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Antiferromagnetic phases of the Kondo lattice
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We discuss the paramagnetic and Néel-ordered phases of the Kondo lattice Hamiltonian on the two-dimensional
square lattice by means of bond fermions. In the doped case we find two antiferromagnetic solutions, the first one
with small ordered moment, heavy bands, and an antiferromagnetically folded large Fermi surface—i.e., including
the localized spins—the second one with large ordered moment, light bands, and an antiferromagnetically folded
conduction electron-only Fermi surface. The zero temperature phase diagram as a function of Kondo coupling
and conduction electron density shows first- and second-order transition lines between the three different phases
and agrees qualitatively with previous numerical studies. We compare to experiments on CeRh1−xCoxIn5 and
find qualitative agreement.
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I. INTRODUCTION

Heavy fermion compounds are a much studied class of
materials in the field of strongly correlated electron systems.
Among the many phenomena observed in these compounds is
a variety of phase transitions between different magnetically
ordered and nonmagnetic phases which occur as a function
of temperature, pressure, alloying, or magnetic field. Often
the transition temperature can be driven to zero Kelvin by
varying some experimental parameter resulting in quantum
critical points and superconductivity [1]. The simplest model
believed to be able to describe these compounds is the Kondo
lattice model, which is obtained from the more realistic
periodic Anderson model by means of the Schrieffer-Wolff
transformation [2] and describes a single conduction band
coupled to a periodic array of localized spins by spin
exchange,

H =
∑
k,σ

εk c
†
k,σ ck,σ + J

∑
i

�Si · �σi. (1)

Thereby each unit cell i is assumed to contain one conduction
band (or c) orbital and one localized (or f ) orbital; the
operators c

†
i,σ and f

†
i,σ create an electron with z-spin σ in

these. Moreover, �σi = 1
2 c

†
iσ �τσσ ′ ciσ ′ where �τ is the vector

of Pauli matrices whereas �Si denotes the spin operator of the
localized electrons and εk is the dispersion relation of the
conduction band.

It is widely believed that the magnetic phase transitions are
the consequence of a competition between the Kondo effect
and the Ruderman-Kittel-Kasuya-Yoshida (RKKY) interac-
tion between the localized electrons [3]. The essence of the
Kondo effect is the formation of singlets between a localized
electron and a conduction electron, leading to a vanishing of
the expectation value 〈�Si〉, whereas the RKKY interaction—or
any other mechanism favoring magnetic order such as a
magnetic field—favors a nonvanishing 〈�Si〉. Accordingly, there
is an inherent frustration in the Kondo lattice model and slight
perturbations may tilt the balance and induce a phase transition.
Moreover, for a lattice of localized spins the Kondo effect leads
to a Fermi surface volume to which the localized electrons

contribute as if they were itinerant. The transitions between
“Kondo-dominated” and “RKKY-dominated” phases there-
fore are often accompanied by a reconstruction of the Fermi
surface which goes beyond the simple generation of umklapps
but rather changes the volume of the Fermi surface by an
amount corresponding to half of an electron per spin and f site.

While the single impurity Kondo problem can be solved
exactly the Kondo lattice Hamiltonian is less well understood.
Following the work of Yoshimori and Sakurai [4], Lacroix and
Cyrot [5,6] studied the Kondo lattice in mean-field theory. For
a band with a constant density of states in the range [−D : D]
and electron densities close to nc = 1 Lacroix and Cyrot found
a paramagnetic and a Néel-ordered solution. At T = 0 the
antiferromagnetic phase thereby turns out to have lower energy
than the paramagnetic one for J � D/2. Its ordered f moment
always has the maximum value of 1/2 [5] so that the phase
transition is first order. Various other mean-field studies of
the Kondo lattice were performed since then [7–11] but it
appears to be difficult to reproduce the phase diagrams of
heavy fermion compounds by this approach.

Since then the model was also studied by renormalization
group [12] and extended dynamical mean-field theory (see
Ref. [13] for a recent review) and a global phase diagram
was outlined [13,14]. Additional work has focused on the
properties of quasiparticles near the quantum critical points
[15] and the phenomenological two-fluid model was proposed
(for a recent review see Ref. [16]).

In this manuscript we present an approximation in terms
of bond fermions which reproduces a few results obtained
previously only by numerical methods, such as the phase
diagram containing two antiferromagnetic and a paramagnetic
phase. As will be discussed below this phase diagram also
qualitatively reproduces some experimental results on heavy
fermion compounds.

II. METHOD OF CALCULATION

In the following we consider the Hamiltonian (1) on a
two-dimensional (2D) square lattice of N unit cells, the num-
ber of conduction electrons is Nc and nc = Nc/N = 1 − δ.
For the dispersion of the conduction band εk, we assume a
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tight-binding form with hopping integrals −t between nearest
and t1 between second nearest neighbors, i.e.,

εk = −2t(cos(kx) + cos(ky)) + 4t1 cos(kx) cos(ky).

