corresponding energy weighted sum rule
2ν = 〈0|[Qν,[H,Qν

+]]|0〉/〈0|[Q,Q+]|0〉 (see Sec. V), we
obtain the following eigenvalue problem:(

S B
C D

)(
χ

X

)
= 

(
N1 T
T + N2

)(
χ

X

)
, (28)

where the various matrix elements are given in an obvious way
by the corresponding double commutators (left-hand side) and
commutators (right-hand side) which correspond to the ones
contained in the sum rule for ν . The matrix S contains the
correlated occupation numbers and the two-body correlation
matrix C2. The matrices B, C, and N2 include the two-body
correlation matrix C2 and the three-body correlation matrix
C3, and D can have up to the four-body correlation matrix C4

though it is neglected. The matrices in Eq. (28) are given in
[21] where this equation was coined ERPA (extended RPA).
However, a more appropriate name is “extended second RPA”
(ESRPA) because it includes the two-body sector and reduces
to the standard second RPA in the limit where the expectation
values are evaluated with the HF state. It has been shown
in the past that, under certain approximations, this ESRPA
is equivalent to the STDDM equation [33]. Let us sketch this
again. For this, in ESRPA, we neglect everywhere C3 (and C4).
This concerns B, C, D, and N2. In D we additionally neglect
the terms which are named in [25] the T32 terms. Those T32

terms correspond to the expectation values of the commutator
between two- and three-body operators [25]. Then, we arrive
at the following structure of above eigenvalue equation (28):(

aN1 + bT + aT + bN2

cN1 + dT + cT + dN2

)(
χ

X

)
= 

(
N1 T
T + N2

)(
χ

X

)
,

(29)

where the matrices a,b,c,d are as in (26) (see Appendix B)
containing at most C2’s.

Let us notice that in the left matrix the elements [12] and
[21] are Hermitian conjugates to one another. This stems from
the fact that already in (28) the matrices C and B are the
Hermitian conjugates of one another under the condition that
they are evaluated at equilibrium (see [33] for a discussion of
this point). The 1,1 element of the left matrix is also symmetric
because at equilibrium we have iρ̇ = 0. The one-body sector
of Eq. (29) corresponds to self-consistent RPA (SCRPA,
see below) which was derived independently earlier [11].
So, in including correlations, the standard RPA has been
upgraded to SCRPA. This is natural because, as mentioned,
with correlations the corresponding ground state cannot be
the HF state any longer. Therefore, SCRPA has now found
its natural place when the time-dependent HF equations are
extended in a consistent way to include two-body correlations.
We will come back to SCRPA in Secs. IV and V. The 2,2
element is not Hermitian because at this level of our theory
we do not fulfill that three- and four-body density matrices are
stationary.

Equation (29) is intimately related to the STDDM equation
as we will show now. Defining(

χ̃

X̃

)
=
(
N1 T
T + N2

)(
χ

X

)
, (30)

we obtain the following modified eigenvalue equation:(
a b

c d

)(
χ̃

X̃

)
= 

(
χ̃

X̃

)
. (31)

The remarkable fact is that this equation is also obtained in
linearizing around equilibrium the coupled EOM’s for nα and
C2 as is seen from Eq. (26) without �d. With the use of
Eq. (30), the STDDM* equation [Eq. (26) with �d] can also
be expressed as(

aN1 + bT + aT + bN2

cN1 + d̃T + cT + d̃N2

)(
χ

X

)
= 

(
N1 T
T + N2

)(
χ

X

)
.

(32)

Notice that with respect to (29) the matrix d is changed into
d̃ in (32). With respect to (26), we want to call the set of
equations (32) the STDDM*-b equations (or STDDM-b when
�d is neglected). Since T , N2, and �d contain C2, the 2,1
and 2,2 elements of Eq. (32) have additional quadratic terms
of C2 that correspond to C3. Thus, STDDM*-b is a better
approximation to ESRPA than STDDM. There is a great
consistency between the ESRPA equation and STDDM (and
also STDDM*-b). Although STDDM equations of (31) and
(29) are equivalent, the explicit form of the two equations (29)
and (31) is quite different in detail. For example, it is obvious
that neglecting the two-body amplitudes in STDDM [Eq. (31)],
this gives back standard RPA except for partial occupation of
the single-particle states. On the other hand, the same reduces
STDDM-b [Eq. (29)] to SCRPA which contains already, as we
will see, much more correlations than standard RPA. In fact, as
it was shown in the past [11,12] and will be shown again with
the applications below, it can already be a good approximation
to STDDM. In a way, it seems natural that in STDDM appears
SCRPA. As already discussed, standard RPA corresponds to
linearized TDHF. Therefore, the HF Slater determinant is the
consistent ground state for standard RPA. Linearized TDDM
or STDDM (STDDM*) naturally correspond to a ground
state containing correlations. In Sec. V, we will give as a
good approximation a correlated ground-state wave function
in terms of the one of coupled cluster theory.

It should be noticed that in above STDDM equation b 
= c+
and thus the corresponding matrix is strongly nonsymmetric.
One, therefore, has to define left and right eigenvectors. How
this goes in detail is explained in [33] where also applications
with good success are presented. On the other hand, (29)
and (32) are much more symmetric versions of STDDM and
STDDM*. The remaining non-Hermiticity in the 2,2 element
of the interaction matrix in STDDM* may be eliminated by
the prescription of Rowe [32] who explicitly symmetrized
the matrix. If the two versions (31) and (29) of STDDM
(STDDM*, if �d is included) are solved in full, the results will
be the same. However, the fact to transform the nonsymmetric
form of STDDM in (31) to the more symmetric STDDM one
in (29) has apparently transferred a lot of correlations from
the two-body sector to the one-body sector (standard RPA
versus SCRPA). This may be of importance if in STDDM (or
in STDDM*) further approximations are applied. An extreme
approximation is to neglect the two-body amplitudes in both
cases where the difference clearly shows up. On the other
hand, a non-Hermitian eigenvalue problem may also entail
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some problems concerning spurious solutions or nonpositive
definite spectral functions. However, in the past applications
[26,33,34], this has never caused any serious problems. In a
way, the situation is rather similar to the difference which
exists between the Dyson boson expansion which leads to
a non-Hermitian problem and, e.g., the Holstein-Primakoff
(Belyaev-Zelevinsky) boson expansion leading to a Hermitian
matrix [23]. The basic difference between both methods is, as
here, the treatment of the norm matrix.

C. Recovering TDDM at equilibrium

1. Equation for Cαβα′β′

To show that all equations are consistent, we now want to
make a connection of STDDM (and, thus, STDDM*) with
TDDM. For this, let us introduce the following identities
supposing  real:∑

ν

[
ν

(
χ̃ ν

X̃ ν

)
(χ̃ ν∗ X̃ ν∗) −

(
χ̃ ν

X̃ ν

)
(χ̃ ν∗ X̃ ν∗)ν

]
= 0. (33)

This equation can also be written as∑
ν

[(
a b

c d

)(
χ̃ ν χ̃ ν∗ χ̃ νX̃ ν∗

X̃ νχ̃ ν∗ X̃ νX̃ ν∗

)

−
(

χ̃ ν χ̃ ν∗ χ̃ νX̃ ν∗

X̃ νχ̃ ν∗ X̃ νX̃ ν∗

)(
a c+
b+ d

)]
= 0. (34)

The one-body sector of this equation is the following (please
note that in some earlier publications the definitions of the b

and c matrices have been inverted, see, e.g., [33]):∑
ν

[aχ̃νχ̃ ν∗ + bX̃ νχ̃ ν∗ − χ̃ ν χ̃ ν∗a − χ̃ νX̃ ν∗b+] = 0. (35)

With the following identity∑
ν

X̃ ν
αβα′β ′ χ̃

ν∗
γ ′γ

= δαγ ′Cγβα′β ′ − δβγ ′Cγαα′β ′ + nγα′Cαββ ′γ ′ − nγβ ′Cαβα′γ ′

− nβγ ′Cαγα′β ′ + nαγ ′Cβγα′β ′ + Cαβγα′β ′γ ′ , (36)

we obtain, specializing to p and h indices the static form of the
TDDM equations (14)–(21), which should be unique equations
for the C2’s. It is interesting to note that if one restricts the C3 to
p,h indices only and also keeping only χph or χhp components,
thenX amplitudes can only be of the 3p-1h (3h-1p) type. This
is consistent with the extended RPA operator treated in Sec. V
where the two-body sector also only contains 3p-1h (3h-1p)
amplitudes.

2. Occupation probability from ESRPA

We have shown that Eq. (35) is equivalent to the stationary
condition of Eq. (7). Now, we must consider how the occupa-
tion probability nα is expressed by the transition amplitudes
in ESRPA. We assume the following relation for the diagonal
occupation matrix ραα′ = nαδαα′ :∑

ν

χ̃ ν
αα′ χ̃

ν∗
β ′β =

∑
ν

〈0|a+
α′aα|ν〉〈ν|a+

β ′aβ |0〉

= δαβ ′ 〈0|a+
α′aβ |0〉 + 〈0|a+

α′a
+
β ′aβaα|0〉

= δαβ ′δβα′nβn̄α + Cαβα′β ′ , (37)

where n̄α = 1 − nα . From Eq. (37) we obtain∑
ν

χ̃ ν
ααχ̃ ν∗

αα = nα(1 − nα) + Cαααα = nα − n2
α. (38)

The above equation gives for the occupation numbers

nα = 1

2

⎛
⎝1 ±

√
1 − 4

∑
ν 
=0

χ̃ ν
ααχ̃ ν∗

αα

⎞
⎠. (39)

In RPA and SCRPA there is no diagonal one-body amplitude
such as χν

αα , whereas in ESRPA χν
αα can couple to X ν

αβα′β ′
which has the same quantum numbers as the ground state.
Thus, the occupation probabilities in ESRPA are determined
by two-phonon states expressed byX ν

αβα′β ′ , which is in contrast
with SCRPA. We use Eq. (39) to calculate the occupation
probabilities in ESRPA. Let us notice that relation (39) has the
same structure as the occupation numbers obtained from BCS
theory when expressed via the BCS amplitudes viui = κi [23].

3. Correlation energy from Cαβα′β′

Usually, the correlation energy is defined as the difference
of the total correlated energy minus the Hartree-Fock energy.
In this work, we thought it more appropriate to consider what
one could call the two-body correlation energy (for example,
in the case of BCS theory, this would reduce to the pairing
energy) E2bcor defined by

E2bcor = 1

4

∑
αβα′β ′

v̄αβα′β ′Cα′β ′αβ. (40)

The equation for χ̃ ν
αα′ in STDDM, aχ̃ν + bX̃ ν = νχ̃

ν , gives

νχ̃
ν
αα′ = (εα − εα′)χ̃ ν

αα′ + (nα′ − nα)
∑
λλ′

v̄αλ′α′λχ̃
ν
λλ′

+ 1

2

∑
λ1λ2λ3

(
v̄αλ1λ2λ3X̃ ν

λ2λ3α′λ1
− v̄λ1λ2α′λ3X̃ ν

αλ3λ1λ2

)
.

