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Acoustic wave absorption as a probe of dynamical geometrical response
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We show that an acoustic crystalline wave gives rise to an effect similar to that of a gravitational wave to
an electron gas. Applying this idea to a two-dimensional electron gas in the fractional quantum Hall regime,
this allows for experimental study of its intra-Landau level dynamical response in the long-wavelength limit.
To study such response we generalize Haldane’s geometrical description of fractional quantum Hall states to

situations where the external metric is time dependent. We show that such time-dependent metric (generated by
acoustic wave) couples to collective modes of the system, including a quadrapolar mode at long wavelength, and
magnetoroton at finite wavelength. Energies of these modes can be revealed in spectroscopic measurements,
controlled by strain-induced Fermi velocity anisotropy. We argue that such geometrical probe provides a

potentially highly useful alternative probe of quantum Hall liquids, in addition to the usual electromagnetic

response.
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Introduction. Fractional quantum Hall (FQH) liquid is the
prototype topological state of matter. Haldane [1] pointed out
recently that the description of FQH liquids in terms of topo-
logical quantum field theories, while capturing the universal
and topological aspect of the physics, is incomplete in the sense
that an internal geometrical degree of freedom responsible for
the intra-Landau level dynamics of the system is not included.
This geometrical degree of freedom, or internal metric, couples
to anisotropy in the interaction between electrons [2—4] or
the electron band structure [5], and its expectation value is
determined by energetics of the system. In a recent work [6]
we showed that this internal metric parameter manifests itself
as the anisotropy of a composite fermion Fermi surface, which
is measurable. Our quantitative result compares favorably
with recent experiments, in which electron mass anisotropy
is induced and controlled by an in-plane magnetic field [7-9].
This demonstrates the observability of this internal geometry.
It has also been argued [1,10—12] that this internal metric may
be viewed as a dynamical degree of freedom, whose long-
wavelength dynamics corresponds to the collective excitations
of the system that can be viewed as “gravitons” [13]. In a
parallel stream of works, much effort has been devoted to
studying FQH liquids in a curved background space [14-23],
following earlier seminal work by Wen and Zee [24].

In the existing theoretical studies [2-6,25,26], the back-
ground geometry (or metric) provided by electron-electron
interaction and/or band structure is static. The main purpose
of the present work is to generalize this to the case where
the background metric is time dependent, and show that the
dynamics of the metric couples to the intra-Landau level
collective modes of the FQH liquid. In particular, we show
that such time-dependent metric can be generated by acoustic
waves, which play a role very similar to the gravitational wave
in this context. Such gravitational wave naturally couples to
graviton and other collective modes of the system. This allows
for spectroscopic measurements of collective mode energies,
in particular graviton energy, using acoustic wave absorption.

Existing work on this subject [2-6,25,26] has thus far
focused on nonrelativistic electrons. On the other hand,
graphene has emerged as a new arena to study quantum
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Hall physics [27]. A second purpose of the present work is
to show that much of the considerations in the present and
earlier works carry over to Dirac electrons and thus graphene
straightforwardly, once we identify the anisotropy of Fermi
velocity with the external metric. We thus start our discussion
below with a description of how the Fermi velocity anisotropy
of Dirac electrons translate into a background metric for the
FQH states they form.

External metric of Dirac and Schrodinger electrons. Con-
sider the Hamiltonian

H=T+V, ey

with the kinetic energy for massless Dirac electrons in a
magnetic field taking the form

T =Y v'o,I, )
J

where j is electron index, o,—;, are the Pauli matrices, and
v™*" is the (real) Fermi velocity matrix. Repeated Greek indices
are summed over.

M=p+ ;A(r) 3)

is the mechanical momentum, V x A(r) = —BZ, thus the
electrons move in a uniform perpendicular magnetic field. The
two components of IT satisfy the commutation relation

ihe iheB  iRh?
[H)mny] = _T(8XAV - 8yAx) = = E_Z’ (€Y

where £ = /hc/(eB) is the magnetic length.
The easiest way to obtain the Landau level energies and

corresponding wave functions is to square the kinetic energy
of a single electron:

hZ
[v’“’oul'lv]2 = (UUT)aﬂHaH/g - e—z(v“v22 — v, (5)

from which it is clear that the zero energy Landau level
(OLL, which will be the focus of the rest of this Rapid
Communication) wave functions only have weight in one of
the two components, and the symmetric matrix vv” plays a
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role identical to the inverse effective mass matrix for quadratic
bands:

gM I, In,

1
T ==(m "YI,I, =
Z(m ) " 2my

) (6)
where m~! is the inverse effective mass tensor, 1/my is the
geometric mean of the eigenvalues of m~!, and the (space-
only) metric tensor g is defined by the second equality above,
which is symmetric and unimodular.

