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Characterization of a correlated topological Kondo insulator in one dimension
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We investigate the ground state of a p-wave Kondo-Heisenberg model introduced by Alexandrov and Coleman
with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to
understand how they affect the stability of the Haldane state obtained in the SU(2)-symmetric case without
the Hubbard interaction. By applying the density-matrix renormalization group algorithm and calculating the
entanglement entropy we show that in the anisotropic case a phase transition occurs and a Néel state emerges
above a critical value of the Coulomb interaction. These findings are also corroborated by the examination of the
entanglement spectrum and the spin profile of the system which clarify the structure of each phase.
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I. INTRODUCTION

Kondo insulators are semiconductors at low temperatures
with a few meV gap in contrast to the conventional semicon-
ductors in which the gap is on the order of a few eV [1]. It
is now generally accepted that strong correlations among the
electrons lead to the stabilization of this state with such a small
gap [2].

In the last decade a new group of insulators have been
discovered, which are gapped in the bulk, but they have
soft, topologically protected surface states [3–5]. They are
the topological insulators whose basic properties can be
understood within the framework of ordinary band theory.
The question naturally arises as to how the correlation
among the electrons affects the properties of topological
insulators. This aspect has attracted significant attention [6–13]
since the existence of topological phases was suggested in
strongly correlated systems [14–18]. These observations made
it necessary to understand, inter alia, the theoretical properties
of topological Mott [6,19–22] and Kondo insulators [23–29].
The most famous example of topological Kondo insulators is
SmB6, which was discovered more than four decades ago [30].
Recent experimental observations [31–33] that SmB6 can
host robust conducting surface states renewed the interest
in this compound in particular and in Kondo insulators in
general [34–36]. The most important aspect of topological
Kondo insulators is that hybridization occurs between d and
f bands whose parities are opposite to each other [29]. This
leads to the appearance of a symmetry-protected topological
ground state [28].

To capture the effects of strong correlations and topology
simultaneously, Alexandrov and Coleman suggested a Kondo
lattice model with a special form of the Kondo exchange [24].
The model consists of a free one-dimensional electron gas
coupled to an S = 1/2 Heisenberg chain via a Kondo exchange
with p-wave character. In the conventional Kondo lattice
model, where the Kondo exchange is on-site, local singlets
are formed in the strong-coupling limit and the boundaries
do not play an important role. In contrast, in the present
case since they become nonlocal, these singlets are broken
at the boundary, and edge states appear [24]. This p-wave
Kondo-Heisenberg model has been investigated with several
methods. The large-N expansion has revealed that magnetic

end states appear at the boundaries [24]. Analyzing the ground
state with Abelian bosonization [28] and the density-matrix
renormalization group (DMRG) algorithm [37], it has turned
out that the ground state is actually the Haldane phase [38,39].
It is also interesting to mention that the Haldane phase has
been previously observed in the ordinary Kondo lattice model
with ferromagnetic Kondo coupling [40] and in the extended
periodic Anderson model with Hund’s coupling [41]. The facts
above clearly indicate that one has to apply sophisticated
many-body techniques to accurately describe the ground
state.

In this paper our aim is to study the stability of the Haldane
phase against perturbations. The most obvious and physically
relevant choices are either to introduce anisotropy in the
Kondo interaction or the inclusion of a Coulomb interaction
in the conduction band. The role of the Coulomb interaction
was explored in the case of the conventional Kondo lattice
model [42,43], but only the weak-coupling limit of the present
model has been studied so far with bosonization [28]. In
contrast, the anisotropy was studied only in the conventional
model and its phase diagram was determined [44–46]. We
address these problems using the DMRG algorithm [47–51],
which is the state-of-the-art tool to determine the ground state
and it makes it possible to go beyond the weakly interacting
limit. Since the DMRG calculation is closely related to quan-
tum information theory, we can determine the entanglement
entropy [52–57] and entanglement spectrum [58], which are
very useful to detect quantum phase transitions [59–62] and
symmetry-protected topological order [63–65]. Our analysis
of the anisotropic model reveals that (i) a phase transition
occurs as the interaction is increased within the conduction
band and the Haldane state transforms into a Néel state, and
(ii) the entanglement spectrum can be used as a fingerprint to
identify a topological Kondo insulator in one dimension.