(41)

Multiplying χ̃ ν∗
β ′β and using Eqs. (36) and (37), we obtain

∑
μα

νχ̃
ν
ααχ̃ν∗

αα =
∑
αλλ′

v̄αλαλ′Cαλ′αλ − 1

2

∑
αλλ′λ′′

v̄λλ′αλ′′Cαλ′′λλ′ .

(42)

The first term on the right-hand side has no contribution in the
solvable models discussed below. In general, Cphph′ , Cpp′pp′′ ,
Chphp′ , and Chh′hh′′ are smaller than Cpp′hh′ and Chh′pp′ in a
perturbative regime. Therefore, E2bcor can approximately be
expressed as

E2bcor ≈ −1

2

∑
να

νχ̃
ν
ααχ̃ν∗

αα. (43)

Equation (43) has only diagonal elements χ̃ ν
αα , what means that

in ESRPA E2bcor is determined by two-phonon states similarly
to the occupation probabilities [Eq. (39)]. We calculate E2bcor

in ESRPA using Eq. (43). It will also be the expression we use
for the applications in Sec. VII. Since with (39) we have the
occupation numbers, we can also calculate the one-body part
of the energy and, thus, the total energy is given as well.
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IV. SELF-CONSISTENT RPA IN RELATION WITH TDDM

A. General case

As we have mentioned, the one-body sector of STDDM-b
and STDDM*-b is equivalent to what is known in the literature
as SCRPA. Because the one-body sector is of importance for
applications but also in its own right, we, for completeness,
will again dwell on it in this and the next section. However,
the reader already familiar with SCRPA, or not especially
interested in this issue, can directly jump to the applications,
Sec. VI.

Let us start writing the most general single-particle RPA
operator as

Q+
ν =

∑
αβ,α 
=β

χν
αβa+

α aβ, (44)

where, as usual,

|ν〉 = Q+
ν |0〉 (45)

is the excited state. The RPA operator also is supposed to
possess the killing property (see Sec. V)

Qν |0〉 = 0. (46)

We can define an average excitation energy using the energy
weighted sum rule

ν = 1

2

〈0|[Qν,[H,Q+
ν ]]|0〉

〈0|[Qν,Q+
ν ]|0〉 . (47)

Varying ν with respect to the amplitudes χαβ leads to the
following eigenvalue problem:

Sχμ = μN1χ
μ, (48)

where

S(αα′ : λλ′) = 〈0|[a+
α′aα,[H,a+

λ aλ′]]|0〉
= (εα − εα′)(nα′ − nα)δαλδα′λ′

+ (nα′ − nα)(nλ′ − nλ)v̄αλ′α′λ

− δα′λ′
1

2

∑
γ γ ′γ ′′

v̄αγ γ ′γ ′′Cγ ′γ ′′λγ

− δαλ

1

2

∑
γ γ ′γ ′′

v̄γ γ ′α′γ ′′Cλ′γ ′′γ γ ′

+
∑
γ γ ′

(v̄αγ λγ ′Cλ′γ ′α′γ + v̄λ′γα′γ ′Cαγ ′λγ )

− 1

2

∑
γ γ ′

(v̄αλ′γ γ ′Cγγ ′α′λ + v̄γ γ ′α′λCαλ′γ γ ′),

(49)

N 1(αα′ : λλ′) = (nα′ − nα)δαλδα′λ′ . (50)

If we replace the RPA ground state by the HF one, then the
matrix S reduces to the HF stability matrix and N (0)

1 becomes
the metric matrix of RPA [23] and, thus, the standard RPA
equations are recovered. The normalization of the amplitudes

χν
αβ is given by∑

χν∗
αβN1(αα′ : λλ′)χν ′

λλ′ = δν,ν ′ , (51)

where χν∗
αβ is the left eigenvector. The above eigenvalue

problem is equivalent to SCRPA [11] with amplitudes χαβ

where there are no restrictions on the indices aside from α 
= β.
This stems from the fact that N1 acts as a norm matrix like it
appears in problems where one works with a nonorthonormal
basis [23]. In such cases, in general, one has to diagonalize the
norm matrix and divide the Hamilton matrix from left and right
with the the square roots of the eigenvalues. Configurations
with zero (or near zero) eigenvalues have to be excluded
for obvious reasons. In the SCRPA case, this just happens
for diagonal, or nearly diagonal amplitudes χαα which, thus,
cannot be included. This can only be done, as we discussed
before, if the two-particle sector is also considered.

The fact that the diagonal amplitudes cannot be included
in (48) allows us to rewrite this equation in a form which
has the mathematical structure of standard RPA. To this end,
we rewrite the RPA excitation operator (44) in a somewhat
different form

Q+
ν =

∑
k1>k2

(
Xν

k1k2
δQ+

k1k2
− Y ν

k1k2
δQk1k2

)
(52)

with

δQ+
k1k2

= N
−1/2
k1k2

a+
k1

ak2 (53)

and

N
1/2
k1k2

= √nk2 − nk1 . (54)

This leads straightforwardly to the following RPA eigen-
value problem:(

A B

−B∗ −A∗

)(
X

Y

)
= ν

(
X

Y

)
(55)

with

Ak1k2,k
′
1k

′
2
= 〈[

δQk1k2 ,
[
H,δQ+

k′
1k

′
2

]]〉
,

Bk1k2,k
′
1k

′
2
= −〈[δQk1k2 ,

[
H,δQk′

1k
′
2

]]〉
. (56)

The X,Y amplitudes have the usual orthonormalization rela-
tions of standard ph-RPA with the replacements p ↔ k1 and
h ↔ k2. Of course, the A and B matrices are closely related
to the S matrix of (49).

In order to calculate the C2 correlation functions entering
the SCRPA matrix, one can either get them from the static
solution of the TDDM equations with quadratic decoupling
of C3 with respect to the C2’s (this will later be called the
C-RPA scheme) or one establishes a self-consistent cycle,
for which we must give a relation between C2 and the RPA
amplitudes X,Y . For this, it is convenient to introduce the
“bosonic” density matrix R,

R =
∑

ν

(
Y ν∗Y ν Y ν∗Xν

Xν∗Y ν Xν∗Xν

)
≡
(

R K

K+ 1 + R+

)
, (57)

with (N0R)2 = −N0R where N0 = (1 0
0 −1) and where we can

make the following identifications:

R k1k2k
′
1k

′
2
≡ N

−1/2
k1k2

[
nk2 n̄k1 + Ck1k

′
2k2k

′
1

]
N

−1/2
k′

1k
′
2

,
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FIG. 2. Screening terms and self-energy corrections. Symmetric
graphs exist where the interaction (full dot) is attached to the hole
line (arrow to the left).

K k1k2k
′
1k

′
2
≡ N

−1/2
k1k2

Ck1k
′
1k2k

′
2
N

−1/2
k′

1k
′
2

. (58)

It may be interesting to rewrite the RPA equations in still a
different form. With(

A B

−B∗ −A∗

)
≡ H (59)

we can write (55) as

RH+ − HR = 0. (60)

This form reminds the BCS (or HFB) equations of supercon-
ductivity [23] with, however, some different signs due to the
bosonic structure of the RPA equations. The introduction of
the density matrix R has the advantage that one easily can
restore a missing antisymmetry as we will see in Sec. IV C.

It remains to express the occupation numbers in terms of
the RPA amplitudes to establish fully self-consistent RPA
equations. Because of the Fermi surface, the occupation
numbers can be divided in hole and particle occupancies nh

and np. How the latter are connected to C2’s and, thus, to the
RPA amplitudes will be shown in Sec. V.

At this point, it may be appropriate to interpret the
different terms of the A and B matrices. The standard terms
are, of course, trivial and have been discussed in textbooks
[23]. The other terms are displayed graphically in Fig. 2.
Analogous graphs exist (not displayed) where the interaction
(full dot) is attached to the hole line with arrow to the left.
Their interpretation is clear. The first two terms constitute
instantaneous ph and pp(hh) exchange terms with respect to
the external p and h lines. They, therefore, screen (eventually
antiscreen) the bare interaction. Such screening terms have
been discussed in the literature for a very long time. The
iteration of the equations gives rise to so-called “bubble into
bubble” terms [35]. The particularity of our formalism here is
that those terms emerge from a general formalism and that they
are instantaneous. They can, therefore, be incorporated into
standard RPA programs. The third term in Fig. 2 obviously
corresponds to a self-energy correction due to RPA modes.
Those correspond to the famous particle vibration corrections
to the mean field. Again, the particularity here is that this
correction is instantaneous.

For the solution of the SCRPA equations, several routes
are possible. The standard way is to express the correlation
functions with the X and Y amplitudes as discussed just
above. With the present formalism, one also can evaluate the
correlation functions C2’s either from (60) or below from (65)
and then insert them into the A and B matrices. Also, the
single-particle occupancies can be included in this way via
Eq. (78) (see Sec. V). The results will depend on whether we
take the nonantisymmetrized or the antisymmetrized form of
R. Only the nonantisymmetrized form will be equivalent to the
standard way in expressing everything by the X,Y amplitudes.
We will come back to this with the applications. A further
possibility is to take the C2’s directly from the static limit of
the TDDM equations quadratic in the C2’s. As mentioned,
we call this the C-RPA (correlated RPA). We will see with
the applications in Sec. VII that all these variants give quite
close answers at least up to coupling strengths where the
standard HF equations become unstable, indicating that the
system undergoes a phase transition.

B. Properties of SCRPA

Before we go into the details of how SCRPA is connected
with TDDM, let us outline some properties of SCRPA. One of
the most important ones, fulfilled by the standard RPA, is the
so-called energy weighted sum rule

S1 =
∑

ν

ν |〈ν|F |0〉|2 = 1

2
〈0|[F,[H,F ]]|0〉, (61)

where F =∑αβ fαβa+
α aβ is supposed to be a Hermitian one-

body (excitation) operator. Then, for the right-hand side we
can write

S1 = 1

2

∑
ν

Tr[f +χνSχν,+f ]

= 1

2
Tr

[
f +∑

ν

νN1χ
ν,+f

]

=
∑

ν

ν |〈0|F |ν〉|2. (62)

Therefore, also SCRPA fulfills the f -sum rule. This has,
e.g., been discussed in [36,37]. From the fulfillment of the sum
rule, it also follows that the Goldstone theorem is satisfied.
For example, in nuclear physics the translational motion is
always broken, if one works in a localized single-particle
basis. Then, the SCRPA separates the so-called spurious
mode at zero energy, if the single-particle basis is chosen
from the generalized mean field equation 〈0|[H,Q+

ν ]|0〉 =
〈0|[H,a+

α′aα]|0〉 = 0 which is the static limit of (6) [37]. The
fulfillment of sum rule and Goldstone mode stems from the fact
that the RPA operator (44) contains all types of indices, that
is, not only ph but also pp and hh ones. The RPA operator
(44) contains as a particular case, e.g., the total momentum
operator P̂ which commutes with the Hamiltonian. From (47)
we then see that the zero mode appears. The fulfillment of the
Goldstone theorem has already explicitly been demonstrated
in [38,39]. Consequently, SCRPA as defined in this section
has some important properties in common with standard RPA.
This is a very rewarding feature because generally it is not
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easy to set up a practical scheme, going beyond standard RPA,
which obeys conservation laws, sum rules, and Goldstone
theorem. However, SCRPA is an approximation to STDDM-b
(or STDDM*-b) and, therefore, also fails in some respects.
For example, in the superfluid (superconducting) case, the
symmetry operator is the particle number operator which in
the quasiparticle basis has a diagonal (Hermitian) piece. This
cannot be included into SCRPA because the norm matrix
(50) has a zero eigenvalue. Thus, self-consistent quasiparticle
RPA will not give the zero or Goldstone mode. For this,
the consideration of the STDDM approach is necessary. It
may, however, be possible to include the two-body sector
only in approximate form, that is, eventually to lowest-order
perturbation theory.

