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Theory of third-harmonic generation in graphene: A diagrammatic approach

Habib Rostami,* and Marco Polini
Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163 Genova, Italy

(Received 3 February 2016; published 25 April 2016)

We present a finite-temperature diagrammatic perturbation theory of third-harmonic generation in doped
graphene. We carry out calculations of the third-order conductivity in the scalar potential gauge, highlighting
a subtle cancellation between a Fermi surface contribution, which contains only power laws, and power-law
contributions of interband nature. Only logarithms survive in the final result. We conclude by presenting
quantitative results for the upconversion efficiency at zero and finite temperature. Our approach can be easily
generalized to other materials and to include many-body effects.
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Introduction. The nonlinear optical properties of graphene
[1], the most studied two-dimensional (2D) material, are
beginning to attract considerable interest. Using four-wave
mixing, Hendry et al. [2] demonstrated experimentally that
the third-order optical susceptibility of graphene is remarkably
large (≈1.4 × 10−15 m2/V2) and only weakly dependent
on wavelength in the near-infrared frequency range. Third-
harmonic generation (THG) from mechanically exfoliated
graphene sheets has been measured by Kumar et al. [3]
who extracted a value of the third-order susceptibility on
the order of 10−16 m2/V2 for an incident photon energy
�ω = 0.72 eV. Finally, Hong et al. [4] reported strong THG in
graphene grown by chemical vapor deposition, in a situation
in which the incident photon energy �ω = 1.57 eV is in
three-photon resonance with the exciton-shifted van Hove
singularity.

A large body of theoretical work on THG in graphene has
appeared in the recent literature [5–9]. In Ref. [6], a power-law
singularity (a second-order pole) at �ω = 2EF was found in
the third-order conductivity, for both clean and disordered
systems. Moreover, a logarithmic resonance at �ω = EF was
missed. In Ref. [7], the clean-system result (see below) for
the third-order conductivity agrees with the corresponding
result of Refs. [8,9]. According to Refs. [7–9], the clean-limit
third-order conductivity displays a total of three logarithmic
contributions at �ω = 2EF/3, EF, and 2EF, with the main
THG peak occurring at �ω = 2EF/3.

In this Rapid Communication we present a finite-
temperature diagrammatic perturbation theory of THG in
graphene (see Fig. 1). Our approach has the advantage of being
transparent and easily extendable to 2D materials with a more
complex band structure such as graphene derivatives (e.g.,
bilayer graphene), transition-metal dichalcogenides, and few-
layer black phosphorus. Being based on Green’s functions,
our approach can also be combined with ab initio methods for
materials that are poorly described by low-energy continuum
models. Also, it can be generalized [10–12] to take into account
electron-electron interactions (plasmons, excitons, etc.).

We carry out microscopic calculations of THG in a
noninteracting 2D system of massless Dirac fermions (MDFs)
[13] in the scalar potential gauge (SPG). In this gauge, light-
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matter interactions are described by utilizing an external scalar
potential, which couples to the electronic density operator. As
explained in Ref. [14], this gauge is free of the pathologies
that one encounters when optical properties of 2D MDFs are
calculated by employing the vector potential gauge and the
MDF current operator, which lacks a diamagnetic contribution
[15]. Furthermore, in the vector potential gauge, light-matter
interactions are described through the minimal coupling p →
p + eA(t)/c in the continuum-model Hamiltonian. The vector
potential is time dependent but uniform, implying that in this
gauge the momentum �q of incident photons is set to zero
from the very beginning. Although this choice tremendously
simplifies analytical calculations, it is known to miss intraband
(i.e., Fermi surface) contributions.