For massless Dirac electrons, we may therefore diagonalize
this matrix vv? to obtain its eigenvalues avfp and v% /a, with
Javr and v} /+/a the Fermi velocities along the two principle
directions, defined to be the x and y directions hereafter, and v g
is their geometric mean. |a — 1| is a measure of the anisotropy.
It is known [28] that strain and ripple modifies the v matrix
in graphene, and thus v/ and in particular the anisotropy a,
which plays a role very similar to the effective mass anisotropy
parameter in a quadratic band (here the notation is the same as
that of Ref. [6]). In ordinary semiconductors we expect strain
of lattice also induces or modifies effective mass anisotropy.
We thus discuss the massless Dirac and (massive) Schrodinger
electrons on equal footing in the remainder of the Rapid
Communication. In the notation of Eq. (6), a strain induces
a change of metric and thus geometry (of spaces), and a
time-dependent strain plays a role similar to a gravitational
wave, which can excite the “gravitons” of the FQH systems as
we will see below.

Geometrical coupling of intra-Landau level dynamics and
external metric. The intra-Landau level degrees of freedom are
described by guiding center coordinates

R=r— (*/h)z x II, @)
which commute with IT. The interaction term
1
V= Zj Ve —rj) = ; VaPap—q» ®)

where Vj is the Fourier transform of electron-electron interac-
tion potential V (r) (assumed to be isotropic) and

pa=) € ©

is the density operator. In the large B limit, Landau level
spacing overwhelms V, and the electron motion is confined to
a given Landau level. In this case it is appropriate to project V
onto OLL that results in a reduced Hamiltonian involving the
R’s only [6]:

~ 1 2 2 2
— —(1/2)(aq;+qy /)" - —
V=3 §q Vge 1 ROCT 5 (10)

where
Pq = Z PR (11)

is the guiding center density operator, and we choose * and
directions to be the diagonal directions of m~" or vuT, with
anisotropy possibly induced by lattice distortion. We note the
only place that the background geometric parameter a enters
V is in the Gaussian form factor of OLL. Once confined to the
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FIG. 1. Illustration of experimental setup. Square boxes represent
3D crystals, and thick solid lines represent 2D electron gas. Wavy
lines represent acoustic waves whose effects are very similar to grav-
itational waves. (a) Bulk acoustic wave propagating perpendicular to
the 2D layer, inducing a uniform strain seen by the 2D electron. (b)
Bulk acoustic wave propagating at an angle 0 to the normal direction
of the 2D layer, inducing a nonuniform strain seen by the 2D electron.
(c) Surface acoustic wave propagating parallel to the 2D layer.

OLL the difference between Dirac and Schrodinger electrons
disappears, and our discussions below apply to both.

Electron dispersion in GaAs and graphene is isotropic
under ambient condition and thus a = 1. Now let us start
by considering a particularly simple case, namely, a small
uniform anisotropy induced by either strain (in either GaAs
or graphene) or ripple (in graphene), which is possibly time
dependent:

a=1+&@®). (12)

This corresponds to space distortion induced by a long-
wavelength “gravitational wave,” in the gravity analogy.
Physically it can be induced by a lattice wave that is either
of long wavelength, or with wave vector perpendicular to
the two-dimensional electron gas (2DEG) plane so that the
electrons see a uniform lattice distortion (see Fig. 1, and more
on this later).

We assume the frequency of £ (¢) is low compared to Landau
level spacing, thus no inter-Landau level transition is induced.
Then the main physical effect of this time-dependent geometry
comes from its coupling to intra-Landau level dynamics of the
electrons. This results in a time-dependent perturbation in the
intra-Landau level Hamiltonian:

5V(,) — @ Z (q2 _ qf) qu_(l/z)qmﬁqﬁ,q. (13)

y

The 2DEG (assumed to be in its ground state) will absorb
energy from the “gravitational wave,” with a rate determined
by the spectral function

I@) =Y |(nl00)[*8(e — ), (14)

where |0) is the ground state, |n) is an excited state with
excitation energy hw,, and

N _ 2p2__ __
0= (a2 a})Vae """ pyp_q (15)
q

describes the coupling between 2DEG in a FQH state to the
lattice distortion/geometry. It is interesting to note that the
q dependence of the term being summed over above takes a
d-wave form, indicating O carries angular momentum L = 2.
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FIG. 2. (a) Illustration of excitation spectrum of Laughlin-type
fractional quantum Hall states. The solid line represents the mag-
netoroton mode, and the shaded region represents the two-roton
continuum. The magnetoroton mode continues into the two-roton
continuum with decreasing wave vector k (now represented as a
dashed line, all the way to k = 0, ending at the black dot that is the
graviton mode which is the main focus of this Rapid Communication.
(b) Spectral function of O defined in Eq. (14), revealing the presence
of both the graviton and magnetoroton modes.

It will thus couple to excitations with L = 2, which is the case
for gravitons.

Excitation spectrum of Laughlin-type FQH states is illus-
trated schematically in Fig. 2(a). The lowest-energy elemen-
tary excitations are magnetorotons (referred to as roton from
now on) whose dispersion takes the form

Qk) = Qo + Ak — ko)?, (16)

where €2 is the (minimum) roton frequency (or roton gap),
ko is the momentum of roton minimum, and A is a constant.
To a very good approximation [29] a roton with momentum k
is created by py for k = |k| & ko, and exhausts its spectral
weight. We thus find among other excitations, O creates
a pair of rotons with total momentum zero, and the roton
pair contribution to the spectral function I(w) takes the
form

Loon(@) o< Y~ (g7 — @2)7|Val?e ™" (01544 |0)
lal~ko
x 8w — 29(g)]. (17)

It is easily seen that I;on (@) has a threshold frequency at 22y,
and diverges for @ — 2Qy + 0"

Lroon(@) o f dq 8w — 290 — 2A(q — q0)*]

1
* Vo2,
Thus the roton gap €2 is clearly visible in I(w) [see
Fig. 2(b)]. This provides an alternative method of measuring
the magnetoroton gap, in addition to earlier attempts using
optical methods [30,31].