The setup of the paper is as follows. In Sec. II the model
is introduced and some details of the DMRG calculation
and quantum information theory are given. In Sec. III A our
results are presented for the isotropic model and we determine
the low-lying excitation spectrum. In Sec. III B the role of
the anisotropy is addressed using the elements of quantum
information theory to identify topological order and quantum
phase transitions. Finally, in Sec. IV we give the conclusions
of this work.
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II. MODEL

The Hamiltonian of the p-wave Kondo-Heisenberg model
in one dimension can be written as

H = Hc + HH + HK, (1)

where

Hc = −t
∑

j

(c†j+1σ cjσ + c
†
jσ cj+1σ ) + U

∑
j

nj↑nj↓ (2)

describes the interacting conduction band, with nearest-
neighbor hopping t and Hubbard repulsion U . The Hamil-
tonian

HH = JH

∑
j

Sj · Sj+1 (3)

contains the Heisenberg interactions between the S = 1/2
spins, with JH > 0. Finally, HK couples the two subsystems
via an anisotropic, nonlocal Kondo exchange introduced
between electronic and spin degrees of freedom, in a manner
similar to that in Ref. [44]:

HK = JK

∑
j

[
1

2
(S+

j π−
j + S−

j π+
j ) + �Sz

jπ
z
j

]
, (4)

where � is the strength of the Ising-type anisotropy, and S±
j

and π±
j (Sz

j and πz
j ) are the ladder operators (z components)

of the spin Sj and the p-wave spin density π j :

π j = 1

2

∑
αβ

p
†
jασ αβpjβ. (5)

Here σ is the vector of Pauli matrices and

pjσ ≡ (cj+1σ − cj−1σ )/
√

2, (6)

where c0σ = cL+1σ = 0 is assumed. The present Kondo
exchange, in contrast to the usual s-wave case, couples the
localized spins to the corresponding p-wave spin densities
in the fermionic subsystem. As a result, the Kondo interaction
now contains an exchange term between Sj and the conduction
electron spins sj−1, sj+1, where

sj = 1

2

∑
αβ

c
†
jασ αβcjβ . (7)

In addition, a new kind of process appears, where an electron
can hop to its next-nearest neighbor while the intermediate
spin is flipped.

The conventional one-dimensional Kondo lattice model
was thoroughly investigated in the half-filled and in the
metallic case [40,66] and no topological order was found.
The role of the correlation between the conduction electrons
was also addressed and its effect can be considered as the
renormalization of the spin and charge gaps [66]. There are,
however, only a few studies available on the p-wave Kondo-
Heisenberg model [24,28,37] and the role of the interaction
between the conduction electrons has been studied only in
the weakly interacting case. Furthermore, the effect of the
anisotropy in the present model is a completely open question.

We applied the DMRG algorithm using the dynamic block-
state selection approach [67,68] to study the ground state of

the Hamiltonian in Eq. (1). In our calculation the a priori value
of the quantum information loss, χ , was set to χ = 10−5, and
the truncation errors were on the order of magnitude of 10−7.
We considered chains with open boundary conditions up to
lengths L = 600. In what follows we use the half bandwidth
W = 2t as the energy scale and set JH = 0.5W , JK = W and
vary the anisotropy and the Hubbard interaction strength. We
consider the half-filled case and � � 1.

It has been shown recently [63–65] that studying the
bipartite entanglement of the ground-state wave function is
a powerful tool to identify topological phases. Namely, the
degeneracy of the entanglement spectrum, which is obtained
from the Schmidt values, can be used to characterize the
topological order. Therefore changes in the character of the
whole entanglement spectrum must be accompanied by a phase
transition, where either a level-crossing occurs or the corre-
lation length diverges. We study the entanglement between
the two halves of the chain. To this end we determine the von
Neumann entropy of the half chain (block entropy) [52,53,55]:

s(L/2) = −Tr ρL/2 ln ρL/2 = −
∑

j

	j ln 	j, (8)

where ρL/2 is the reduced density matrix belonging to the half
chain and 	j are the corresponding eigenvalues which are the
squares of the Schmidt values.