Another important property of standard RPA which is
fulfilled by SCRPA is gauge invariance. Gauge invariance of
standard RPA is nicely demonstrated by Feldman and Fulton
[40]. The extra terms containing the two-body correlation
functions in (49) cancel in the limit where the two open legs
are put on the same spot in position space. Actually, gauge
invarince of standard RPA as well as SCRPA can easily be
verified from (56). If in these equations the operator δQαβ is
transformed into r space and the diagonal element is taken, as
demanded to show gauge invariance [see [40], Eq. (3.69)], we
immediately realize that this diagonal operator commutes with
the remainder (also written in r space), once the Hamiltonian
H is replaced by its interaction part V , that is, the Coulomb
interaction. Therefore, gauge invariance is fulfilled. This
argument is valid discarding spin but, as shown in [40], this
does not invalidate the general proof. These considerations
also entail that the so-called “velocity-length” equivalence in
the dipole transition is preserved [40] (see also [37]).

C. SCRPA content of TDDM

Let us now investigate how much of TDDM is already
incorporated in SCRPA. To this end, we may consider the
equation for the antisymmetrized density matrix R̃αβα′β ′ , rather
than the nonantisymmetrized one of (57) [see (30) for the
definition of χ̃ ]:

R̃αβα′β ′ = 1

2

∑
ν

(
χ̃ ν

αα′ χ̃
ν∗
β ′β − χ̃ ν

βα′ χ̃
ν∗
β ′α
)

= 1

2
(δαβ ′δβα′nβn̄α − δαα′δββ ′nαn̄β) + Cαβα′β ′ (63)

to derive an equation for Cαβα′β ′ . Using∑
ν

(νN1χ
νχ̃ν∗ − χ̃ νχν∗N1ν)

=
∑

μ

(Sχνχ̃ν∗ − χ̃ νχν∗S)

=
∑

μ

(
SN−1

1 N1χ
νχ̃ν∗ − χ̃ νχν∗N1N−1

1 S
)

=
∑

μ

(
SN−1

1 χ̃ ν χ̃ ν∗ − χ̃ ν χ̃ ν∗N−1
1 S

)
, (64)

we can express the equation for R̃ as H̃R̃ − R̃H̃+ = 0, where
H̃ = SN−1

1 .

The explicit expression for H̃R̃ − R̃H̃+ = 0 is

(εα + εβ − εα′ − εβ ′)Cαβα′β ′

+ v̄αβα′β ′(n̄αn̄βnα′nβ ′ − nαnβn̄α′ n̄β ′ )

+ 1

2

∑
λλ′

[v̄αλ′α′λ(nα′ − nα)Cλβλ′β ′

+ v̄βλ′α′λ(nα′ − nβ)Cαλλ′β ′

− v̄βλ′β ′λ(nβ ′ − nβ)Cαλλ′α′

+ v̄αλ′β ′λ(nβ ′ − nα)Cβλλ′α′ ]

+Eαβα′β ′ + Fαβα′β ′ + Gαβα′β ′ = 0. (65)

We see that (65) has a similar structure as (14). In (65), the
second term corresponds to B0

αβα′β ′ and the third term to H 0
αβα′β ′

except for a factor 1
2 . The additional factor 1

2 is contained in the
F matrix (see Appendix C where the matrices Eαβα′β ′ , Fαβα′β ′ ,
and Gαβα′β ′ are given).

Since the expressions for E,F,G are rather lengthy due to
a somewhat complicated structure of how the single-particle
occupation factors enter, we want to simplify the analysis and
replace the occupation numbers by their free, i.e., mean field
values n0

α . This will be sufficient to show that SCRPA also
contains quadratic forms in C2’s quite analogous to TDDM.
Taking the free occupation numbers automatically projects all
quantities to have p or h indices only. It can be verified that in
this way from (65), the TDDM equations (14) are fully recov-
ered up to the linear terms in C2’s. Some differences appear in
the quadratic expressions. They are contained in the G matrix
in (65). Therefore, let us make some comparisons between the
static TDDM and the above-defined form of SCRPA.

1. Special cases

(i) 2p-2h configurations: Tp1p2h1h2 . Here, we consider
Eq. (65) for Cp1p2h1h2 assuming nα = 1 or 0. Equation (C1)
has no contribution for Cp1p2h1h2 and it is easy to check that the
terms in Eq. (65) except for Gαβα′β ′ are the same as B0

αβα′β ′ ,
P 0

αβα′β ′ , and H 0
αβα′β ′ for Cp1p2h1h2 . Therefore, we investigate

only the terms with the three-body correlation matrix in (14).
The TDDM equation gives Eq. (18). Only the terms in the first
two sums in Eq. (C3) contribute to Gp1p2h1h2 and it is written as

Gp1p2h1h2 = −1

2

∑
pp′hh′

[
v̄p1phh′Chh′p′pCp′p2h1h2

− v̄p2phh′Chh′p′pCp′p1h1h2

+ v̄pp′h1hCh′hpp′Cp1p2h′h2

− v̄pp′h2hCh′hpp′Cp1p2h1h′
]
. (66)

Therefore, Eqs. (18) and (66) agree with each other.
(ii) ph-ph configurations: Tp1h1p2h2 . The TDDM equation

gives Eq. (19). For Gp1h1p2h2 we obtain

Gp1h1p2h2 = 1

2

∑
pp′hh′

v̄p1hh′pCp′ph2hCh1h′p2p′

+ 1

4

∑
pp′p′′h

v̄p1pp′p′′Cp′p′′hh2Ch1hp2p
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− 1

2

∑
pp′hh′

v̄ph′p2hChh1pp′Cp1p′h′h2

− 1

4

∑
pp′p′′h

v̄p′p′′p2pCp1ph2hChh1p′p′′

− 1

2

∑
pp′hh′

v̄h1pp′hCh′hp2pCp′p1h′h2

+ 1

4

∑
phh′h′′

v̄h1hh′h′′Ch′h′′p2pCpp1hh2

+ 1

2

∑
pp′hh′

v̄ph′h2p′Cp1p′hh′Ch1hp2p

− 1

4

∑
phh′h′′

v̄h′h′′hh2Cpp1h′h′′Ch1hp2p. (67)

There is a factor of 2 difference between Eqs. (19) and (67). If
Cphp′h′ is also included, Gp1h1p2h2 has still more terms.

(iii) 4p and 4h configurations: Tp1p2p3p4 ,Th1h2h3h4 . The
TDDM equation for Cp1p2p3p4 is given by Eq. (20). In the
case of Eq. (65), Gp1p2p3p4 = 0 and Gh1h2h3h4 = 0 and, thus,
this leads to another difference with the TDDM equations.

2. Summary of special cases

(1) The equation for Cp1p2h1h2 derived from SCRPA has one-
to-one correspondence with TDDM except for the coupling
to Cp1p2p3p4 and Ch1h2h3h4 . However, there is a factor of 1

2
difference in the C2

2 terms when Cp1h1p2h2 is included.
(2) The equation for Cp1h1p2h2 derived from SCRPA has

always a factor of 1
2 difference with TDDM if we assume the

symmetry Cp1h1p2h2 = −Ch1p1p2h2 . It was, however, discussed
in [19] that most of the time Cphp′h′ is smaller than Cpp′hh′

and then this difference between TDDM and SCRPA will not
show up strongly.

Therefore, at equilibrium, we get with SCRPA very similar
equations for the C2’s as with static TDDM. Notably, the
terms quadratic in C2’s are quite analogous in both cases.
There are some differences, however. First comes the fact
that, as mentioned, the terms Cphp′h′ are missing factors of
2. They are, however, usually smaller than the Cpp′hh′ and,
then, this should not affect the results very much. There is,
however, another difference between TDDM and SCRPA. This
concerns the fact that on the right-hand side of (38) there is
the norm matrix which leads to the division by nβ − nα in
H̃ = SN−1

1 of (43). The significance of this for the ground
state is not very evident and the occupation factors can be
replaced by the free ones to good approximation. However,
for excited states it may be very important to keep the
correlated nα’s since the norm matrix serves to make out of
the nonorthonormalized basis in (34) an orthonormalized one.
This probably should be very significant when the SCRPA
equations (49) are solved with nonrestricted indices where the
difference of occupation numbers can become very small. In
that case, those configurations become decoupled from the
physically relevant space. It is the same as working with a
nonorthonormal basis like, e.g., with the resonating group
method (RGM) or the generator coordinate method (GCM),

when one has to diagonalize the norm kernel and eliminate all
configurations with vanishingly small eigenvalues [23].

V. SELF-CONSISTENT RPA FROM THE COUPLED
CLUSTER WAVE FUNCTION

To be self-contained, in this section, we will rederive
SCRPA from a different perspective which will have interest-
ing connection with TDDM and which will give some insight
into which kind of ground state is implicitly used in STDDM*
and/or STDDM.