Here, we report an a priori unexpected cancellation
between the Fermi surface contribution to the third-order
conductivity, which contains only power laws, and power-law
contributions of interband nature. Only logarithms survive
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FIG. 1. Example of a four-leg diagram for the third-order re-
sponse tensor �

(3)
� (−ν� ; ν1,ν2,ν3| − q� ; q1,q2,q3) in the SPG. Solid

lines indicate noninteracting Matsubara Green’s functions. Black
wavy lines indicate scalar potentials (incoming photons) carrying
a finite wave vector q i and energy νi with i = 1 . . . 3. The red
wavy line denotes a scalar potential (outgoing photon) carrying a
wave vector q� and energy ν� . Conservation of momentum and
energy require q� = ∑

i q i and ν� = ∑
i νi , respectively. Black dots

indicate external vertices. Here, νi (εn) denotes a bosonic (fermionic)
Matsubara energy.
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in the final result. This anomalous cancellation occurs for
all values of the microscopic parameters and is not tied to
the linear dispersion of MDFs in single-layer graphene. For
example, we have checked (not shown here) that it also occurs
for massive chiral fermions in bilayer graphene [1]. Also,
we have checked (not shown here) that it occurs (i) in the
presence of terms that break particle-hole symmetry (e.g.,
next-nearest-neighbor hopping in the tight-binding model)
and (ii) for anisotropic 2D MDFs (e.g., uniaxially strained
graphene). We believe that this cancellation stems from the
gapless nature of the dispersion relation, as power-law terms
are present in the final result for THG in gapped graphene
[5]. (However, the calculations of Ref. [5] are in the vector
potential gauge.) Finally, we note that the failure to fulfill this
cancellation may be at the origin of the rich variety of results
that have appeared in the recent literature [5–9].

Diagrammatic perturbation theory of THG. We con-
sider the single-channel Hamiltonian of a 2D system of
noninteracting MDFs [13], Ĥ0 = vF

∫
d2rψ̂†(r)(σ · p)ψ̂(r),

where vF ∼ 106 m/s is the graphene Fermi velocity, ψ̂(r) =
[ψ̂A(r),ψ̂B(r)]

T
, σ = (σx,σy) is a 2D vector of Pauli matrices,

and p = −i�∇r . We calculate THG by using perturbation
theory in an external homogeneous time-dependent electric
field E(t). The latter induces a current, which can be formally
expanded in powers of the electric field, J� = ∑

n J
(n)
� , where

n = 1,2,3, . . . denotes the order in perturbation theory and
� = x,y is a Cartesian index. Due to spatial inversion symme-
try, the second-order (n = 2) response to a uniform electric
field is identically zero [16,17]. The third-order conductivity

tensor σ (3) is defined as follows:

J
(3)
� (ω�) =

∑
α1···α3

σ
(3)
�α1α2α3

(−ω� ; ω1,ω2,ω3)�3
i=1Eαi

(ωi), (1)

where α1 · · · αn = x,y are Cartesian indices, Eαi
denotes the

αi th Cartesian component of E, and ω� = ∑
i ωi . The first-

order conductivity tensor σ (1)(−ω; ω), which controls linear
optics [18,19], is defined in Ref. [20].

Coupling of the electronic degrees of freedom described by
Ĥ0 to the electric field of incident light can be described in
different electromagnetic gauges [21]. In the SPG, light-matter
interactions are described by adding a scalar potential to the
Hamiltonian, i.e., ĤV = Ĥ0 + ∫

d2rV (r,t)n̂(r). Here, n̂(r) is
the density operator and V (r,t) = −e�(r,t), where �(r,t) =
S−1[ϕ(q,ω)ei(q·r−ωt)eηt/� + c.c.]/2 is the electric potential
and S the 2D electron system area. The quantity η = 0+ is
the usual positive infinitesimal [21], which is needed to make
sure that the field vanishes in the remote past (t → −∞).
The Fourier components of the electric field are given by
E(q,ω) = −iqϕ(q,ω). In order to have a finite electric field,
the photon wave vector q must be kept finite in this gauge.
The uniform |q| → 0 limit can be taken only at the end of
the calculation. In the SPG we are therefore able to take
into account both intra- and interband contributions to optical
response tensors.

In the SPG, the third-order conductivity tensor σ (3) can be
obtained from

σ
(3)
�α1α2α3

= (−i)3(−e)3

N !