The calculation to be outlined below may be viewed as a
fermionic version of the bond operator theory proposed by
Sachdev and Bhatt to describe bosonic spin fluctuations in
quantum spin systems [17] which was applied successfully to
spin ladders [18]. In deriving the fermionic version we follow
Ref. [19]; see also Ref. [20] for a more rigorous derivation. In
the limit t,t1 → 0 and Nc = N the ground state is a product
of singlets,

|�0〉 =
N∏

j=1

s
†
j |0〉, s

†
j = 1√

2
(c†j↑f

†
j↓ − c

†
j↓f

†
j↑). (2)

The energy of this state is −Ne0 with e0 = 3
4J . Switching on

nonvanishing hopping integrals produces charge fluctuations,
e.g., an electron with spin σ can be transferred from some cell
m to another cell n, resulting in a state with three electrons
in n and a single electron in m. In subsequent steps either the
surplus electron or the hole may propagate to other sites or
additional electron-hole pairs may be generated. In Ref. [19]
the product of singlets (2) was considered as the vacuum |vac〉
for charge fluctuations which themselves were described as
effective fermions (here we will call them “bond fermions”)
There are holelike and electronlike bond fermions, and states
containing a single of these correspond to states of the true
Kondo lattice as follows:

b
†
iσ |vac〉 → c

†
i↑c

†
i↓ f

†
iσ

∏
j 
=i

s
†
j |0〉,

a
†
iσ |vac〉 → f

†
iσ

∏
j 
=i

s
†
j |0〉. (3)

The generalization to states with more than one bond fermion
is self-evident, the only requirement being that the factors of
c
†
i↑c

†
i↓ f

†
iσ and f

†
jσ in the Kondo-lattice states be in the same

order as the b
†
iσ and a

†
jσ in the bond fermion states. Since a

unit cell with either one or three electrons has an exchange
energy of 0 we ascribe an energy of formation of +e0 to each
bond fermion. Operators for the bond fermions are obtained by
demanding that their matrix elements between bond fermions
states be identical to those of the physical operator between
the respective translated states. Due to the product nature of
states like (3) this is usually easy to achieve. For example, the
electron annihilation operator becomes

ci,σ = 1√
2

(sgn(σ ) a
†
i,σ̄ − bi,σ ). (4)

Fourier transformation gives the representation of ck,σ and
inserting this into the kinetic energy

∑
k,σ εk c

†
k,σ ck,σ the

Hamiltonian becomes [19]

H =
∑
k,σ

[(
εk

2
+ e0

)
b
†
k,σ bk,σ +

(
εk

2
− e0

)
a−k,σ̄ a

†
−k,σ̄

− sgn(σ )
εk

2
( b

†
k,σ a

†
−k,σ̄ + H.c.)

]
+ N e0. (5)

The positive sign of the additive constant is not a misprint—
rather, this is the sum of the energy of the vacuum state (2),
−Ne0, and a term +2Ne0 obtained by inverting 2N products
of fermion operators e0 a

†
−k,σ̄ a−k,σ̄ = e0 − e0 a−k,σ̄ a

†
−k,σ̄ . In

using the Hamiltonian (5) we are making two approximations:
First, the possibility that a unit cell containing two electrons is
in a triplet state is neglected. This means we neglect bosonic
spin excitations and their coupling to the fermionic charge
fluctuations. Second, states like a

†
i,σ b

†
i,σ ′ |vac〉 or a

†
i,↑a

†
i,↓|vac〉

where two bond fermions occupy the same unit cell obviously
are meaningless so that the bond fermions have to obey a
hard-core constraint—which we neglect in the following. This
issue is discussed in detail in Sec. V.

Since the vacuum state (2) contains 2N electrons including
the localized electrons and since adding an a† fermion (a b†

fermion) decreases (increases) the electron number by one, the
total number of electrons is

Ne = 2N +
∑
k,σ

b
†
kσ bkσ −

∑
k,σ

a
†
kσ akσ

=
∑
k,σ

(b†kσ bkσ + a−kσ̄ a
†
−kσ̄ ). (6)

An extra complication—discussed in detail in Ref. [19]—is the
following: After tuning the electron number to any prescribed
value N ′ by adding the term −μ(Ne − N ′) to the Hamiltonian
and adjusting μ, the k-integrated conduction electron momen-
tum distribution function nk = 〈c†kσ ckσ 〉—which equals the
k- and ω-integrated photoemission weight—in general is not
equal to Nc = N ′ − N . As proposed in Ref. [19] we resolve
this problem by enforcing the equality of Nc and k-integrated
nk via an additional Lagrange multiplier λ, i.e., we add the
term −λ(

∑
k,σ c

†
kσ ckσ − Nc) to H and adjust λ. This amounts

to replacing εk → εk − λ in (5). The Hamiltonian (5) then can
be solved by a unitary transformation:

γ
†
k,1,σ = uk b

†
k,σ + sgn(σ ) vk a−k,σ̄ ,

γ
†
k,2,σ = −sgn(σ ) vk b

†
k,σ + uk a−k,σ̄ .

In terms of the quasiparticle operators γ
†
k,ν,σ the electron

number (6) becomes

Ne =
∑
k,σ

2∑
ν=1

γ
†
k,ν,σ γk,ν,σ .

While all bond fermion basis states such as (3) have exactly
one f electron per unit cell so that the f electrons are perfectly
localized, the Fermi surface volume therefore is such as if the f

electrons were itinerant. The quasipartile dispersion and con-
duction electron momentum distribution become (for nc � 1)

Ek,± = 1

2

(
(εk − λ) ±

√
(εk − λ)2 + 4e2

0

) − μ.

nk = 1

2

⎛
⎝1 − εk − λ√

(εk − λ)2 + 4e2
0

⎞
⎠ �(μ − Ek,−).