III. RESULTS

A. Isotropic case

First, we examined the SU(2)-symmetric case (� = 1) and
calculated the entanglement spectrum as a function of U as
can be seen in Fig. 1. It is known that one hallmark of the
Haldane phase is its exactly evenly degenerate entanglement
spectrum [63], which is obvious from Fig. 1. Note that our
result provides further independent evidence for the Haldane
phase at U = 0, which was previously identified by its

−
ln

(Λ
i)

0

2

4

6

8

U/W

0 2 4 6 8

4-fold degenerate

6-fold degenerate

FIG. 1. The low-lying entanglement spectrum in the isotropic
case extrapolated to the thermodynamic limit for JK = W and
JH = 0.5W . For better visibility of the degeneracies, the subsequent
eigenvalues are denoted by + and × symbols, respectively. In certain
cases, where the multiplicity is larger than 2, the degree of degeneracy
is given explicitly in the figure.
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FIG. 2. The spin gap (extrapolated to the thermodynamic limit) in
the isotropic model as a function of U for various JK and JH = 0.5W .
The lines are guides to the eye.

nonvanishing string order parameter [37]. Besides that, it
is clearly observed from Fig. 1 that the Haldane phase is
realized not only for small U but for any U � 0, which is
clearly beyond the validity of the bosonization approach [28].
One can naturally ask how the energy scales are modified
after switching on U . The spin gap, �s , which in our case
can be identified with the Haldane gap (the singlet-quintet
gap), decreases as is shown in Fig. 2. This can be understood
from the large-U limit of the present model since it becomes
equivalent to a diagonal spin ladder where the Hc Hamiltonian
can be approximated with an S = 1/2 Heisenberg model
with Jc ∼ 1/U [69]. It is interesting to remark that the
Hubbard interaction leads to the increase of the spin gap in
the conventional model [66].

B. Anisotropic case

As a next step we investigated what happens when the
Kondo interaction becomes anisotropic (� � 1). We calcu-
lated the block entropy for several chain lengths as a function
of U , which is shown in Fig. 3. It is clearly observed that for
short chains they do not exhibit anomalous behavior; however,
a peak is developed as the chain length is increased. We
know that extrema in the block entropy can be attributed to
quantum critical points [55] if they evolve into anomalies in the
thermodynamic limit. In the present case due to the anisotropy,
a phase transition occurs at Uc ≈ 2.13W , which separates
two distinct phases. To detect symmetry-protected topological
phases, we calculated again the entanglement spectrum, and its
low-lying part is shown in Fig. 4 as a function of U . It is clear
from Fig. 4 that the Haldane phase at U = 0 is not destroyed
by the anisotropy; it survives even at � = 2. Switching on U

does not lead to drastic changes as long as U < Uc. Above this
value a new phase emerges, where the topological order is no
longer present, since both odd and even degeneracies occur in
the entanglement spectrum.

To gain further insight into the properties of the two phases,
we have calculated the low-lying excitation spectrum in each
phase for � = 2. More precisely, we considered the following

FIG. 3. The main figure shows the block entropy in the
anisotropic case as a function of U for several chain lengths and
� = 2, JK = W , JH = 0.5W . The lines are the spline fit to the data
points. The inset shows the enlarged region around the critical point.

energy gaps:

�KL,MN = EL(T z = K) − EN (T z = M). (9)

Here T z denotes the z component of the total spin:

T =
∑

j

Tj ≡
∑

j

(Sj + sj ); (10)

furthermore, EL(T z = K) denotes the Lth energy level (L =
1,2, . . . ) in the sector T z = K . First, we consider the energy
spectrum for U = 0, which is shown in Fig. 5. In the Haldane
phase the ground state is expected to be fourfold degenerate if
the open boundary condition is applied. For short chains a finite
gap is observed, since the end spins are correlated; however,
it closes exponentially, as the chain length is increased.

FIG. 4. The ten largest values of entanglement spectrum extrap-
olated to the thermodynamic limit as a function of U for � = 2,
JK = W , JH = 0.5W . For better visibility of the degeneracies,
the subsequent eigenvalues are denoted by + and × symbols,
respectively.
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FIG. 5. Various gap values as a function of inverse chain length
for U = 0 and JK = W , JH = 0.5W for chains with up to L = 80
lattice sites. The dotted lines denote the best fits to the data using
Eqs. (11) and (12) (see text).