∂3�
(3)
�

∂q1,α1∂q2,α2∂q3,α3

∣∣∣∣∣
{qi→0}

, (2)

where N ! originates from the Taylor expansion in powers of qi . The rank-1 tensor �
(3)
� (−ν� ; ν1,ν2,ν3| − q� ; q1,q2,q3) is a sum

of Feynman diagrams such as the one in Fig. 1:

�
(3)
� = evFNf

3!

∫
d2k

(2π )2

∑
λ1···λ4=±

∑
P

Fλ1···λ4 (k,q1,q2,q3)Iλ1···λ4 (k,q1,q2,q3,ν1,ν2,ν3), (3)

where

Fλ1···λ4 = 〈λ1,k|n̂(q1)|λ2,k + q1〉〈λ2,k + q1|n̂(q2)|λ3,k + q1 + q2〉〈λ3,k + q1 + q2|n̂(q3)|λ4,k + q�〉

× 〈λ4,k + q�| ĵ�(−q�)

−evF
|λ1,k〉 (4)

is a dimensionless form factor due to the four external vertices, while

Iλ1···λ4 = 1

β

∑
iεn

[G(iεn,ελ1,k)G(iεn + iν1,ελ2,k+q1
)G(iεn + iν1 + iν2,ελ3,k+q1+q2

)G(iεn + iν�,ελ4,k+q�
)] (5)

is due to the presence of four Green’s functions in Fig. 1. In Eq. (3), Nf = 4 is the number of fermion flavors in graphene [13]
and

∑
P denotes a sum over the 3! = 6 permutations of the energy and wave vector variables {νi,qi} of the three incoming

photons [16,17] in Fig. 1. In Eq. (4), n̂(q) and ĵ (q) are the Fourier transforms of the density n̂(r) and paramagnetic current
ĵ (r) operators, respectively, where ĵ (r) = −evFψ̂

†(r)σ ψ̂(r), −e being the electron charge. Since there is no vector potential in
the SPG, we do not need to worry about diamagnetic contributions [15] to the paramagnetic current operator ĵ (r). In Eq. (5),
β = 1/(kBT ), where T is temperature, εn = (2n + 1)π/β is a fermionic Matsubara energy, and G(iεn,ελ,k) = 1/(iεn − ελ,k) is
the bare Green’s function in the band representation, with ελ,k = λ�vF|k| for conduction (λ = +) and valence (λ = −) band
states.

To make progress, we must first perform the sum over the fermionic Matsubara energy εn in Eq. (5). This can actually be done
analytically by following standard textbook tricks [21]. Only after can one carry out the analytical continuation iνi → �ωi + iη

to real photon energies �ωi . The end result of this procedure for the case of harmonic generation [16,17], i.e., ωi = ω and qi = q,
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and the � = x component of �
(3)
� is

�(3)
x (−3ω; ω,ω,ω| − 3q; q,q,q)

= NfevF

∫
d2k

(2π )2

∑
λ1···λ4=±

Fλ1···λ4 (k,q,q,q)

3(�ω + iη) + ελ1,k − ελ4,k+3q

×
{[

1

2(�ω + iη) + ελ1,k − ελ3,k+2q

{
nF(ελ1,k) − nF(ελ2,k+q)

�ω + ελ1,k − ελ2,k+q + iη
− nF(ελ2,k+q) − nF(ελ3,k+2q)

�ω + ελ2,k+q − ελ3,k+2q + iη

}]

+
[

1

2(�ω + iη) + ελ2,k+q − ελ4,k+3q

{
nF(ελ3,k+2q) − nF(ελ4,k+3q)

�ω + ελ3,k+2q − ελ4,k+3q + iη
− nF(ελ2,k+q) − nF(ελ3,k+2q)

�ω + ελ2,k+q − ελ3,k+2q + iη

}]}
. (6)

In Eq. (6),

Fλ1···λ4 (k,q,q,q) = 1 + λ1λ2e
i[φ(k+q)−φ(k)]