For J/t → 0 the band structure approaches the noninteracting
εk plus a dispersionless band at energy λ whereas nk ∝
�(λ − εk). In this limit both λ and μ must be set equal to
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FIG. 1. Ground-state energy E0/t per site (top) and single-
particle gap �QP/J versus t/J for the 1D Kondo insulator. The line is
the result from the bond fermion calculation the symbols are DMRG
results by Yu and White [21]. The curve labeled SE in the top panel
is the ground-state energy obtained by series expansion [22].

the noninteracting chemical potential whence the total energy
becomes that of the free Fermi sea. For J/t → ∞ we have two
bands at ±e0 + O(t). For Nc < N the chemical potential cuts
into the lower of these two bands, resulting in a total energy
of −Nce0 + O(t). Again, this is the correct limiting behavior
because for J/t → ∞ the ground state has Nc singlets and
N − Nc mobile c vacancies which contribute an energy ∝ δ · t .
The ground-state energy obtained from the bond fermion
calculation accordingly interpolates between these two exactly
known limiting values. Figure 1 compares some results ob-
tained in this way for a one-dimensional (1D) chain with nc =
1—i.e., the Kondo insulator—and t1 = 0 to the density matrix
renormalization group (DMRG) results of Yu and White [21].
Since particle-hole symmetry requires λ = μ = 0 in this case,
the bond fermion calculation gives the ground-state energy per
site E0 and single-particle gap �SP = Ek=0,+ − Ek=π,− as

E0 = e0 − 1

π

∫ π

−π

dk

√
t2 cos2(k) + e2

0,

�SP = 2
(√

e2
0 + t2 − t

)
.

This agrees reasonably well with DMRG for t/J < 1 whereas
the agreement is less satisfactory for t/J > 1. The panel
for the energy also shows the series expansion results from
Ref. [22]. The rather simple analytic bond fermion estimate is
as good as the series expansion result for t/J < 1 but appears
to be closer to the numerical result for t/J > 1.

0
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t
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FIG. 2. Conduction electron momentum distribution (top) and
band structure (bottom) for the paramagnetic phase of the 2D Kondo
lattice Hamiltonian with nc = 0.9, J/t = 1.4, and t1/t = 0.4. The
dashed lines show the respective quantity for noninteracting electrons.

The band structure in two dimensions for finite J/t—shown
in Fig. 2—has the familiar “hybridization gap” form; nk has a
sharp but continuous drop at the noninteracting Fermi surface
and a tiny discontiuity at the actual Fermi momentum. It should
be stressed that since no self-consistency equation is solved
in the bond fermion calculation the energy scale of the single
impurity Kondo temperature, kBTK = D exp(1/ρ0J ) (with ρ0

the density of states at the Fermi level and D the conduction
electron bandwidth) does not appear anywhere in the present
calculation—if this plays a role also in the lattice case the bond
fermion calculation is too crude to reproduce it.

We now generalize the calculation to a magnetically ordered
phase. In (2) and (3) we replace s

†
j → s̃

†
j where

s̃
†
j = cos(�) s

†
j + eiQ·Rj sin(�) t

†
j,z,

t
†
j,z = 1√

2
(c†j↑f

†
j↓ + c

†
j↓f

†
j↑), (7)

with Q = (π,π ) the antiferromagnetic wave vector and the
angle � will be determined subsequently by minimizing
the energy. The new vacuum state may be viewed as a
condensate of Bosonic z-like triplets [17,20] with momentum
Q in the pure “singlet background” considered above and has
energy −Nẽ0 with ẽ0 = 3J

4 cos2(�) − J
4 sin2(�). For � = 0

we recover the original paramagnetic vacuum state whereas
for � = π

4 we have the fully polarized Néel state with the
opposite ordered moment for c and f electrons. The energy of
a bond fermion now is ẽ0 and instead of (4) we find

ci,↑ = a+a
†
i,↓ − a−bi,↑,

ci,↓ = −a−a
†
i,↑ − a+bi,↓,

a± = cos(�) ± eiQ·Ri sin(�)√
2

.
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We introduce the sublattices A and B whereby A contains (0,0)
and accordingly introduce two species of bond Fermions, e.g.,
b
†
i,σ for i ∈ A and b̃

†
j,σ for j ∈ B (and analogously for the

a†’s). The Fourier transforms of the electron operators are

ck,↑ = −c−bk,↑ − c+b̃k,↑ + c−ã
†
−k,↓, + c+a

†
−k,↓,

ck+Q,↑ = −c−bk,↑ + c+b̃k,↑ − c−ã
†
−k,↓, + c+a

†
−k,↓,

ck,↓ = −c+bk,↓ − c−b̃k,↓ − c+ã
†
−k,↑, − c−a

†
−k,↑,

ck+Q,↓ = −c+bk,↓ + c−b̃k,↓ + c+ã
†
−k,↑, − c−a

†
−k,↑,

c± = 1
2 (cos(�) ± sin(�)),

where k denotes a wave vector in the antiferromagnetic
brillouin zone (AFBZ). By again inserting the above rep-
resentations of ck,σ into the kinetic energy we obtain
the Hamiltonian. Introducing the column vector, vσ (k) =
(bk,σ ,b̃k,σ ,ã