Formally, the SCRPA equations have been written several
times in the past [11,12]. They can be qualified as some sort
of Hartree-Fock-Bogoliubov (HFB) equations for fermionic
ph pairs and they most of the time have been presented as a
nonlinear eigenvalue problem to be solved by iteration. SCRPA
theory has recently known important new developments
concerning its theoretical foundation [17]. This stems from
the fact that it was shown in that reference that the SUB2
coupled cluster wave function

|Z〉 = eẐ|HF〉
with Ẑ = 1

4

∑
p1p2h1h2

zp1p2h1h2a
+
p1

a+
p2

ah1ah2 (68)

is the vacuum to the following generalized RPA operator:

Q̃+
ν =

∑
ph

[
X̃ν

pha
+
p ah − Ỹ ν

pha
+
h ap

]

+ 1

2

∑
php1p2

ηphp1p2a
+
p1

ap2a
+
h ap

− 1

2

∑
phh1h2

ηh1h2pha
+
h1

ah2a
+
h ap. (69)

There exists the killing condition

Q̃ν |Z〉 = 0 (70)

with the following relations between the various amplitudes:

Ỹ ν
ph =

∑
p′h′

zpp′hh′X̃ν
p′h′,

zpp′hh′ =
∑

ν

Ỹ ν
ph(X̃−1)νp′h′ ,

ην
p1p2ph =

∑
h1

zpp2hh1X̃
ν
p1h1

,

ην
h1h2ph =

∑
p1

zpp1hh2X̃
ν
p1h1

. (71)

The amplitudes zpp′hh′ are antisymmetric in pp′ and hh′.
With the above relations, the vacuum state is entirely expressed
by the RPA amplitudes X̃,Ỹ . We remark that this vacuum state
is exactly the one of coupled cluster theory (CCT) truncated at
the two-body level [24]. However, the use we will make of this
vacuum is very different from CCT. Of course, for the moment,
all remains formal because this generalized RPA operator
contains, aside from the standard one-body terms, also specific
two-body terms which cannot be handled in a straightforward
way. For instance, this nonlinear transformation cannot be

165117-11



PETER SCHUCK AND MITSURU TOHYAMA PHYSICAL REVIEW B 93, 165117 (2016)

inverted in a simple manner. However, we find the mere
existence of an exact killing operator of the coupled cluster
ground state quite remarkable. One may develop approximate
methods to cope with those extra two-body terms. A first sim-
ple approximation consists in replacing in (69) the occupation
number operators in the η terms by their expectation values,
that is, a+

p2
ap1 → 〈a+

p1
ap1〉δp1p2 and a+

h1
ah2 → 〈a+

h1
ah1〉δh1h2

where we supposed that we work in a basis where the
single-particle density matrix is diagonal. With the definition
of the occupation numbers nk = 〈a+

k ak〉, we then obtain the
following approximate form of the Q operator in (69):

Q̃ν =
∑
ph

[
X̃ν

pha
+
h ap − Ỹ ν

pha
+
p ah

]

+ 1

2

∑
php1

ηp1p1phnp1a
+
p ah

− 1

2

∑
phh1

ηh1h1phnh1a
+
p ah. (72)

Evidently, this approximation, though suggestive, violates
the killing condition (70). However, as has been shown in [17],
the violation remains quite moderate. On the other hand, this
approximation leads to a renormalization of the Ỹ amplitudes
in (72) and, therefore, we are back to the usual RPA operator
with the one-body terms in (72) only. For simplicity, we
will not change the nomenclature of the Ỹ amplitudes in the
following. In spite of the approximation, we will henceforth
assume that the killing condition still holds. However, we
always should be aware that this only is true approximately
with the atrophied form of the generalized RPA operator (72).
The amplitudes (X̃,Ỹ ) form a complete orthogonal set of
vectors as explained, e.g., in [23]. We, therefore can invert
the approximate RPA operator to obtain

a+
p ah = √nh − np

∑
ν

[
Xν

phQ
+
ν + Y ν

phQν

]
, (73)

where we defined new amplitudes X,Y via

X̃ν
ph = Xν

ph/
√

nh − np; Ỹ ν
ph = Y ν

ph/
√

nh − np (74)

and new RPA operators Qν =∑ph[Xν
pha

+
h ap − Y ν

pha
+
p ah]/√

nh − np so that the state |ν〉 = Q+
ν |Z〉 is normalized, i.e.,

〈ν|ν〉 = 〈Z|[Qν,Q
+
ν ]|Z〉/〈Z|Z〉 = 1 with∑

ph

[∣∣Xν
ph

∣∣2 − ∣∣Y ν
ph

∣∣2] = 1. (75)

The use of the CCT state |Z〉 has the great advantage that
now in the calculation of the expectation values where we also
need the occupation numbers expressed in terms of the X,Y

amplitudes, this can be achieved in a natural manner (this was
in the past always a certain problem with SCRPA without the
use of the CCT state). For example, we have

a+
h ah|Z〉 = eẐJ̃hh|HF〉 (76)

with Jhh = a+
h ah and J̃hh = e−ẐJhhe

Ẑ = Jhh + [Jhh,Ẑ]. Eval-
uating the commutator and then using the relation∑

ν

(X̃−1)νp′h′Qν = a+
h′ap′ −

∑
ph

zpp′hh′a+
p ah, (77)

we arrive at

nh = 〈a+
h ah〉 ≡ 〈Z|a+

h ah|Z〉
〈Z|Z〉

= 1 − 1

2

∑
p

〈a+
p aha

+
h ap〉

= 1 − 1

2

∑
p

[npn̄h − Cphph]. (78)

This relation can be used in (65) to have a fully closed
system of equations. For the evaluation of the two-body term
in terms of the Y amplitudes, we will use the inversion of the
Q operators and obtain

nh ≡ 〈a+
h ah〉 = 1 − 1

2

∑
p,ν

(nh − np)
∣∣Y ν

ph

∣∣2. (79)

The same can be repeated for np:

np ≡ 〈a+
p ap〉 =

∑
h

1

2

∑
h

〈a+
p aha

+
h ap〉

= 1

2

∑
h

[npn̄h − Cphph]

= 1

2

∑
h,ν

(np − nh)|Y ν
ph|2 (80)

leading to a linear system of equations for np,nh which can be
solved. The quadratic occupation number fluctuations can be
treated in a similar way. They are related to C2’s with either
four-particle or four-hole indices. They can be approximated
to leading order by quadratic forms of C2’s with pphh indices
as shown in [19]

Cp1p2p3p4 � 1

2

∑
hh′

Cp1p2hh′Chh′p3p4 + . . . , (81)

Ch1h2h3h4 � 1

2

∑
pp′

Ch1h2pp′Cpp′h3h4 + . . . . (82)

We now can express all correlation functions and densities
in A and B matrices by the RPA amplitudes X,Y and, thus,
have a fully self-consistent system of equations for X,Y . It
should be mentioned, however, that due to the fact that the
present RPA operator only contains ph(hp) configurations,
sum rules, Goldstone theorem, etc., are not strictly fulfilled.
The violations usually remain very weak though (see [39]).

There exists, however, a different closing of the equations
employing the so-called self-consistent particle-particle RPA
(SCppRPA [14]). It can be shown that the coupled cluster
wave function is not only the vacuum to a generalized RPA
operator in the ph channel, but also in the pp(hh) channel. This
is explained in Ref. [17]. From SCppRPA one can naturally
obtain the C2’s with four-particle or four-hole indices, that
is, Cp1p2p3p4 and Ch1h2h3h4 . Also, the SCppRPA couples via
the nonlinearity back to the particle-hole SCRPA considered
here [11].

Iterating SCphRPA and SCppRPA simultaneously again
corresponds approximately to summing the parquet diagrams
already discussed above.

165117-12



PROGRESS IN MANY-BODY THEORY WITH THE . . . PHYSICAL REVIEW B 93, 165117 (2016)

VI. SHORT DESCRIPTION OF CONNECTION OF SCRPA
WITH GREEN’S FUNCTIONS

In condensed matter physics dealing with homogeneous
infinite systems, one usually does not formulate the problems
in the form of an eigenvalue equation. One rather employs
propagators or many-body Green’s functions. Of course, it
is clear that every eigenvalue problem has a corresponding
formulation with Green’s functions but it may be useful to give
some more details on the ingredients of the present formalism.
The Green’s function equivalent to the eigenvalue equation of
SCRPA [Eqs. (48) and (55)] is, in a way, somewhat particular.
As one may immediately realize, it cannot come from the
familiar many time Green’s function approach where, e.g., the
two-body propagator (and also its integral kernel) depends on
four times once one goes beyond the standard HF-RPA scheme.
This stems from the fact that in an eigenvalue problem only one
energy (the eigenvalue) is involved and then the corresponding
integral equation for the Green’s function also can involve only
one energy, even in the integral kernel. Although the formalism
has been described in earlier publications (see, for instance,
Refs. [11,15]), we feel that it may be helpful for the reader to
give a short outline of the procedure. To this purpose, we write
the corresponding integral equation form of (48), that is, the
Bethe-Salpeter equation

(ω − Ek1 + Ek2 )G̃ω
k1k2k3k4

= N0,k1k2

⎡
⎣δk1k

′
3
δk2k

′
4
+
∑
k3′ k4′

Sk1k2k3′ k4′

⎤
⎦G̃ω

k3′ k4′ k3k4
. (83)

Inserting the spectral representation of the Green’s function

G̃ω =
∑

ν

χνNνχ
ν∗

ω − ν + iηNν

, (84)

where the sum goes over positive and negative values of ν and
Nν = −N−ν,ν = −−ν , and taking the limit ω → ν , we
obtain in comparing the singularities on left- and right-hand
sides the eigenvalue equation (48).

In order to see how this scheme with the equation of motion
technique can go on and lead to an ω-dependent term in the
integral kernel of the Bethe-Salpeter equation, we consider the
operator (3) to include a two-body term as a first extension,
eventually higher-order terms.

Eliminating the two-body amplitudes from the coupled
equations of one- and two-body amplitudes, one obtains an
effective equation for the χ amplitudes with an effective,
energy-dependent potential containing implicitly the two-
body amplitudes. This effective potential can be qualified to
correspond to the ω-dependent part of a two-body self-energy.
This procedure can formally be pushed up to the N -body
amplitudes leading thus to an exact two-body equation of a
Dyson equation form in analogy to what is known from the
single-particle Green’s function.

Let us shortly show how the same scheme can be obtained
beginning directly with the Green’s function. We start with the
following chronological propagator:

G t−t ′
12 = −i〈0|TA1(t)A+

2 (t ′)|0〉, (85)

with A(t) = eiHtA(0)e−iH t , T the time ordering operator, and

A1 = a+
k1′ ak1 , A+

2 = a+
k2

ak2′ ,

where a+,a are fermion creation and destruction operators,
respectively, and the Green’s function in (85) is thus a
density-density correlation function. It is always understood
that the indices ki comprise, as before, momentum and spin
and, eventually, more quantum numbers, such as isospin, etc.
We remark that in this definition of the Green’s function we put
pairs of fermion operators on equal times so that the Green’s
function depends only on one time difference at equilibrium.
The G̃ function is related to G in replacing in the latter the
A1 by Ã1 = a+

k1′ ak1/
√

Nk1′ k1 , etc. We now claim that for this
two-time Green’s function, one can write in a well-defined
way a formally exact integral equation with an integral kernel
which also depends only on one time difference (or in energy
space on one energy ω). We, thus, write

Gω = Gω
0 + Gω

0 �ωGω, (86)

where it is understood that this is a matrix equation with
matrix multiplication of the various products. The lowest-order
Green’s function G0 is thereby given for, e.g., a translationally
invariant system as

Gω
0,12 = nk′

1
− nk1

ω − Ek1 + Ek′
1

δk1k2δk′
1k

′
2
, (87)

where nk = 〈0|a+
k ak|0〉 are the single-particle occupation

numbers and Ek = k2/(2m) +∑k′ v̄kk′kk′nk′ are the mean field
energies.