2

1 + λ2λ3e
i[φ(k+2q)−φ(k+q)]

2

1 + λ3λ4e
i[φ(k+3q)−φ(k+2q)]

2

λ1e
iφ(k) + λ4e

−iφ(k+3q)

2
(7)

is the form factor in the SPG, φ(k) being the polar angle of
k, while nF(E) = {exp[β(E − μ)] + 1}−1 is the usual Fermi-
Dirac distribution function, μ being the finite-T chemical
potential. THG in graphene is therefore the result of a
complicated interplay between three different families of
electron-hole transitions: intraband transitions (i.e., λ1 = λ2 =
λ3 = λ4), interband transitions (i.e., λ1 = −λ2 = λ3 = −λ4),
and “hybrid” transitions (e.g., λ1 = λ2 = λ3 = −λ4). The
latter ones are of course absent in the first-order tensor σ (1). In
total, there are 12 contributions of a “hybrid” nature, resulting
from both intra- and interband processes along the fermion
loop in Fig. 1.

We are now in the position to take the uniform |q| → 0 limit
by expanding Eqs. (6) and (7) in powers of q. We hasten to
emphasize that for the case q1 = q2 = q3 = q the expansion
of the form factor Fλ1···λ4 (k,q,q,q) up to third order in q cannot
be obtained by simply expanding each factor in Eq. (7) up to
linear order in q. However, when all qi’s differ from each
other, as in the general case of Eq. (3), such linearization is
legitimate [7]. After lengthy but straightforward calculations,
we obtain the desired result for THG generation in graphene:

σ (3)
xxxx = σ̃xxxx;1 + σ̃xxxx;2 + σxxxx;FS. (8)

The last term on the right-hand side of Eq. (8), σxxxx;FS, is a
Fermi surface contribution, which is controlled by an integral
over energy whose integrand is pinned at the Fermi surface by
the first, second, and third derivatives of nF(E):

σxxxx;FS = iκ

∫ ∞

0
dE{[n′

F(E) + n′
F(−E)]f (E)

+ [n′′
F(E) − n′′

F(−E)]g(E)

+ [n′′′
F (E) + n′′′

F (−E)]h(E)}, (9)

where κ = Nfe
4
�v2

F/(32π ), n′
F(E) is shorthand for the deriva-

tive dnF(E)/dE, and n′
F(−E) is a shorthand for n′

F(E)|E→−E .
(Similar shorthand expressions have been used for the second
and third derivatives.) Explicit expressions for the functions
f (E), g(E), and h(E) are reported in Ref. [20]. The terms
σ̃xxxx;1 and σ̃xxxx;2 are defined by

σ̃xxxx;1,2 = iκ

∫ ∞

0
dE[nF(E) − nF(−E)]F1,2(E), (10)

where

F1(E) =
{

1

E2(�ω+)3
+ 4

(�ω+)2

[
1

(�ω+ + 2E)3

+ 1

(�ω+ − 2E)3

]
− 8

(�ω+)3

[
1

(�ω+ + 2E)2

+ 1

(�ω+ − 2E)2

]
+ 2

(�ω+)3

[
1

(�ω+ + E)2

+ 1

(�ω+ − E)2

]}
(11)

and

F2(E) =
{
− 8

3(�ω+)4

[
1

�ω+ + E
+ 1

�ω+ − E

]

+ 17

12(�ω+)4

[
1

�ω+ + 2E
+ 1

�ω+ − 2E

]

+ 5

4(�ω+)4

[
1

�ω+ + 2E/3
+ 1

�ω+ − 2E/3

]}
.

(12)

In Eqs. (11) and (12) we have introduced the shorthand
ω+ ≡ ω + iη/�. Note that, for large E, F1(E) decays faster
than 1/E, while F2(E) decays exactly as 1/E. As a
consequence, σ̃xxxx;1 (̃σxxxx;2) contains power laws (loga-
rithms). The explicit calculation of σ̃xxxx;1,2 does not require
an ultraviolet cutoff, which would break gauge invariance
[14,15,22].