†
−k,σ̄ ,a

†
−k,σ̄ )T H becomes

H =
∑

k∈AFBZ

∑
σ

v†σ (k) Hσ (k) vσ (k) + N ẽ0,

Hσ (k) = HJ + (ε(+)
k − λ) W (+)

σ + ε
(−)
k W (−)

σ ,

HJ = diag(ẽ0,ẽ0, − ẽ0, − ẽ0),

ε
(±)
k = 1

2
(εk ± εk+Q),

and the matrices W are given by

W (+)
σ =

⎛
⎜⎜⎝

α∓, 0, 0, ∓β

0, α±, ∓β, 0
0, ∓β, α∓, 0

∓β, 0, 0, α±

⎞
⎟⎟⎠,

W (−)
σ =

⎛
⎜⎜⎝

0, β, ∓α∓, 0
β, 0, 0, ∓α±

∓α∓, 0, 0, β

0, ∓α±, β, 0

⎞
⎟⎟⎠.

Here the upper (lower) sign on the respective right-hand side
refers to σ =↑ (σ =↓) and α± = 1

2 (1 ± sin(2�)) and β =
1
2 cos(2�). The number of electrons is

Ne =
∑

k∈AFBZ

∑
σ

4∑
ν=1

γ
†
k,ν,σ γk,ν,σ .

Again, the electron number is obtained by filling the four bands
as if the f electrons were itinerant and did participate in the
Fermi surface volume and the value of 〈Ne〉 is fixed by tuning
the chemical potential μ. The parameter λ is again adjusted to
match real-space count and k-space count for the conduction
electrons, i.e., ∑

k∈AFBZ

〈nk + nk+Q〉 = Ne − N,

whereby

nk + nk+Q =
∑

σ

v†σ W (+)
σ vσ .

In this way, the energy 〈H 〉 can be calculated as a function of
the angle � and minimized with respect to �.
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Θ
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J c
 / 

t

t1 / t

FIG. 3. (Top) Optimal angle � at nc = 1 and t1/t = 0 versus
J/t . (Bottom) Values of Jc/t where the phase transition occurs as a
function of t1/t .

III. RESULTS

Figure 3 shows the angle � which minimizes the energy
as a function of the ratio J/t for nc = 1 (i.e., the so-called
Kondo insulator) and t1 = 0. At a certain Jc ≈ 2.29 t �

starts to deviate from the value � = 0 which gives optimum
energy at large J/t , signaling a continuous—i.e., second-
order—phase transition to a magnetically ordered state (in
the following Jc will always denote the value of J below
which antiferromagnetism sets in for the Kondo insulator). For
J/t → 0 � → π

4 , which means that the ordered f moment
approaches its maximum. Figure 3 also shows the value of Jc/t

obtained for different values of t1/t . Switching on t1 reduces
Jc/t whereby to good accuracy Jc/t = 2.29 − 1.50 (t1/t)2.
This illustrates the change of the RKKY interaction due to the
deformation of the Fermi surface.

The exact value of Jc/t = 1.45 for the case t1 = 0 has
been obtained by Assaad by quantum Monte Carlo (QMC)
calculation [23]. The bond fermion value is larger by a factor
of 1.6 which is on one hand somewhat disappointing but on
the other hand the energy difference between the paramagnetic
and antiferromagnetic phase is quite small—see below—so
that some deviation is to be expected. Figure 4 compares the
ordered moment,

mα = 1

2N

∑
i

eiQ·Ri
〈
nα

i,↑ − nα
i,↓

〉
,

with α ∈ {c,f } and the quasiparticle gap �QP obtained from
the bond fermion formalism and QMC [23]. Here we define
�QP as the energy between the highest occupied and lowest
unoccupied values of Eν,k so that the numerical values should
be twice the ones given in Ref. [23]. When plotted versus
J/Jc the ordered moment agrees reasonably well with the
QMC results. In the QMC calculation the ordered moment is
obtained as the square root of the static structure factor so that

165111-4



ANTIFERROMAGNETIC PHASES OF THE KONDO LATTICE PHYSICAL REVIEW B 93, 165111 (2016)

-0.2

0

 0.2

 0.4

 0.6
m

s
f-like
c-like
f-like
c-like

0

 0.2

 0.4

 0.6

 0.8

1

0  0.5 1  1.5

Δ Q
P
 / 

J c

J / Jc

FIG. 4. (Top) Ordered moment from the bond fermion calculation
(lines) versus J/Jc compared to QMC (symbols) [23]. (Bottom)
Single-particle gap �QP from the bond fermion calculation (line)
versus J/Jc compared to QMC (symbols) [23].

