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Detecting monopole charge in Weyl semimetals via quantum interference transport
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Topological Weyl semimetals can host Weyl nodes with monopole charges in momentum space. How to
detect the signature of the monopole charges in quantum transport remains a challenging topic. Here, we reveal
the connection between the parity of monopole charge in topological semimetals and the quantum interference
corrections to the conductivity. We show that the parity of monopole charge determines the sign of the quantum
interference correction, with odd and even parity yielding the weak antilocalization and weak localization effects,
respectively. This is attributed to the Berry phase difference between time-reversed trajectories circulating the
Fermi sphere that encloses the monopole charges. From standard Feynman diagram calculations, we further show
that the weak-field magnetoconductivity at low temperatures is proportional to ++/B in double-Weyl semimetals
and —/B in single-Weyl semimetals, respectively, which could be verified experimentally.

DOI: 10.1103/PhysRevB.93.161110

Introduction. Topological Weyl semimetal is a new topo-
logical state of matter [1-15], in which the conduction and
valence energy bands touch nontrivially at discrete momentum
points, dubbed Weyl nodes. Remarkably, each Weyl node
acts as a magnetic monopole in momentum space. Because
the sum of monopole charges of all Weyl nodes in the
Brillouin zone is zero, Weyl nodes must appear in pairs,
namely the fermion-doubling theorem [2]. Within each pair,
two Weyl nodes carry opposite monopole charges of N and
—N, respectively. Depending on N = 1 or 2, the topological
semimetals are referred to as single-Weyl semimetal and
double-Weyl semimetal [5,16—18], respectively. The disper-
sion of the single-Weyl semimetal is linear in three dimensions,
while the double-Weyl semimetal usually is linear in one and
quadratic in the other two dimensions. Identifying the positions
and monopole charges of Weyl nodes is crucial to qualitatively
characterize a topological Weyl semimetal and understand the
associated novel physical properties.

The monopole charge of a Weyl node also manifests
as the number of stable surface Fermi arcs connecting
paired Weyl nodes [4,16], which can be directly measured
in the angle-resolved photoemission spectroscopy (ARPES)
experiments [19-23]. As an unambiguous measurement of
the surface Fermi arcs in ARPES remains highly challenging,
the quantum transport may provide an alternative approach
to detect the signature of the monopole charges. For single-
Weyl semimetals with A" =1, a —+/B dependence of the
magnetoconductivity has been observed near zero magnetic
field [24-32], which is one of the signatures for the weak
antilocalization (WAL) effect in 3D systems [33]. The WAL
effect arises from the quantum interference correction to
the semiclassical conductivity. There have been increasing
experimental efforts to search for topological Weyl semimetals
with higher monopole charges such as A =2 [5,17,18].
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Nevertheless, the quantum interference effects on the quantum
transport phenomena caused by Weyl nodes with higher
monopole charges remain unexplored.

In this Rapid Communication, we explicitly demonstrate
the general relation between the monopole charge and quantum
transport. We will focus on double-Weyl semimetals with
N =2 and single-Weyl semimetals with A" = 1. Based on
Feynman diagram calculations, we find that Weyl nodes
with A/ = 2 in double-Weyl semimetals lead to a negative
quantum interference correction to the conductivity compared
to the positive correction in single-Weyl semimetals with
N = 1. In double-Weyl semimetals, the monopole charge
of N'=2 results in a 27 Berry phase difference between
two time reversed scattering loops. Such two loops can
interfere constructively to enhance backscattering, leading to
a weak localization (WL) correction in the quantum transport.
While for single-Weyl semimetals, the phase difference is
7, leading to destructive interference and hence the WAL
effect. The qualitative difference in the quantum transport
between single- and double-Weyl semimetals not only pro-
vides an experimental signature to identify monopole charges
in momentum space but also forward our understanding to the
quantum transport in 3D topological metals.