In principle, Eq. (86) may thus serve as a definition of the
kernel �ω. It turns out that �ω is a well-defined object for
which expressions in terms of usual correlation functions and
Green’s functions can be given (see, e.g., [11]). This kernel
can be considered as some kind of higher-order self-energy,
here the self-energy of density fluctuations. As the well-known
self-energy of the single-particle Green’s function, it splits
into an instantaneous, energy-independent part �0 and an
explicitly energy-dependent part �r (ω). It can be shown that
�0 is equivalent to the matrix S in (48) as this is explained
in [11]. Therefore, (48) and (86) are equivalent once �ω is
replaced by its static part �0. Mathematically, this can be seen
quite straightforwardly in applying the equation of motion
to the propagator (85): i ∂

∂t
G12 = δ(t − t ′)〈0|[A1,A

+
2 ]|0〉 −

i〈0|T[A1,H ]tA
+
2 (t ′)|0〉. Applying now the equation of motion

a second time to the time t ′ figuring in the correlation function
which appears on the right-hand side of this equation, one
realizes that the part which acts on the chronological operator
T leads to the double commutator also involved inS of Eq. (48)
and, consequently, in the instantaneous part of the self-energy
�0. The application of the time derivative on t ′ contained in
A+

2 (t ′) will lead to the energy-dependent part of the self-energy
in (86). This brief outline should only serve to give the reader
a quick feeling as to how such a somewhat unusual integral
equation like (86) with an integral kernel depending only on
one energy can be obtained. For a more detailed outline, we
refer the reader to [11].

Concerning the practical solution of (83), it can be seen
from (48) that the static part only contains up to two-body
correlation functions which can be calculated from (83) and,
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thus, a self-consistent cycle is established. As just explained,
the dynamic, explicitly energy-dependent, part contains the
coupling to higher configurations involving four-body propa-
gators. Their inclusion leads in some approximation to what
is known in the equation of motion method as the second RPA
equations [41].

It may be worth mentioning that a perturbative analysis of
� in (86) shows that the terms are not equivalent to Feynman
diagrams. Nevertheless, one can present the various terms in
�0 [or equivalently in S of Eq. (48)] by the graphs shown
in Fig. 2. If in this figure the two-body correlation functions
are replaced by the first-order expression in the interaction,
the standard second-order perturbation graphs emerge with,
however, the particularity that they occur instantaneously, that
is, they do not propagate. Even if the correlation functions in
Fig. 2 are replaced by their full expression, the graphs stay,
as indicated in the figure, instantaneous. This feature results
from the minimization of the energy weighted sum rule as
explained in Sec. II. Similar types of equations with integral
kernels depending only on one frequency are obtained from
the hypernetted chain equations (see [42]).

VII. APPLICATIONS

A. Preliminaries

In order to guide the reader in the following applications
with the various approximations used, let us make a short
summary here. First, there is the TDDM method, described in
Sec. II. It allows to calculate the occupation numbers nk and
the four types of two-body correlation functions considered.
Disposing of those quantities allows to calculate the total
ground-state energy or various partial quantities thereof, as,
e.g., the so-called two-body correlation energy. The nk and
C2’s can also be used to set up the correlated RPA matrix, in
which case we talk about the C-RPA scheme. The C-RPA and
SCRPA schemes appear naturally as the one-body sector of the
linearized TDDM equations. The latter equations have been
called either STDDM*-b or STDDM-b equations according to
whether one includes the approximate form of the three-body
correlation function C3 [Eq. (12)] or not. Let us recall that the
one-body sector of STDDM-b and STDDM*-b is not affected
by C3 when the two-body space is decoupled from the one-
body one. The nonlinearity in C2’s only affects the two-body
sector as seen when comparing (29) with (32). There also exist
STDDM and STDDM* equations which are equivalent but
very nonsymmetric versions of STDDM-b and STDDM*-b.
They are not considered in the applications. Finally, there exists
the so-called extended second RPA (ESRPA) equation which
does not follow from the TDDM approach but is obtained from
a minimization of the energy weighted sum rule involving one-
and two-body operators. Since STDDM-b and STDDM*-b
equations can be shown to be approximate forms of ESRPA,
we consider ESRPA (slightly) superior to all the other kinds of
equations we have established. One should realize, however,
that STDDM-b, STDDM*-b, and ESRPA which all include the
two-body sector can be solved for the model cases presented
below which involve limited configuration spaces but for
realistic problems as the homogeneous electron gas or nuclear
matter, etc., one must be happy if the equations of the one-body

sector, that is, C-RPA and/or SCRPA, can be tackled. One
should appreciate the following results in the light of these
preliminary remarks.

B. Lipkin model

We first consider the Lipkin model [43]. The Lipkin model
describes an N -fermions system with two N -fold degenerate
levels with energies ε/2 and −ε/2, respectively. The upper
and lower levels are labeled by quantum number p and −p,
respectively, with p = 1,2, . . . ,N . We consider the standard
Hamiltonian

Ĥ = εĴz + V

2
(Ĵ 2

+ + Ĵ 2
−), (88)

where the operators are given as

Ĵz = 1

2

N∑
p=1

(a+
p ap − a−p

+a−p), (89)

Ĵ+ = Ĵ+
− =

N∑
p=1

a+
p a−p. (90)

The operators Jz,J± are pseudospin operators and fulfill
commutation relations of angular momenta.

The ground state in TDDM is obtained using the adiabatic
method: Starting from the HF ground state, we solve the
TDDM equations [Eqs. (6) and (7)] by gradually increasing
the residual interaction such that V ′ = V × t/T , as described
in Sec. II D. We use T = 4 × 2π/ε. For the three-body terms
in Eq. (7) we use the approximations (16) and (17) which are
supposed to be the leading terms. All possible single-particle
indices are taken into account one by one (the so-called m

scheme, see also [44]). The original basis is kept.
In a first application, the occupation numbers nα and two-

body correlation functions Cαβα′β ′ are determined from the
TDDM calculation and the RPA matrix is set up with these
values. We refer to this scheme as the correlated RPA (C-
RPA) (see Sec. IV A) to distinguish it from SCRPA which
takes into account self-consistency. We found it necessary to
include the factor 1

2 in Eq. (79) when we consider noncollective
amplitudes as χ

μ

−p′,p and χ
μ

p,−p′ in addition to χ
μ
−p,p and χ

μ
p,−p,

that is, all possible RPA amplitudes. When we keep only the
collective amplitudes, the results deteriorate and in addition the
factor 1

2 [Eq. (79)] has to be suppressed. This is in line with
the discussion about the factor 1

2 in the occupation number
expressions by Rowe in [32] given a long time ago.

In a second application, we also performed self-consistent
RPA calculations corresponding to Eq. (48), taking again
all kinds of amplitudes, collective and noncollective, that is,
we also included all the amplitudes χ

μ

−p′,p and χ
μ

p,−p′ and,

consequently, the factor 1
2 in Eq. (79) was kept. In SCRPA, the

two-body correlation matrices Cp1p2p3p4 and Ch1h2h3h4 which
are not directly related to the one-body transition amplitudes
(X,Y ) are calculated using Eqs. (81) and (82). To calculate
the 2p-2h elements figuring in the above expressions for
Cpp′−p−p′ of the two-body correlation matrix, we use their
relation with the RPA amplitudes given in Eq. (58) with
Eq. (57). The occupation probability np of the upper state
and the two-body correlation matrix Cpp′−p−p′ calculated in
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FIG. 3. Occupation probabilities of the upper state calculated in
TDDM (solid line), ESRPA (red squares), C-RPA (green squares),
and SCRPA (blue circles) as a function of χ = (N − 1)|V |/ε for
N = 4. The exact solution is shown with the dotted-dashed line. The
occupation probability and correlation matrix in TDDM are used in
the C-RPA and ESRPA calculations.

TDDM (solid line) and ESRPA (red squares) are shown in
Figs. 3 and 4, respectively, as a function of χ = (N − 1)|V |/ε
for N = 4. The RPA solution becomes unstable at χ = 1 as
shown below in Fig. 6. The results of SCRPA (round dots) are
shown up to χ = 1.6 because beyond χ ≈ 1.6 the numerical
solution becomes unstable.

The Lipkin model is simple enough to solve the complicated
self-consistent ESRPA equations (28), however, still some
approximations have been applied. For the three-body cor-
relation functions, again the approximations (16) and (17) are
employed. The four-body correlation functions C4 contained
in the D matrix are neglected. Furthermore, in the ESRPA
calculations we included only the one-body amplitudes with
the same quantum number (this corresponds to the collective
subspace as usually considered in RPA) such as χ

μ
−p,p, χ

μ
p,−p,

χ
μ
−p,−p, and χ

μ
p,p and used Eq. (39) to obtain np. All two-

body amplitudes Xαβα′β ′ with either pα = pα′ ; pβ = pβ ′ or
pα = pβ ′ ; pβ = pα′ are included, where pα is the p quantum
number given in Eqs. (89) and (90).

The occupation numbers and two-body correlation func-
tions shown in Figs. 3 and 4 are very sensitive quantities
concerning the underlying wave function. Let us mention again
that it is important for the accuracy of the results to work

FIG. 4. Same as Fig. 3 but for the two-body correlation matrix
Cpp′−p−p′ .

FIG. 5. Same as Fig. 3 but for the ground-state energy.

with all possible amplitudes (collective and noncollective),
that is, with the m scheme. Taking into account only collective
amplitudes sensitively deteriorates the results (not shown
in the figures). SCRPA and C-RPA are about on the same
grounds since they both work with the m scheme and take the
nonlinearities in the C2’s into account. ESRPA and TDDM are
also more or less equivalent since they both take into account
two-body amplitudes (see Sec. III C). We may, however,
remark that in realistic situations ESRPA may be inapplicable,
besides in very restricted configuration spaces, because of its
numerical complexity whereas this is not the case with TDDM.
As a general remark, we can say that all approximations
perform quite well up to χ = 1 but start to deviate more or less
strongly from the exact result (dotted-dashed line) thereafter.
SCRPA and C-RPA are simpler than the approaches including
the two-body sector because the dimensions of the matrices
remain much smaller in the first case. The value χ = 1 is the
one where standard RPA becomes unstable and a change of
the single-particle basis becomes necessary (the “deformed”
basis). Here, we do not operate a change of basis but still
the system seems to feel the entering into a new “phase.” We
should also remember that N = 4 is the worst case where
the quantum fluctuations are the strongest (the N = 2 case
being more or less trivial becomes exact in SCRPA) (see [16])
(anticipating, this will also be the case in the other two models
treated below). The results will improve for higher values of N .

The ground-state energies in TDDM (solid line), ESRPA
(red squares), C-RPA (green squares), and SCRPA (blue
circles) are shown in Fig. 5 as a function of χ for N = 4.
The exact values are again given with the dotted-dashed line.
The ground-state energy in ESRPA is calculated using np and
Cpp′−p−p′ given in Figs. 3 and 4. All calculations agree well
with the exact values. The ground-state energy is a more robust
quantity than are, e.g., the occupation numbers.

The excitation energies of the first and second excited
states are displayed in Fig. 6 as a function of χ . We see that
ESRPA performs extremely well, even far beyond the RPA
instability point of χ = 1. C-RPA and SCRPA also are very
good but deteriorate after the instability point. Apparently,
the self-consistency (SCRPA) brings, in the domain where
the results are stable, a slight advantage over the non-self-
consistent one (C-RPA) but this may not be very significant
in general cases. In the case of the second excited state which
can be obtained with ESRPA, deviation from the exact solution
becomes larger with increasing χ . This can be explained either
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FIG. 6. Same as Fig. 3 but for the excitation energies of the first
and second excited states.

by the neglect of the coupling to higher amplitudes or by the
fact that in ESRPA noncollective amplitudes are not included.
Let us mention again that ESRPA can only be tackled at the
moment for simple models. In realistic cases, this approach
becomes numerically too complicated.