its sign is undetermined. The bond fermion calculation predicts
the f and c ordered moments to have the opposite sign—which
appears plausible due to their antiferromagnetic coupling—
and we have assumed this to be true also for the QMC results.
From their dynamical mean-field theory calculations Peters
and Pruschke indeed found the opposite direction of mc and
mf in Ref. [24]. The ordered moment of the f electrons
approaches the maximum value of 0.5 as J/t → 0 whereas
the c-electron ordered moment approaches zero as J/t → 0.
This is to be expected because the c moment is reduced by
charge fluctuations and as J → 0 the effective staggered field
due to the ordered f spins vanishes. The quasiparticle gap
agrees reasonably well with the QMC result and is roughly
linear in J . In the bond fermion result there is a kink at J = Jc

which is not present in the QMC data. On the other hand,
using the dynamical cluster approximation Martin et al. indeed
found a very similar kink in the �QP-versus-J curve [25]. We
proceed to the doped case. Figure 5 shows the energy as a
function of � for different δ whereby t1/t = 0.4, and J/t =
1.4 or J/t = 1.2. As δ increases there appears—in addition
to the minimum for the Kondo insulator—a “wiggle” in the
E vs � curves which develops into a second minimum. For
J/t = 1.4 the lower of the two minima shifts to smaller � with
increasing δ and merges with the maximum at � = 0 into a
new minimum at this angle. This corresponds to a hole-doping
driven second-order transition from the antiferromagnetic to
the paramagnetic phase. The second minimum—which always
is higher in energy and thus never realized—moves to slightly
larger � and crosses above the extremum at � = 0 well before
the second-order transition occurs.

This behavior changes for the value J/t = 1.2. The
minimum for the Kondo insulator now shifts to larger values
of � as δ increases and crosses above the extremum at � = 0
between δ = 0.20 and δ = 0.24—which corresponds to a
first-order transition. The second minimum still undergoes the
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FIG. 5. Ground-state energy versus � for different δ and
t1/t = 0.4.

second-order transition but now is always higher in energy and
thus never realized. We therefore have two antiferromagnetic
phases with different behavior upon increasing doping. In the
following we refer to the phase undergoing the second-order
transition as AF I, the other one as AF II.

It is also apparent from Fig. 5 that the energy difference
between the antiferromagnetic and paramagnetic phases at
δ = 0 is only ≈0.05 t per site. The energy per site of the
paramagnetic phase itself at δ = 0 and J/t = 1.4 is −1.82 t

so that the energy difference between the two phases is only a
few percent of this value despite the fact that the value of J/t

is already far below Jc/t . Obviously the relatively simple bond
fermion calculation does not reach such a level of accuracy so
that the value of Jc/t is off by a factor of 1.6.

Proceeding as above we can map out the phase diagram
in the J − δ plane which is shown in Fig. 6 for the two
values t1/t = 0.4 and t1/t = 0.0. The line separating the
AF I and paramagnetic phase corresponds to a second-order
transition; the line separating the AF II from either the AF I
or the paramagnetic phase represents a first-order transition.
The coexistence curves between AF I and AF II do not reach
the δ = 0 axis because for very small doping there is only a
single minimum in the energy-versus-� curves; see Fig. 5.

Figure 7 compares the phase diagram to that obtained by
Watanabe and Ogata [26] using the variational Monte Carlo
(VMC) method. For t1 = 0, VMC finds Jc/t = 1.7, close to
the exact result Jc/t = 1.45 from QMC [23]. When plotting
the phase diagram as a function of J/Jc and δ as in Fig. 7
the bond fermion result agrees reasonably well with the VMC
phase diagram. As will be discussed below, the nature of the
AF I and AF II phases also agrees with VMC. A qualitatively
similar phase diagram has also been obtained by Lanata
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FIG. 6. Phase diagram of the Kondo lattice on a 2D square lattice
as a function of Kondo coupling J and hole density δ.

et al. using the Gutzwiller approximation in Ref. [27] and
by Asadzadeh et al. also by using the VMC method [11].

To understand the nature of the two antiferromagnetic
phases Fig. 8 shows their band structure and momentum
distribution function whereas Fig. 9 shows the Fermi contours
in the brillouin zone. For AF I the band structure may be
thought of as having been obtained from the paramagnetic one
in Fig. 2 by antiferromagnetic folding plus the formation of
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 0.6 0.7 0.8 0.91
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FIG. 7. Phase diagram for t1/t = 0 obtained by VMC [26] (top)
compared to the phase diagram from bond fermion theory (bottom).

0
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t

(0,0) (π,π) (π,0) (0,0) (π,π) (π,0) (0,0)

FIG. 8. (Top) Momentum distribution (top) and band structure
(bottom) for the AF-I phase (left) and AF-II phase (right). In both
panels t1/t = 0.4, δ = 0.1 whereas J/t = 1.4 for the AF-I phase and
J/t = 1.2 for AF-II.

small “antiferromagnetic gaps” at the intersection points of the
original and folded bands. Accordingly the Fermi surface is a
hole pocket around (π,π ) plus its antiferromagnetic umklapp
around (0,0). As can be seen from the tiny discontinuities
in nk and the small slope of the bands, the “heavy part” of
the paramagnetic band persists in this phase but undergoes
antiferromagnetic folding. This is quite different for AF II.
There is still a dispersionless band close to EF but the
Fermi surface is now formed by a more strongly dispersive
band which has a strong c character. The Fermi surface now
consists of a small pocket around (π

2 , π
2 ) which may be thought

of as having being obtained by hybridizing the conduction
electron Fermi surface for electron density nc = 0.9 and its
antiferromagnetic umklapp (for t1 = 0 the Fermi surface in the
AF-II phase really is identical to the noninteracting conduction

(0,0)

(π,π)

AF  I
AF II

FIG. 9. The Fermi surface for the two antiferromagnetic phases
in Fig. 8. The dashed lines are the noninteracting Fermi surface and
its antiferromagnetic umklapp.
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electron Fermi surface plus its umklapp because in this case
there is no overlap between the original Fermi surface and
umklapp). The discontinuity in nk is much larger than for the
AF I solution at the side of the pocket facing (0,0) whereas
it is small at the part of the pocket facing (π,π ) (as is also
familiar from the spin-density wave mean-field solution to the
Hubbard model). The plot of nk also shows why the AF II
phase is favored for small J/t : The expectation value of the
kinetic energy can be written as 〈Ht 〉 = 2

∑
k εk nk and this is

minimized by the noninteracting function n
(0)
k = �(μ − εk).