Due to the form of the integrand in Eq. (10) and for its
similarity with the integrand in the second term in curly
brackets in Eq. (S2) of Ref. [20], we will refer to σ̃xxxx;1

and σ̃xxxx;2 as “interband” contributions to the third-order
conductivity. Integrating Eq. (9) by parts, it is possible to show
[20] that the following equality holds true:

σ FS
xxxx(−3ω; ω,ω,ω) = −σ̃xxxx;1(−3ω; ω,ω,ω). (13)

We therefore conclude that σxxxx(−3ω; ω,ω,ω) =
σ̃xxxx;2(−3ω; ω,ω,ω). Equation (13) is the most important
result of this work and implies the absence of power-law
terms in the final result for σxxxx(−3ω; ω,ω,ω). In the T = 0
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limit, we find

σ (3)
xxxx(−3ω; ω,ω,ω)

= iκ

24(�ω+)4
[17Gη(�ω,2|EF|)

− 64Gη(�ω,|EF|) + 45Gη(�ω,2|EF|/3)], (14)

where Gη(�ω,E) = ln[(E + �ω+)/(E − �ω+)]. The final re-
sult for THG can be obtained by taking the limit η → 0+
in Eq. (14), with Gη→0+ (�ω,E) = ln |(E + �ω)/(E − �ω)| +
iπ�(|�ω| − E). Finally, we observe that Eq. (14) is well
behaved in the undoped EF → 0 limit, i.e.,

lim
EF→0

lim
η→0+

σ (3)
xxxx(−3ω; ω,ω,ω) = πκ

12(�ω)4
. (15)

Equation (14) was first derived by Cheng et al. [8] by utilizing
a density-matrix approach.

Since the third-order conductivity is known analytically at
T = 0, finite-T effects are most conveniently studied by using
the Maldague identity [21]. In our case, this yields the follow-
ing integral representation for the third-order conductivity at
T �= 0:

σ (3)
xxxx

∣∣
T �=0 = β

∫ ∞

−∞
dE

σ (3)
xxxx

∣∣
{T =0,EF→E}

4 cosh2[β(E − μ)/2]
, (16)

where the T = 0 result σ (3)
xxxx |{T =0,EF→E} can be obtained from

Eq. (14). The chemical potential as a function of T can be found
by solving β2E2

F = 2|Li2[− exp(−βμ)] − Li2[− exp(βμ)]|,
where Li2[x] is the dilogarithm function. In the limit η → 0+,
the real part of σ (3)

xxxx can be written in a closed form for any
value of T and EF:

Re
[
σ (3)

xxxx

] = πκ

24(�ω)4
[2 + 17nF(�ω/2) − 64nF(�ω)

+ 45nF(3�ω/2)]. (17)

We were not able to find a similar analytical expression for
Im[σ (3)

xxxx] at arbitrary T . For an undoped system, μ = 0 at any
T and Im[σ (3)

xxxx] = 0.
At this stage, one may be tempted to take into account

disorder by introducing a phenomenological relaxation time τ

through the replacement η → �/τ or ω+ → ω + i/τ . In gen-
eral, this procedure yields a “nonconserving” approximation
[23] for optical and transport response functions. The case of
the ordinary density-density response function is discussed in
Refs. [21,24]. In the diagrammatic language, this replacement
takes into account disorder-induced self-energy corrections to
response functions, while conserving approximations require
one to treat on an equal footing the self-energy and vertex
corrections. This is why in this work we present results for the
clean system and postpone the analysis of THG in disordered
graphene sheets to future work.