The excitation energies of the first and second excited states
calculated in STDDM-b (triangles), STDDM∗-b (circles), and
ESRPA (squares) are shown in Fig. 7 as a function of χ =
(N − 1)|V |/ε for N = 4. The exact solution is shown with the
dotted-dashed line. Figure 7 shows that STDDM∗-b is a good
approximation to ESRPA but up to χ = 1, STDDM-b also
works quite well. All two-body amplitudes have been taken
into account, that is, Xpp′−p−p′ , X−p−p′pp′ , Xp−p′p−p′ , Xpp′pp′ ,
X−p−p′−p−p′ ,Xp−p′−p−p′ ,X−p−p′−pp′ ,Xpp′p−p′ , andX−pp′pp′ .

Let us remind that the difference between ESRPA and
STDDM-b and STDDM*-b is that in STDDM C3 is totally
neglected. The small difference between STDDM*-b and
ESRPA originates in the fact that D in Eq. (28) is not the
same as cT + d̃N2 in Eq. (32).

FIG. 7. Excitation energies of the first and second excited states
calculated in STDDM-b (triangles), STDDM∗-b (circles), and ESRPA
(squares) as a function of χ = (N − 1)|V |/ε for N = 4. The exact
solution is shown with the dotted-dashed line.

FIG. 8. Mean field energy EMF calculated in ESRPA (squares)
and SCRPA (circles) as a function of g/�ε for  = N = 6. The
TDDM results and the exact values are shown with the solid and
dotted-dashed lines, respectively.

C. Pairing model

Next, we consider the pairing Hamiltonian [45]

H =
∑

i=1

εα(a+
i ai + a+

ī
aī) − g

∑
i 
=j

a+
i a+

ī
aj̄ aj . (91)

Here, g is the strength of the pairing force acting in a
space of  twofold-degenerate equidistant orbitals with the
single-particle energies εi = (i − 1)�ε. This Hamiltonian has
extensively been used to investigate the validity of theoretical
approaches [45].

The ground state in TDDM is obtained using again
the adiabatic method. We use T = 6 × 2π/�ε. Since there
are several occupation probabilities and the number of the
elements of the two-body correlation matrix is not small in
the pairing Hamiltonian, we discuss their average properties
using the correlation energy E2bcor [Eq. (40)] and the mean
field energy EMF, which is given by EMF =∑α εαnαα in the
case of the pairing model. The mean field energy in ESRPA is
calculated from the occupation probabilities given by Eq. (39)
and the correlation energy in ESRPA given by Eq. (43). Since
the first term on the right-hand side of Eq. (42) does not exist
in the pairing Hamiltonian (91), Eq. (43) holds in ESRPA.

In principle, SCRPA is not adequate for the solution of the
pairing case because it is essentially a particle-hole theory.
Nevertheless, SCRPA also includes some particle-particle
correlations and it is interesting to see how well the ph-SCRPA
performs. In principle, however, one should better use the
pp-SCRPA as described in Sec. V and applied in [15]. As
before, in SCRPA all p-h and h-p amplitudes are taken and
the factor 1

2 in Eq. (79) is kept. The matrix elements Cp1p2p3p4

and Ch1h2h3h4 are calculated using Eqs. (81) and (82) in SCRPA.
The results in ESRPA (squares) are compared with the

results of other calculations in Figs. 8–10 as a function
g/�ε for  = N = 6. The results in SCRPA are given with
the circles and those in TDDM with the solid line. The
dotted-dashed line depicts the exact values. The mean field
energies in SCRPA are closer to the exact values than those
in ESRPA, whereas ESRPA and SCRPA give similar results
as with TDDM for E2bcor. The good agreement of SCRPA

165117-16



PROGRESS IN MANY-BODY THEORY WITH THE . . . PHYSICAL REVIEW B 93, 165117 (2016)

FIG. 9. Same as Fig. 8 but for the two-body correlation energy
E2bcor.

results with exact ones for the mean field energies may be an
accident.

The results of TDDM and ESRPA agree with each other
and for Etot they are close to the exact values. The dotted
line in Fig. 10 depicts the results of BCS, which are in poor
agreement with the exact solution. One also can read off the
critical coupling strength g ∼ 0.43. Since E2bcor in SCRPA is
not large enough to compensate large EMF, Etot in SCRPA
deviates from the exact values with increasing g. It is easy
to understand that SCRPA cannot give sufficient E2bcor in the
pairing model: As said before, the two-body interaction in
Eq. (91) consists of p-p and h-h correlations which cannot be
fully included by 1p-1h excitation modes in SCRPA. There
are only noncollective 1p-1h excitation modes in the case of
the pairing model. The good agreement of EMF in SCRPA
with the exact solution suggests that such noncollective 1p-1h

excitation modes are well described by SCRPA. In fact, the
excitation energy E1 of the first excited state calculated in
SCRPA is E1/�ε = 3.44 at g/�ε = 1 and the corresponding
exact value is 3.54. As mentioned above, EMF and E2bcor in
ESRPA are determined by the properties of two-phonon states.
Therefore, deviations of the results in ESRPA from the exact
values indicate that description of the two-phonon states in
ESRPA without coupling to higher amplitudes becomes not

FIG. 10. Same as Fig. 8 but for the ground-state energy Etot. The
dotted line depicts the results in BCS.

good with increasing interaction strength, as is the case of the
Lipkin model: The excitation energy E2 of the first two-phonon
state in ESRPA is E2/�ε = 5.43 at g/�ε = 1, which is about
25% larger than the exact value 4.37.

All in all, one must say that the phSCRPA performs
surprisingly well, at least up to the critical value g ∼ 0.43. So,
it may be important in general to include ph correlations also
in the pairing case. We have seen that ppSCRPA contains ph

correlations and phSCRPA pp correlations. It may be a good
idea to couple both channels in a self-consistent approach. As
discussed earlier, this self-consistent coupling of pp and ph

channels has some similarity with parquet diagram summation.

D. Hubbard model

Finally, we consider the one-dimensional (1D) Hubbard
model with periodic boundary conditions. In momentum space
the Hamiltonian is given by

H =
∑
k,σ

εka
+
k,σ ak,σ

+ U

2N

∑
k, p,q,σ

a+
k,σ ak+q,σ a+

p,−σ a p−q,−σ , (92)

where U is the onsite Coulomb matrix element, σ spin
projection, and the single-particle energies are given by εk =
−2t

∑D
d=1 cos(kd ) with the nearest-neighbor hopping potential

t . We consider the case of six sites at half-filling. In the
first Brillouin zone −π � k < π there are the following wave
numbers:

k1 = 0, k2 = π

3
, k3 = −π

3
,

k4 = 2π

3
, k5 = −2π

3
, k6 = −π. (93)

The single-particle energies are ε1 = −2t , ε2 = ε3 = −t , ε4 =
ε5 = t , and ε6 = 2t . The ground state in TDDM is obtained
using the adiabatic method starting from the HF ground
state where the six lowest-energy single-particle states are
completely occupied: T used here is 5 × 2π/t . The mean
field energy in ESRPA is calculated from the occupation
probabilities given by Eq. (39) and the correlation energy in
ESRPA given by Eq. (43): The first term on the right-hand
side of Eq. (42) vanishes due to p-h symmetry in the case
of half-filling considered here. In SCRPA, all p-h and h-p
amplitudes are taken and the factor 1

2 in Eq. (79) is kept. That
is, we considered the following RPA excitation operator:

Q+
ν =

∑
ph

[
Xν

pha
+
p ah − Y ν

pha
+
h ap

]
, (94)

where p,h = ( p,h,σ ) includes momenta and spin indices. Of
course, in the end the SCRPA matrix will turn out to be block-
diagonal in transferred momenta and charge and spin quantum
numbers. However, in the setup of the SCRPA matrix, in the
construction of the two-body correlation functions all possible
contributions are kept. Therefore, there is indirect coupling
between all channels. This is different from [16] where the
channels have been decoupled.

The matrix elements Cp1p2p3p4 and Ch1h2h3h4 are calculated
using Eqs. (81) and (82) in SCRPA. In the ESRPA calculations,
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FIG. 11. Mean field energy EMF calculated in ESRPA (squares)
and SCRPA (circles) as a function of U/t for the six-site Hubbard
model with half-filling. The TDDM results and the exact values are
shown with the solid and dotted-dashed lines, respectively.

we take only the 2p-2h and 2h-2p components of X μ

αβα′β ′
to facilitate the numerics. Since the three-body correlation
matrix is an approximate one, the stationary condition for the
three-body correlation matrix is not completely fulfilled, which
makes the Hamiltonian matrix of Eq. (28) non-Hermitian,
especially in the case of the Hubbard model which has
more general two-body interaction than the Lipkin model and
pairing models.

The mean field energy EMF, which is given by

EMF =
∑
k,σ

εknk,σ + U

2N

∑
k, p,σ

nk,σ n p,−σ , (95)

the correlation energy E2bcor, and the ground-state energy Etot

calculated in ESRPA (squares) are shown in Figs. 11–13 as a
function of U/t . The results in SCRPA are also given with the
circles up tp U/t = 3 but cannot be distinguished from those
in ESRPA. Beyond U/t ≈ 3, SCRPA cannot give meaningful
solutions because of numerical instabilities as is the case for
the Lipkin model. The TDDM results and the exact values
are shown with the solid and dotted-dashed lines, respectively.
The results in ESRPA agree well with those in TDDM. The
excitation energy of the first excited state is shown in Fig. 14
as a function of U/t . The results in ESRPA (squares) show

FIG. 12. Same as Fig. 11 but for the two-body correlation energy
E2bcor.

FIG. 13. Same as Fig. 11 but for the ground-state energy Etot.

good agreement with the exact values (dotted-dashed line).
The SCRPA results (blue circles) are reasonable and avoid the
instability of RPA (open circles). The SCRPA results in Fig. 14
are, however, less good than the ones in [16]. For the second
excited state (not shown), the situation becomes even worse.
This fact needs some discussion. The reason for the present
SCRPA results for the excitation energies apparently is due
to the implicit cross channel couplings meaning that in the
block matrix belonging to, e.g., a certain momentum transfer
q, implicitly via the nonlinear terms other momentum transfers
also can enter. In [16], we discarded those “intruder” channels
for the following reason: since SCRPA does not strictly satisfy
the killing condition (70), the various RPA operators Q+

ν are
not independent of one another. In [17], it was shown that
this violation of independence is very weak. Apparently it
is, however, still strong enough to perturb the equilibrium
of the screening terms in the case of excitation energies. For
correlation and ground-state energies, the problem seems to be
much less severe. It may, thus, be better to discard the implicit
channel coupling for the excitation energies in SCRPA which is
an approximation to ESRPA or STDDM* (STDDM*-b). The
channel couplings can be restored if the two-body amplitudes
are taken care of as is seen in Fig. 14, which, however, renders
the problem much harder to be solved.