Figure 8 shows that the phase AF II has an nk which is closer
to the noninteracting one and thus has a lower kinetic energy
than both the paramagnetic and the AF I phase.

A very similar classification of the AF I and AF II phase has
been given by Watanabe and Ogata [26] based on their VMC
calculations. On the other hand, a quite different phase diagram
was obtained by Martin and Assaad using the dynamical
cluster approximation (DCA) [28]. This authors find only one
antiferromagnetic phase with a Fermi surface which does not
include the f electrons—which would corresponding to the
AF II solution above. Interestingly, the band structure shown
in Fig. 5 of Ref. [28] also has some similarity with that of the
AF II phase in Fig. 8. Martin and Assaad find that the ordered
moment vanishes continuously at the phase transition between
the antiferromagnetic and paramagnetic phases suggesting it
to be second order despite the discontinuous change of the
Fermi surface. Upon adding a nonvanishing t1 the DCA does
give also a phase corresponding to the AF-I phase, but the
obtained phase diagram is quite different [25]. Figure 10 shows
the development of some quantities for fixed δ = 0.08 upon
variation of J/t from J/t = 1.2 and J/t = 1.8. The value
t1/t = 0.4 so that one should compare to the upper panel of
Fig. 6. At J/t ≈ 1.36 the energies of the AF-I and AF-II
phases cross resulting in a first-order phase transition. The
ordered f moment drops by roughly 1/3 at the transition,
whereas the density of states at the Fermi level—which is
proportional to the effective mass—increases significantly. At
J/t ≈ 1.64 the ordered moment vanishes continuously at the
second-order transition and the density of states at the Fermi
level smoothly approaches that of the paramagnetic phase.
Similar behavior has been found by Lanata et al. using a
Gutzwiller wave function [27] and more recently by Kubo
using VMC for the periodic Anderson lattice [29].

IV. COMPARISON TO EXPERIMENT

Let us next discuss the possible relevance of these results
for experiments on 4f -electron compounds. Here especially
the compounds CeCoIn5, CeRhIn5, and CeIrIn5 come to mind.
These have a layered tetragonal crystal structure where CeIn
planes parallel to the a-b plane and—say—CoIn4 double
layers are stacked alternatingly along the c axis [30]. The Ce
ions in the CeIn planes form a 2D square lattice as considered
in the present calculation.

CeRhIn5 is antiferromagnetic and the ordered moment
within a given CeIn plane forms the simple two-sublattice Néel
order assumed in the present calculation. More precisely, there
are several antiferromagnetic phases all of which have simple
Néel order within the CeIn planes, but differ in the component
of the magnetic ordering vector perpendicular to these. The
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FIG. 10. Ground-state energy relative to the paramagnetic phase,
ordered f -like moment ms , and density of states per lattice site,
spin, and energy t at the Fermi level (DOS) as a function of J/t for
δ = 0.08 and t1/t = 0.4. All data are shown for the AF-I and AF-II
phases; the phase transition at J/t = 1.36 is marked by the dashed
vertical line. The full line in the panel for DOS is the density of states
for the paramagnetic solution.

Fermi surface of CeRhIn5 as measured by de Haas-van Alphen
experiments appears to consist of several roughly cylindrical
and quasi-2D sheets; the measured cross sections at ambient
pressure are very similar to those of LaRhIn5 [30] which
implies that the Ce-4f electrons do not contribute to the Fermi
surface volume. Pure CeRhIn5 at ambient pressure would thus
correspond to the AF II phase discussed above (the magnetic
order is actually incommensurate in the c direction but this is
too subtle a detail for our highly simplified model anyway).
In contrast, the volume of the Fermi surfaces of CeCoIn5 and
CeIrIn5 is consistent with itinerant Ce-4f electrons [30]. The
Fermi surface volume and magnetic structure CeRhIn5 can
be changed by either applying pressure or by substituting
Rh by Co or Ir. Thereby a reduction of the lattice constant
by either applying pressure or by substituting Rh ions by the
isovalent but smaller Co ions in the alloy CeRh1−xCoxIn5 have
a different effect.

Alloying with Co in CeRh1−xCoxIn5 first—at x ≈ 0.4—
induces a phase transition between two antiferromagnetic
phases, from the incommensurate antiferromagnetic (ICAM)
phase with an incommensurate c component of the ordering
vector to the commensurate antiferromagnetic (CAM) phase
with strict three-dimensional (3D) Néel order [31]. The Fermi
surface volume changes from CeRhIn5-like in the ICAM phase
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to CeCoIn5-like in the CAM phase so that the transition from
localized to itinerant Ce-4f electrons occurs at this transition
between the two antiferromagnetic phases and not at the
transition to the paramagnetic phase [31]. The ordered moment
drops from 0.38 μB/Ce in the ICAM phase to 0.21 μB/Ce in
the CAM phase [32]; the cylotron mass increases from 4m0 to
10m0 [31]. It was moreover found that the Néel temperature
is discontinuous across this transition which suggests it to be
first order [33]. Increasing the doping to x ≈ 0.85 induces a
second phase transition to the paramagnetic phase whereby
neither the Fermi surface volume nor the cyclotron mass show
any discontinuity [31].