Therefore these values can be fitted by

�11,01(L) = �11,01 + A exp(−ξ/L), (11)

where fitting parameters are �11,01 = 8(6) × 10−5, A =
0.266(4), and ξ = 0.174(1). Since the fitted value of �11,01

lies within the error margin of the energy values (determined
by truncation error), we conclude that it is zero. Similar
considerations apply for �02,01 (not shown). That is, the
fourfold degeneracy is fulfilled in the thermodynamic limit.
On the other hand, the gap between the ground state and
the third excited state in the T z = 0 sector is finite and
its thermodynamic value can be obtained using the usual
quadratic fit:

�03,01(L) = �03,01 + B/L + C/L2, (12)

with best-fit parameters �03,01 = 0.212(1), B = 0.60(8), and
C = 30(1). This gap can be identified as the Haldane gap in
the anisotropic system.
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FIG. 6. Various gap values as a function of inverse chain length
for U = 3W and JK = W , JH = 0.5W for chains with up to L = 160
lattice sites. The dotted lines denote the best fits to the data using
Eqs. (11) and (12) (see text).
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FIG. 7. The total spin z component (T z
i ) along a finite chain with

L = 60 sites and for different values of U . The symbols ◦, �, and
	 denote U/W = 0, 1, and 3, respectively. The other parameters are
JK = W , � = 2, JH = 0.5W in all cases.

As a next step we consider what happens when U > Uc.
From Fig. 6, it is seen that the ground state is twofold degen-
erate and the gap �11,01 remains finite. This was concluded
from the size dependence of the gaps �02,01 and �11,01

which can be fitted using Eqs. (11) and (12), respectively.
The best-fit parameters in this case are A = 0.861(1), ξ =
0.4685(1), and �02,01 = 4(1) × 10−7 with Eq. (11), while
�11,01 = 0.0743(3), B = 1.24(3), and C = 2.7(8) values are
obtained with Eq. (12). The tiny gap in the former case is
considered to be zero based on the previous arguments.

To explore the intrinsic properties of the new phase
for U > Uc, we investigated the z component of the local
magnetization, T z

j , along the chain, which is shown in Fig. 7.
One can easily see that for U = 0, finite spin polarization
appears only at the edges. This is a well-known feature
of the Haldane phase. Since our calculation was performed
with zero total magnetization, the accumulated 1/2 spins at
the boundaries are aligned opposite to each other. As U is

T
z i
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0.5

1/L

0.000 0.005 0.010 0.015 0.020 0.025

T z
L/2, U/W = 0

T z
1 , U/W = 0

T z
L/2, U/W = 1

T z
1 , U/W = 1

T z
L/2, U/W = 3

T z
1 , U/W = 3

FIG. 8. Finite-size scaling of T z
i values at the end of the chain

(open symbols) and in the bulk (filled symbols) for different values
of U up to L = 224 sites. The other parameters are JK = W , � = 2,
JH = 0.5W in all cases.
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FIG. 9. The phase diagram of the anisotropic model as functions
of the anisotropy and the Hubbard interaction strength for JK = W

and JH = 0.5W . The filled and open circles correspond to Haldane
and Néel ground state, respectively. The dotted line denotes the
approximate phase boundary.

increased the edge spins penetrate more and more into the
bulk. To eliminate the finite-size effects we investigated how
the local magnetization behaves in the thermodynamic limit
both in the bulk and at the edges. It turns out from Fig. 8 that
a finite spin polarization appears in the bulk for U > Uc. That
is, the ground state for U > Uc becomes a Néel state, which
is expected to be twofold degenerate [70], as was confirmed
by the analysis of the gaps. The topological Kondo insulator
becomes a topologically trivial bulk insulator as the interaction
is increased.

Finally, we investigated how the critical U depends on the
anisotropy. The results are summarized in the phase diagram

in Fig. 9. It is interesting to note that for a weakly correlated
conduction band the Haldane phase extends to much larger
anisotropy values than for strong interaction. Note that the
phase boundary between the Haldane and Néel state in the
large-U limit remains at � > 1, similarly as in the case of the
S = 1 XXZ chain [71].

IV. CONCLUSIONS

We investigated the ground state and the first few excited
states of a one-dimensional p-wave Kondo-Heisenberg model.
We demonstrated that the anisotropic Kondo interaction
and the correlation between conduction electrons affect the
topological properties of the ground state. In the isotropic
case we pointed out that the Hubbard interaction does not
alter the topological properties of the ground state; however,
it reduces the Haldane gap. In contrast, in the anisotropic
case analyzing the block entropy, we showed that a phase
transition occurs as U is increased. This was also corroborated
by the analysis of the gaps and the change in the structure
of the entanglement spectrum. The investigation of the local
magnetization confirmed that the Néel phase appears in
a certain parameter range. The effect of the anisotropy
and the Hubbard interaction was summarized in a phase
diagram. It is worth emphasizing that when the Hubbard
interaction is weak the Haldane insulator state is realized in a
much wider anisotropy range than in the strongly correlated
case.
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