FIG. 14. Excitation energy of the first excited state calculated in
SCRPA (circles) and ESRPA (squares) as a function of U/t for the
six-site Hubbard model with half-filling. The exact values are shown
with the dotted-dashed line. The open circles depict the results in
RPA.
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E. Summary of applications

We applied TDDM, STDDM-b and STDDM*-b, ESRPA,
SCRPA, and C-RPA to three exactly solvable models. We
found that the ground-state properties obtained from the
excited states in ESRPA agree well with those in TDDM
and the exact values. This indicates that the TDDM equations
[Eqs. (6) and (7)] build the ground state which is consistent
with excited states. We also found that the results of SCRPA
(and C-RPA) agree with those in ESRPA except for strongly
interacting regions where the systems enter a new phase as,
e.g., superfluidity in the case of pairing or antiferromagnetism
in the case of the Hubbard model.

VIII. CONCLUSIONS

In this work, we give a coherent outline of the BBGKY
hierarchy or the time-dependent density matrix (TDDM)
approach decoupled at the three-body level in approximating
the three-body correlation function by a quadratic form of
the two-body correlation functions. The coupled equations
for the one-body density matrix and the two-body correlation
functions are then linearized around the equilibrium leading
to eigenvalue equations coined STDDM-b and STDDM*-b
which couple one- and two-body amplitudes. The central
part of the work is to show that the one-body sector of the
STDDM-b and STDDM*-b equations contains extended RPA
equations which, contrary to standard RPA, are built on a
correlated ground state. These extended RPA equations existed
independently in the past and were called self-consistent RPA
(SCRPA) because the RPA matrix, due to the ground-state
correlations, depends on the two-body correlation functions
(screening terms) and, thus, a self-consistent cycle is needed
for the solution. However, a second option is to take the
two-body correlation function (and the correlated occupation
numbers) from an independent TDDM calculation for the
ground state. This option has been coined correlated RPA
(C-RPA). It was shown that the results in model cases are
in both cases, as can be suspected, of similar quality. It was
also shown in this work that in SCRPA (C-RPA) equations a
very important part of the correlations contained in the full
TDDM and STDDM-b (STDDM*-b) approaches is already
incorporated. For instance, SCRPA (C-RPA) equations are,
like TDDM nonlinear in the two-body correlations. This
remark is very important from the practical point of view
since the dimension of the SCRPA (C-RPA) matrices is much
reduced with respect to STDDM-b and STDDM*-b where
the two-body sector is included. The results for model cases
show that at least for values of the coupling constants which
are below or equal to the critical value where in mean field
a phase transition occurs (example: BCS-pairing instability),
the results from SCRPA (C-RPA) are practically of the same
quality as the ones where the two-body sector is included.
We also could show that SCRPA fulfills all the desirable
properties of standard RPA as there are: fulfilment of f -sum
rule, Goldstone (zero mode) theorem, conservation laws, and
gauge invariance. It should be pointed out that those properties
are usually very difficult to keep satisfied in beyond HF-
RPA approaches with numerically manageable theories. For
example, the Kadanoff-Baym �-derivable functional approach

[46] would face serious difficulties when applied to the
models treated in this paper. SCRPA and C-RPA can also
be applied in cases with a broken symmetry in allowing for
symmetry-broken mean field solutions. However, much less
experience has accumulated in this regime. Only one work
exists where the appearance of the Goldstone (zero) mode
has been explicitly shown [39]. The results, though good,
suffer from the fact that the transition from the case with good
symmetry to the one with broken symmetry is discontinuous,
simulating a first-order phase transition where there should
not be any. A similar difficulty popped up with the coupled
cluster theory when applied to the pairing Hamiltonian [47].
Very recently, this difficulty of CCT has been circumvented
in interpolating between the two regimes [48]. Something
similar is eventually also possible with TDDM and SCRPA. In
any case, the difficulty of artificial first-order phase transition
(see also [12]) probably arises from the fact that SCRPA is a
truncated form of the more complete STDDM-b (STDDM*-b)
theories. However, as mentioned, for practical (numerical)
reasons, one would like to stay at the one-body sector. For
reasons of self-containedness, we repeated in this work some
formalism already published elsewhere.

Other features to be pointed out concerning the present
theory are that TDDM yields fully antisymmetric two-body
correlation functions and that they are number and energy con-
serving. They democratically couple particle-hole and particle-
particle (hole-hole) channels and, thus, have some similarity
with resummation of parquet diagrams. The quadratic form in
the two-body correlation functions is rather analogous, but one
level higher, to the quadratic dependence of HF theory on the
s.p. density matrix. Indeed, the SCRPA matrix may be viewed
as the mean field Hamiltonian of density fluctuations. We also
pointed out that SCRPA also exists in the particle-particle
(hole-hole) channel and, then, the SCppRPA matrix can be
interpreted as the mean field of, e.g., a two-fermion bound
state in an environment of those bound states. Our extended
RPA equations are of the Schrödinger type and thus amenable
to numerical solution. This is radically different from the usual
many-time Green’s function formalism employed in several
branches of physics.

It may be interesting to transform our TDDM equations
with the nonlinear decoupling of the three-body correlations
into classical transport equations. This shall be work for the
future.
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APPENDIX A: QUADRATIC FORM OF C3

1. Green’s function

In the first part of this section, we give a sketchy derivation
using many-body Green’s functions how C3 can be expressed
as a quadratic form of C2’s. In the second part, a much
more formal derivation will be given using identities of
many-particle density matrices.
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The one-line-reducible part of the 2p-1h (2h-1p) Green’s
function can be written as ([23], Appendix F, see also Fig. 1)

G
corr,t−t ′
αβγ ′α′β ′γ =

∫
dtδ

∫
dtδ′G

t−tδ
αβγ ′jδ

G
tδ−tδ′
δδ′ G

tδ′−t ′
jδ′γβ ′α′ (A1)

with

G
t−t1
αβγ ′jδ1

= (−i)〈0|T (a+
γ ′aαaβ)t j

+
δ1,t1

|0〉irr (A2)

and j+
δ1,t1

= 1
2

∑
(a+

γ a+
δ aβ)t1 v̄δγβδ1 . The index “irr” stands for

“one line irreducible.” For convenience, we make for the
single-particle Green’s function the quasiparticle approxima-
tion

G
t−t ′δ
δδ′ = δδδ′ {n̄δ�(t − t ′) − nδ�(t ′ − t)}e−iεδ(t−t ′), (A3)

where the nδ are the correlated quasiparticle occupation
numbers and εδ is the energy of the quasiparticle pole of the s.p.
Green’s function (see [23]). Let us now insert this quasiparticle
expression into (A1) and take the equal time limit, so that the
three-body correlation function C3 appears. We will see that
the quadratic form in C2’s is obtained.

This derivation is kept very qualitative, just to give the
reader an impression how from the very natural expression
for (A1) for the one-line-reducible part of the 2p-1h (2h-1p)
Green’s function our quadratic form for C3 in terms of
C2’s can appear. Let us now switch to a mathematically
very transparent derivation involving identities of density
matrices.

2. Identity

The quadratic form of the three-body correlation matrix is also obtained from the identity between three- and four-body
density matrices:

ραβγα′β ′γ ′ = 1

N − 3

∑
λ

ραβγλα′β ′γ ′λ. (A4)

The above identity is written in terms of correlation matrices as

Cαβγα′β ′γ ′ = 1

3

∑
λ

(nαλCλβγα′β ′γ ′ + nβλCαλγα′β ′γ ′ + nγλCαβλα′β ′γ ′ + nλα′Cαβγλβ ′γ ′ + nλβ ′Cαβγα′λγ ′ + nλγ ′Cαβγα′β ′λ

−Cαβα′λCγλβ ′γ ′ − Cαβγ ′λCγλα′β ′ − Cαβλβ ′Cγλα′γ ′ − Cαγα′λCλββ ′γ ′ − Cαγβ ′λCβλα′γ ′

−Cαγλγ ′Cβλα′β ′ − Cαλα′β ′Cβγγ ′λ − Cαλα′γ ′Cβγλβ ′ − Cαλβ ′γ ′Cβγα′λ − Cαβγλα′β ′γ ′λ), (A5)

where Cαβγλα′β ′γ ′λ is a four-body correlation matrix. Under the assumptions that nαα′ = δαα′nα and Cαβγλα′β ′γ ′λ = 0, the above
relation is given as

Cαβγα′β ′γ ′ = 1

3 − nα − nβ − nγ − nα′ − nβ ′ − nγ ′

∑
λ

(−Cαβα′λCγλβ ′γ ′ − Cαβγ ′λCγλα′β ′ − Cαβλβ ′Cγλα′γ ′ − Cαγα′λCλββ ′γ ′

−Cαγβ ′λCβλα′γ ′ − Cαγλγ ′Cβλα′β ′ − Cαλα′β ′Cβγγ ′λ − Cαλα′γ ′Cβγλβ ′ − Cαλβ ′γ ′Cβγα′λ). (A6)

For Cp1h1h2,p2h3h4 the denominator of Eq. (A6) is −1 and Eq. (12) is obtained.

APPENDIX B: MATRICES IN STDDM

The matrices a = b, c, d and �d in Eq. (26) are given as follows:

a(αα′ : λλ′) = (εα − εα′ )δαλδα′λ′ +
∑

β

(v̄αλ′βλnβα′ − v̄βλ′α′λnαβ), (B1)

b(αα′ : λ1λ2λ
′
1λ

′
2) = 1

2

(
v̄αλ′

2λ1λ2δα′λ′
1
− v̄λ′

1λ
′
2α

′λ2δαλ1

)
, (B2)

c(α1α2α
′
1α

′
2 : λλ′) = −δα1λ

⎧⎨
⎩
∑
βγ δ

[(
δα2β − nα2β

)
nγα′

1
nδα′

2
+ nα2β

(
δγα′

1
− nγα′

1

)(
δδα′

2
− nδα′

2

)]
v̄λ′βγ δ

+
∑
βγ

[
1

2
v̄λ′α2βγ Cβγα′

1α
′
2
+ v̄λ′βα′

1γ
Cα2γα′

2β
− v̄λ′βα′

2γ
Cα2γα′

1β

]⎫⎬
⎭

+ δα2λ

⎧⎨
⎩
∑
βγ δ

[(
δα1β − nα1β

)
nγα′

1
nδα′

2
+ nα1β

(
δγα′

1
− nγα′

1

)(
δδα′

2
− nδα′

2

)]
v̄λ′βγ δ

+
∑
βγ

[
1

2
v̄λ′α1βγ Cβγα′

1α
′
2
+ v̄λ′βα′

1γ
Cα1γα′

2β
− v̄λ′βα′

2γ
Cα1γα′

1β

]⎫⎬
⎭
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+ δα′
1λ

′

⎧⎨
⎩
∑
βγ δ

[(
δδα′

2
− nδα′

2

)
nα1βnα2γ + nδα′

2

(
δα1β − nα1β

)(
δα2γ − nα2γ

)]
v̄βγ |v|λδ

+
∑
βγ

[
1

2
v̄βγ λα′

2
Cα1α2βγ + v̄α1βλγ Cα2γα′

2β
− v̄α2βλγ Cα1γα′

2β

]⎫⎬
⎭

− δα′
2λ

′

⎧⎨
⎩
∑
βγ δ

[(
δδα′

1
− nδα′

1

)
nα1βnα2γ + nδα′

1

(
δα1β − nα1β

)(
δα2γ − nα2γ

)]
v̄βγ λδ

+
∑
βγ

[
1

2
v̄βγ λα′

1
Cα1α2βγ + v̄α1βλγ Cα2γα′

1β
− v̄α2βλγ Cα1γα′

1β

]⎫⎬
⎭

+
∑

β

[
v̄α1λ′βλCβα2α

′
1α

′
2
− v̄α2λ′βλCβα1α

′
1α

′
2
− v̄βλ′α′

2λ
Cα1α2α

′
1β

+ v̄βλ′α′
1λ

Cα1α2α
′
2β

]
, (B3)