Identifying the ICAM phase with the AF II phase and
the CAM phase with the AF I phase and assuming that
alloying with Co simply amounts to increasing J/t due to
the contraction of the lattice at constant nc, all of this would
qualitatively match the behavior in Fig. 10 quite well: a
first-order transition from the AF II phase with large moment,
light effective mass, and a Fermi surface which comprises only
the c electrons to the AF I phase with small ordered moment,
large effective mass, and a Fermi surface which comprises
both c and f electrons, followed by a second-order transition
to the paramagnetic phase where neither the effective mass nor
the Fermi surface volume change. That the component of the
ordering vector perpendicular to the CeIn planes changes at the
transition between the AF II and AF I phases would not be too
surprising. If the hopping matrix elements in the c direction
change with the component of the Bloch wave vector k within
the CeIn plane, tz = tz(kx,ky), a relatively strong change of
the Fermi contour as in Fig. 9 certainly can strongly modify
the coupling between the planes and thus affect the ordering
vector.

On the other hand, applying pressure to CeRhIn5 leads
to a completely different behavior. At ≈ 1 GPa there is
a first transition—or rather a “crossover”—where only the
component of the magnetic ordering vector perpendicular
to the CeIn planes changes [34]. No change of either the
Fermi surface volume or the cyclotron mass is observed at
this crossover [35]. In our simplified model a change of the
magnetic order perpendicular to the planes cannot be modeled
so we ignore this transition. One possible explanation for
this transition would be that the effective mass changes with
pressure—as seen in Fig. 10 if one assumes that pressure
changes J/t—and if the interplane hopping tz is renormalized
by the quasiparticle weight Z ∝ m−1

eff [36] this may as well
influence the coupling between planes. Increasing the pressure
further induces a second transition at p0 = 2.3 GPa to a
paramagnetic phase whose Fermi surface cross sections are
identical to those of CeCoIn5—corresponding to itinerant
Ce-4f electrons—whereas the cyclotron masses seem to
diverge at the transition [35]. The limiting values of the
cyclotron masses approached for large |p − p0| on the two
sides of the transition differ considerably, whereby the values
in the paramagnetic phase are larger by a factor of ≈ 4. With
the exception of the divergence of the cyclotron mass at the
transition—which cannot be reproduced by a simple theory as
the present one—this could correspond to a direct (first-order)
transition AF-II → Para in the phase diagram in Fig. 6.

Generally, reducing the volume of the lattice by either
applying pressure or isovalent doping with ions with a smaller

ionic radius may be expected to enhance the overlap of atomic
orbitals so that all hopping elements increase, but the rate
of increase varies with the character of the two connected
orbitals. On the other hand, the intraatomic Coulomb repulsion
U will remain essentially unchanged, whereas the charge
transfer energy εf may change due to a variation of the
Madelung potential although it is hard to predict if εf increases
or decreases. From the Schrieffer-Wolff transformation the
Kondo exchange constant J = 2V 2((U + εf )−1 + ε−1

f ) where
V is the c − f hybridization. Due to the higher power of V in
J , a plausible guess is that J/t increases upon contraction of
the crystal. On the other hand, this may not be the only effect
of the contraction. Since the hybridization integrals between
different pairs of orbitals change at a different rate, the width of
different bands also may change at a different rate. Accordingly
it may happen that small “uncorrelated” electron or hole
pockets participating in the Fermi surface—which are known
to exist in CeRhIn5 from de-Haas van-Alphen experiments
[30,35]—may shrink or expand if the band which forms the
pocket changes its width at a different rate as compared to
the band which mixes with the 4f electrons. In this way,
electrons may be transferred from the pockets to the band
which interacts with the localized moments or vice versa so
that contraction of the lattice may in addition change also the
conduction electron density nc in our simplified model. Having
noticed this we conclude that it may also make a difference
if the contraction is due to hydrostatic pressure or by doping
the material with ions that have a smaller ionic radius because
these perturbations may affect different bonds in the solid in
a different way. Therefore it might not be too surprising if
applying hydrostatic pressure or alloying with Co would drive
CeRhIn5 through a phase diagram like that in Fig. 6 along
different routes.

Another example for a compound undergoing a pressure-
induced phase transition from an antiferromagnetic phase to a
paramagnetic phase is CeRh2Si2 [37] which also has layered
structure comprising planes where Ce atoms form a 2D square
lattice. At p0 = 1.1 GPa antiferromagnetism disappears and
the Fermi surface changes from being consistent with the
density functional Fermi surface of LaRh2Si2 to being con-
sistent with that for CeRh2Si2—which again corresponds to
the Ce-4f electrons changing from localized to itinerant [37].
Whereas three sheets of the Fermi surface could be resolved
at ambient pressure only one sheet is observed above p0

and this has a cyclotron mass which is larger by a factor
of 2–4 than the ones below p0. Again, there seems to be
a transition from an antiferromagnetic phase with localized
f electrons and relatively light masses to a paramagnetic
phase with itinerant f electrons and heavy masses which
might correspond to the transition AF II → paramagnetic
in the calculated phase diagram. Lastly, a transition between
two different antiferromagnetic phases has been observed in
CeCu6−xAux [38]. Applying pressure to CeCu5.5Au0.5 results
in an apparent first-order transition between two phases which
differ in their ordering vector.