Upconversion efficiency. For the sake of completeness,
we finally present our predictions for the efficiency of the
THG process in a clean graphene sheet at finite T . Using
the relation J (n)(ω) = −iω+ P (n)(ω) between the Fourier
transforms of the induced current and polarization P (n)(t), we
find P

(3)
� (ω�) = (i/ω�,+)

∑
α1···α3

σ
(3)
�α1···α3

�3
i=1Eαi

(ωi), where
ω�,+ ≡ ω� + iη/�. Assuming a monochromatic incident
light beam, linearly polarized along the x̂ direction, we find
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FIG. 2. The ratio I (3)(3ω)/I (1)(ω) for a clean graphene sheet—see
Eq. (18)—is plotted as a function of the incident photon energy �ω

(in eV), for an incident power Ii = 1 GW/cm2, and three different
values of temperature T . For this plot we have set EF = 200 meV.
The solid red line represents the result for undoped graphene at
T = 2000 K and μ = 0. The dashed vertical lines label the three
relevant photon frequencies for THG: �ω = 2EF/3, EF, and 2EF.
The peak which is not marked by a vertical dashed line is due to a
zero in the linear-response quantity I (1)(ω) in Eq. (18) and is unrelated
to THG.

the following expression for the THG intensity, I (3)(3ω), in
units of the first-order intensity I (1)(ω):

I (3)(3ω)

I (1)(ω)
≡

∣∣∣∣P (3)
x (3ω)

P
(1)
x (ω)

∣∣∣∣
2

=
[

2Ii

3nrε0c

]2∣∣∣∣σ (3)
xxxx

σ
(1)
xx

∣∣∣∣
2

. (18)

Here, Ii = nrε0c|E|2/2 is the intensity of incident light
where |E| is the time average of the incident electric field,
ε0 � 8.85 × 10−12 C/(V m) is the vacuum permittivity, c �
3 × 108 m/s, and nr � 1. The quantity I (3)(3ω)/I (1)(ω) is
shown in Fig. 2 for an incident power Ii = 1 GW/cm2. (This
is the peak power used in on-going experiments on THG
in doped graphene sheets.) According to Eq. (14), there are
three logarithmic divergences at photon energies �ω = 2EF/3,
EF, and 2EF in the T = 0 expression of σ (3)

xxxx (marked by
vertical dashed lines in the figure). The main THG peak
occurs at �ω = 2EF/3. Finite-T effects rapidly smooth out
these singularities.

The large peak at �ω � 1.667EF is due to the fact that intra-
and interband contributions to the first-order conductivity σ (1)

xx

cancel out [25] at this photon frequency and at T = 0, yielding
|σ (1)

xx (−ω; ω)| = 0. The undoped result at finite T (solid red
line) shows two sharp structures at photon energies �ω �
0.362/β and �ω � 1.462/β, which correspond to solutions of
the equation |σ (3)

xxxx(−3ω; ω,ω,ω)| = 0 in the undoped case, as
it can be readily checked by utilizing Eq. (17). For illustration
purposes, in Fig. 2 we show the undoped result at T = 2000 K
(solid red line). In general, we note that graphene is a highly
nonlinear material at low frequencies [26].

To compare with available experimental results, we intro-
duce the third-order susceptibility as χ (3) = iσ (3)/(3ωε0d),
where d � 0.33 nm is an effective graphene thickness. For
example, for �ω = 0.72 eV, EF = 0.2 eV, and T = 300 K,
we obtain |χ (3)| � 4.56 × 10−19 m2/V2. This value is three
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orders of magnitude smaller than that measured in Ref. [3].
This discrepancy may stem from a variety of effects that we
have not included in our theory, including disorder, many-body
effects, and band-structure effects beyond the MDF model.

In summary, we have presented a diagrammatic theory
of THG in doped graphene. We have carried out explicit
calculations in the scalar potential gauge, discovering an
exact cancellation between the Fermi surface contribution to
the third-order conductivity and power-law contributions of
interband nature. Only logarithms survive in the final result,
Eq. (14). We believe that the failure to fulfill this cancellation
may be at the origin of the rich variety of results that have

appeared in the recent literature. Calculations of THG can
also be carried out in the vector potential gauge, but in this
case, for the reasons mentioned above, it is safer to use lattice
Hamiltonians rather than the MDF model—see, e.g., Ref. [27]
for the case of second-harmonic generation in the presence of
broken inversion symmetry.
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