What is more interesting, however, is the long-wavelength
mode with k — 0, which is the graviton mode that is of
primary interest in this Rapid Communication [32]. It is
known [12,29,33] that (0|pkp—k|0) o (k€)* as k — 0, thus
it is very difficult to probe the collective mode in this regime
using electromagnetic/optical probes that couple to electron
density. In particular, the mode with k = 0 simply has no
coupling to the ground state through the density operator,

(18)
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as the cyclotron mode exhausts the spectral weight of the
latter (Kohn’s theorem). Another way to understand this is
that the graviton has spin-2, and cannot be excited by spin-1
photons. On the other hand, the perturbation induced by an
acoustic/gravitational wave in Eq. (13) is indeed an angular
momentum-two operator, and can excite the graviton mode
(it is only natural that gravitons are excited by gravitational
waves). We thus expect the graviton shows up as a sharp
resonance in the spectral function (14), allowing its energy
to be measured spectroscopically [see Fig. 2(b)]. Ongoing
numerical calculation of /(w) defined in Eq. (14) indeed finds
a pronounced peak corresponding to the graviton, which will
be presented elsewhere [34].

Acoustic wave as gravitational wave, and its other
effects. The experimental setup is schematically illustrated
in Fig. 1. The acoustic waves propagate either inside the
three-dimensional (3D) bulk crystal or along its surface,
and interact with the mobile electrons that live in a 2D
layer through the lattice distortion or strain they induce.
There are several mechanisms for this (electron-phonon)
interaction. As discussed above, the strain-induced change
of electron effective mass tensor corresponds to a geometric
or gravitational interaction, which is the main focus of the
present work. The specific geometric perturbation considered
above corresponds to the setup of Fig. 1(a), that induces a
uniform (but oscillating) strain in the 2D plane [35]. There
are, however, two other more familiar sources of coupling
between strain and electrons which are likely to be more
important under generic situations [36]: (i) The strain induces
a deformation potential that couples directly to the density of
electrons. (ii) For noncentrosymmetric crystals, strain induces
an electric polarization and corresponding electric field due to
the piezoelectric effect. We argue that the effects (i) and (ii)
may be eliminated by using the setup of Fig. 1(a). In this case
since the strain is uniform in the 2D plane, the deformation
potential is also uniform and thus has no effect. Similarly
the piezoelectric effect induces a uniform electric field, which
couples to the center of mass of the electron gas. Kohn’s
theorem guarantees that the dipole coupling of the electron
gas to such uniform electric field can only cause inter-Landau
level transition, and no absorption will occur through such
coupling as long as w < w, (cyclotron frequency).

We now briefly consider the more generic case in which
the lattice distortion is a function of both time and space, with
the latter dictated by a 2D wave vector ky. Such a distortion is
induced by a 3D lattice wave propagating with wave vector K,
whose 2D projection is k¢ [Fig. 1(b)], or by a surface acoustic
wave [Fig. 1(c)]. In the gravity analogy we then have a (2D)
gravitational wave with wave vector kg. However, in these
cases the other effects of (i) and (ii) mentioned in the previous
paragraph are generically present [although their effects are
expected to vanish as (ko€)*], and in the case of graphene
nonuniform strain can also induce a pseudogauge field. Thus,
additional effort is needed to isolate the gravitational response.
If this is possible, we are able to measure not only the graviton
energy at zero wave vector, but also its dispersion.

The acoustic wave absorption experiment proposed here has
some similarity to earlier phonon absorption experiments [37].
After all, an acoustic wave is made of coherent phonons or a
phonon version of laser. But there are a couple of fundamental
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differences here. (i) In earlier experiments phonons are gener-
ated by a heat pulse, and thus come with energies following a
thermal distribution. This makes it impossible for spectroscopy
measurement. (ii) More importantly, since the thermal phonons
come with uncontrolled momenta and polarizations, their
effects are dominated by the deformation potential and
piezoelectric polarization induced by the strain [36]. Here the
wave vector and polarization of the acoustic wave are carefully
controlled so that the dominant effect of the strain is on the
electron effective mass tensor or metric.

Summary. In this Rapid Communication we propose acous-
tic wave as an alternative probe of fractional quantum Hall liq-
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uids, and demonstrate that it contains effects similar to those of
gravitational wave. It allows for a direct measurement of gravi-
ton energy, which is not possible using electromagnetic probes.
While we focused on Laughlin-type states for their simplicity,
the graviton as well as magnetoroton modes are expected to
exist in all fractional quantum Hall liquids, and can be probed
using the methods described in this Rapid Communication.
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