V. ON THE VIOLATION OF THE CONSTRAINT

Lastly we discuss the approximations that were made. As
already stated, the bond fermions in principle have to obey a
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FIG. 11. Probability pv for violation of the constraint in the
paramagnetic solution versus J/t for different hole doping δ.

hard-core constraint, that means no two of them—which could
differ either in their spin or species—are allowed to occupy
the same unit cell because such a state cannot be translated
meaningfully to a state of the true Kondo lattice. Instead, in
all the above calculations the bond fermions were treated
as free fermions which is an uncontrolled approximation.
However, there is a simple way to judge how much this
assumption is justified, namely to calculate for the ground state
so obtained the probability pv that the constraint is violated at a
given site. Since we are dealing with noninteracting fermions
this is easily evaluated. There are five allowed states of a
given cell, namely the empty cell or a state with a single
bond fermion of either spin direction and either species. The
probability for the cell to be in one of these five allowed
states is

pa = (1 − na)2 (1 − nb)2 + 2na (1 − na) (1 − nb)2

+ 2nb (1 − na)2 (1 − nb),

where na = 〈 a
†
i,σ ai,σ 〉 and similar for nb. The probability for

the constraint to be violated then is pv = 1 − pa . Figure 11
shows pv as a function of J/t for different dopings. For values
of J/t > 1 one has pv � 0.1.

To put this in perspective, we consider other cases where a
constraint is relaxed. In linear spin wave theory for the spin- 1

2
Heisenberg antiferromagnet [39] the Bosonic magnons have to
obey a hard-core constraint because a given spin can be flipped
only once relative to the Néel order so that the presence of
two magnons at the same site is unphysical. From the known
reduction of the ordered moment one can infer that even for
the 2D case—where quantum fluctuations are strongest—the
density of magnons is only nb = 0.197 per site. Accordingly,
the probability that two magnons occupy the same site—and
thus violate the constraint—is pv ≈ n2

b = 0.04. In fact, linear
spin wave theory gives an excellent quantitative description of
Heisenberg antiferromagnets.

As a second example we consider mean-field theories for
the Kondo lattice [5–8]. There the Heisenberg exchange is
Hartree-Fock decoupled resulting in a mean-field Hamiltonian
which is a quadratic form and describes the mixing between
the original conduction band and a dispersionless band of f

electrons. The number of f electrons then is adjusted to one

per unit cell by tuning the energy of the effective f level.
Since the f electrons are uncorrelated and their density is
0.5 per unit cell and spin, the probability that there are either
2 or 0 f electrons in a cell so that the constraint is violated
is pv = 0.5

For the bond Fermions the probability for a violation of the
constraint thus is not as small as in linear spin wave theory and
one may expect stronger deviations, e.g., for the ground-state
energy which probably is the reason for the incorrect value of
Jc/t .

One might consider an approximate treatment of the hard-
core constraint by Gutzwiller projection or by a mean-field
theory similar to the one proposed by Sachdev and Bhatt
[17]. In fact, using the mean-field procedure for the Kondo
insulator with t1 = 0 Jurecka and Brenig obtained the value
Jc/t = 1.5, very close to the exact value from QMC [20].
However, we have tried both methods and abandoned them
because both of them lead to a substantial narrowing of the
conduction band. On the other hand, all available numerical
results for the single-particle spectral function of the Kondo
lattice—or the related periodic Anderson model—agree in that
the conduction electron bandwidth retains its original width of
2zt (with z the number of nearest neighbors); see, for example,
Fig. 1 in Ref. [40], Fig. 3 in Ref. [19], or Fig. 4 in Ref. [28]. Any
“correlation narrowing” of the conduction band thus obviously
is unphysical. Moreover, as was discussed above, the bond
Fermion theory without any constraint does reproduce the
correct limiting value of the ground-state energy for J/t → 0.
This favorable property is lost if any renormalization of the
hopping integrals is introduced. The best procedure therefore
probably is to accept the inaccuracy and simply relax the
constraint without further correction.

VI. CONCLUSION

In summary we have presented a theory for the ground
state and single-particle spectrum of the Kondo lattice based
on bond fermions. Thereby the constraint of having precisely
one f electron per unit cell is fulfilled exactly; instead we
are relaxing the hard-core constraint on the bond fermions
which, however, turns out to be reasonably justified as the
probability for violation of the constraint is low for not too
small values of J/t . While being of comparable simplicity
as the mean-field theory, the bond fermion theory gives
results which differ significantly from the mean-field theory.
Rather, the theory reproduces qualitatively a number of results
obtained previously only by numerical methods. In particular
we find two different antiferromagnetic phases: the first one
with a small ordered moment and antiferromagnetically folded
“heavy” bands where the localized electrons do contribute to
the Fermi surface volume, and the second one with a larger
ordered moment and a Fermi surface which corresponds to
the back-folded Fermi surface of the conduction electrons
alone and relatively light bands at the Fermi surface. Quali-
tatively the resulting phase diagram is quite consistent with
experiments on CeRhIn5. While in the present manuscript
we have studied only simple two-sublattice Néel order the
generalization to more complicated magnetic structures is
self-evident.
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