d(α1α2α
′
1α

′
2 : λ1λ2λ

′
1λ

′
2) = (

εα1 + εα2 − εα′
1
− εα′

2

)
δα1λ1δα2λ2δα′

1λ
′
1
δα′

2λ
′
2

+ 1

2
δα′

1λ
′
1
δα′

2λ
′
2

∑
βγ

(
δα1βδα2γ − δα2γ nα1β − δα1βnα2γ

)
v̄βγ λ1λ2

− 1

2
δα1λ1δα2λ2

∑
βγ

(
δα′

1β
δα′

2γ
− δα′

2γ
nβα′

1
− δα′

1β
nγα′

2

)
v̄λ′

1λ
′
2βγ

+ δα2λ2δα′
2λ

′
2

∑
β

(
v̄α1λ

′
1βλ1nβα′

1
− v̄βλ′

1α
′
1λ1nα1β

)+ δα2λ2δα′
1λ

′
1

∑
β

(
v̄α1λ

′
2βλ1nβα′

2
− v̄βλ′

2α
′
2λ1nα1β

)

+ δα1λ1δα′
1λ

′
1

∑
β

(
v̄α2λ

′
2βλ2nβα′

2
− v̄βλ′

2α
′
2λ2nα2β

)+ δα1λ1δα′
2λ

′
2

∑
β

(
v̄α2λ

′
1βλ2nβα′

1
− v̄βλ′

1α
′
1λ2nα2β

)
. (B4)

We now give the expression for �d which arises from the quadratic forms in C2’s of the three-body correlation functions. We
use Eqs. (16) and (17) for the three-body correlation matrix

�d(αβα′β ′ : λ1λ2λ
′
1λ

′
2) = −1

2
v̄α(h)λ′

1(h)λ1(p)λ2(p)Cλ′
2(h)β(h)α′(p)β ′(p) + 1

2
v̄α(p)λ′

1(p)λ1(h)λ2(h)Cλ′
2(p)β(p)α′(h)β ′(h)

− 1

2
δβλ2δα′λ′

1
δβ ′λ′

2

∑
λ(h)λ′(p)λ′′(p)

v̄αλλ′λ′′Cλ′λ′′λλ1(h) − 1

2
δβλ1δα′λ′

1
δβ ′λ′

2

∑
λ(p)λ′(h)λ′′(h)

v̄αλλ′λ′′Cλ′λ′′λλ2(p)

+ 1

2
v̄β(h)λ′

1(h)λ1(p)λ2(p)Cλ′
2(h)α(h)α′(p)β ′(p) − 1

2
v̄β(p)λ′

1(p)λ1(h)λ2(h)Cλ′
2(p)α(p)α′(h)β ′(h)

+ 1

2
δαλ2δα′λ′

1
δβ ′λ′

2

∑
λ(h)λ′(p)λ′′(p)

v̄βλλ′λ′′Cλ′λ′′λλ1(h) + 1

2
δαλ1δα′λ′

1
δβ ′λ′

2

∑
λ(p)λ′(h)λ′′(h)

v̄βλλ′λ′′Cλ′λ′′λλ2(p)

+ 1

2
v̄λ′

1(p)λ′
2(p)α′(h)λ2(h)Cα(p)β(p)β ′(h)λ1(h) − 1

2
v̄λ′

1(h)λ′
2(h)α′(p)λ2(p)Cα(h)β(h)β ′(p)λ1(p)

+ 1

2
δαλ1δβλ2δβ ′λ′

1

∑
λ(p)λ′(p)λ′′(h)

v̄λλ′α′λ′′Cλ′
2(h)λ′′λλ′ − 1

2
δαλ1δβλ2δβ ′λ′

1

∑
λ(h)λ′(h)λ′′(p)

v̄λλ′α′λ′′Cλ′
2(p)λ′′λλ′

− 1

2
v̄λ′

1(p)λ′
2(p)β ′(h)λ2(h)Cα(p)β(p)α′(h)λ1(h) + 1

2
v̄λ′

1(h)λ′
2(h)β ′(p)λ2(p)Cα(h)β(h)α′(p)λ1(p)

− 1

2
δαλ1δβλ2δα′λ′

1

∑
λ(p)λ′(p)λ′′(h)

v̄λλ′β ′λ′′Cλ′
2(h)λ′′λλ′ + 1

2
δαλ1δβλ2δα′λ′

1

∑
λ(h)λ′(h)λ′′(p)

v̄λλ′β ′λ′′Cλ′
2(p)λ′′λλ′ . (B5)

The terms with and without summation describe self-energy corrections and vertex corrections, respectively, and indices p (h)
mean that the corresponding single-particle state is a particle (hole) state.
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APPENDIX C: MATRICES IN EQ. (65)

The matrix Eαβα′β ′ is the product of the self-energy terms in Eq. (49) and the first term on the right-hand side in Eq. (63):

Eαβα′β ′ = −1

4

∑
λλ′λ′′

[v̄αλλ′λ′′Cλ′λ′′β ′λδβα′ (Lα′β ′ − Lα′α) − v̄βλλ′λ′′Cλ′λ′′β ′λδαα′ (Lα′β ′ − Lα′β)

+ v̄λλ′α′λ′′Cβλ′′λλ′δαβ ′(Lβα − Lα′α) − v̄λλ′α′λ′′Cαλ′′λλ′δββ ′ (Lαβ − Lα′β)], (C1)

where Lαβ = nαn̄β

nα−nβ
. The matrix Eαβα′β ′ describes the self-energy corrections but has no contribution to the 2p-2h and 2h-2p

elements of Cαβα′β ′ .
The matrix Fαβα′β ′ is obtained from the product of the vertex correction terms in Eq. (49) and the first term on the right-hand

side in Eq. (63):

Fαβα′β ′ = 1

2

∑
λλ′

[(v̄αλβ ′λ′Cβλ′α′λ + v̄βλα′λ′Cαλ′β ′λ)(Lββ ′ − Lα′α) − (v̄βλβ ′λ′Cαλ′α′λ + v̄αλα′λ′Cβλ′β ′λ)(Lαβ ′ − Lα′β)]

− 1

4

∑
λλ′

(v̄αβλλ′Cλλ′α′β ′ + v̄λλ′α′β ′Cαβλλ′)(Lββ ′ + Lαβ ′ − Lα′α − Lα′β). (C2)

As shown following, the factor 1
2 in front of the p-h correlation terms in Eq. (65) is dropped due to the p-h correlation terms of

Fp1p2h1h2 in Eq. (C2) (the first sum) in the case that nα = 0 or 1. The p-p and h-h correlations are also included in Eq. (C2) (the
last sum).

The matrix Gαβα′β ′ is obtained from the product of the terms with Cαβα′β ′ in Eq. (49) and the second term on the right-hand
side in Eq. (63):

Gαβα′β ′ = −1

4

∑
λλ′λ′′γ

[v̄αλλ′λ′′Cλ′λ′′γ λUα′γ Cγβα′β ′ − v̄βλλ′λ′′Cλ′λ′′γ λUα′γ Cγαα′β ′

+ v̄λλ′α′λ′′Cγλ′′λλ′UγαCαβγβ ′ − v̄λλ′α′λ′′Cγλ′′λλ′UγβCβαγβ ′]

+ 1

4

∑
λλ′λ′′γ

[v̄λ′λ′′β ′λCγλλ′λ′′Uβγ Cαβα′γ + v̄βλ′′λλ′Cλλ′γ λ′′Uγβ ′Cαγα′β ′

− v̄λ′λ′′β ′λCγλλ′λ′′Uαγ Cβαα′γ − v̄αλ′′λλ′Cλλ′γ λ′′Uγβ ′Cβγα′β ′]

+ 1

2

∑
λλ′λ′′γ

[v̄αλλ′λ′′Cγλ′′α′λUγλ′Cλ′βγβ ′ − v̄βλλ′λ′′Cγλ′′α′λUγλ′Cλ′αγβ ′

+ v̄λλ′α′λ′′Cαλ′′γ λ′Uλγ Cγβλβ ′ − v̄λλ′α′λ′′Cβλ′′γ λ′Uλγ Cγαλβ ′ ]

− 1

4

∑
λλ′λ′′γ

[v̄αλ′′λλ′Cλλ′α′γ Uλ′′γ Cγβλ′′β ′ − v̄βλ′′λλ′Cλλ′α′γ Uλ′′γ Cγαλ′′β ′

+ v̄λλ′α′λ′′Cαγλλ′Uγλ′′Cλ′′βγβ ′ − v̄λλ′α′λ′′Cβγλλ′Uγλ′′Cλ′′αγβ ′]

− 1

2

∑
λλ′λ′′γ

[v̄λλ′β ′λ′′Cβλ′′γ λ′UγλCαγα′λ − v̄λλ′β ′λ′′Cαλ′′γ λ′UγλCβγα′λ

+ v̄βλλ′λ′′Cγλ′′β ′λUλ′γ Cαλ′α′γ − v̄αλλ′λ′′Cγλ′′β ′λUλ′γ Cβλ′α′γ ]

+ 1

4

∑
λλ′λ′′γ

[v̄λβλ′λ′′Cλ′λ′′γβ ′UγλCαγα′λ − v̄λαλ′λ′′Cλ′λ′′γβ ′UγλCβγα′λ

+ v̄λλ′λ′′β ′Cγβλλ′Uλ′′γ Cαλ′′α′γ − v̄λλ′λ′′β ′Cγαλλ′Uλ′′γ Cβλ′′α′γ ], (C3)

where Uαβ = 1
nα−nβ

. Here, we used the stationary condition for nα [(Eq. (6)] in the second sum, which is given by

∑
λ1λ2λ3

[
v̄αλ1λ2λ3Cλ2λ3α′λ1 − Cαλ1λ2λ3 v̄λ2λ3α′λ1

] = 0. (C4)
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The terms in Eq. (C3) describe the contributions of the three-body correlation matrix Cαβγα′β ′γ . Comparing Eq. (C3) with
Eq. (12), we notice that there is a factor 2 difference and that the term with Cλ2γα′β ′Cλ3βλ1γ is missing in Eq. (C3). So, Eq. (65)
is very similar to Eq. (7) but there are differences in the three-body terms.
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