Weyl semimetals and monopole charges. The minimal
model which can describe both single- and double-Weyl
semimetals can be written as
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where k1 = k, £ik,,x = £1isthe valley index, v, and v are
parameters and assumed to be constants, and momentum Kk is
measured from the Weyl nodes. Here, A = 1,2 correspond to
single- and double-Weyl semimetal, respectively. The model
has a conduction band and a valence band, with the dispersions

given by £ Ey and Ey = \/ V222 + v2(h2K2 + h2k2)N . With-
out loss of generality, we assume that the chemical potential

is slightly above the Weyl nodes and the electronic transport
is contributed mainly by the conduction bands throughout the
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paper. The eigenstate of the conduction band at valley y = +
is given by

cos(6/2) ] )

k) = [sin(e/z) exp(—iNg)

where cos 0 = v k;/Ey, and tan ¢ = k, / k,. The eigenstate of
the conduction band around valley x = — can be found by
replacing cos(6/2) — sin(6/2) and sin(6/2) — — cos(6/2) in
Eq. (2). The monopole charge can be found by integrating the
Berry curvature over an arbitrary Fermi sphere X that encloses
the Weyl node,
1 dsS-Q==+N, 3)
21 )
with =+ for the & valleys, the Berry curvature [34] Q2 = V XA,
and A = (Ag,A,) is the Berry connection given by Ay =
(k|idg|k) = 0 and A, = (k|id,|k) = N sin*(6/2).

Monopole charge and quantum interference. In a disordered
metal, the backscattering from a state with a wave vector
of k to —k can be achieved by successive scattering via
intermediate states. At sufficiently low temperatures, electrons
can be scattered by many times but still maintain their phase
coherence. In this quantum diffusive regime, the electric
conductivity may acquire an extra correction from the quantum
interference between the time-reversed scattering paths, lead-
ing to the WL or WAL effect [35]. We first focus on the Fermi
sphere in one valley and assume no intervalley scattering. For
each path [labeled as P in Fig. 1(a)] connecting successive
intermediate states of the backscattering from k to —k
on the Fermi sphere, which encompasses the monopole
charge at the origin, there exists a corresponding time-reversal
counterpart P’. The quantum interference is determined by the
phase difference between the two time-reversed paths P and
P’, which is equivalent to the Berry phase accumulated along
the loop formed by P together with P = —P’, namely the
corresponding path from —k to k, as shown in Fig. 1(b).

The quantum interference correction then depends on the
geometric phase, i.e., the Berry phase [34], collected by
electrons after circulating the loop C = P + P. The Berry
phase can be found by a loop integral of the Berry connection

(@) (b)

FIG. 1. The Fermi sphere in momentum space for a three-
dimensional topological semimetal, where the dot located at the
origin represents a monopole charge of N. (a) P denotes a generic
backscattering from the wave vector k to —k via intermediate states
labeled as (kj,k,,...,k,). P’ stands for the time-reversal counterpart
of P. (b) The phase difference between P and P’ is equivalent to the
Berry phase circulating around the loop C = P + P.

RAPID COMMUNICATIONS

PHYSICAL REVIEW B 93, 161110(R) (2016)

around C. Remarkably, this Berry phase depends only on the
monopole charge, but not on the specific shape of the loop (see
the rigorous proof in Ref. [36]):

y:?gdl-Aan. @)
c

For double-Weyl semimetals, the monopole charge A =2
and the Berry phase is then 2. With the 27 Berry phase, the
time-reversed scattering loops interfere constructively, leading
to the weak localization effect. However, for single-Weyl
semimetals, the monopole charge is N' =1 and the Berry
phase is r, which gives rise to the weak antilocalization effect.
As the Berry phase is a consequence of the Berry curvature
field generated by the monopole charge, we therefore establish
a robust connection between the weak (anti)localization effect
with the parity of monopole charge N. The Berry phase
argument is consistent with the symmetry classification [37],
the single-Weyl semimetals belong to the symplectic class
with a weak antilocalization correction, while double-Weyl
semimetals correspond to the orthogonal class with a weak
localization correction.

Feynman Diagram calculations. We now verify the above
argument of quantum interference correction to conductiv-
ity in Weyl semimetals by the standard Feynman diagram
calculations. The correction can be evaluated by calculating the
maximally crossed diagrams, one of which is shown in Fig. 2.
In this diagram, the segments of the arrow lines represent
the intermediate states in the backscattering, and the dashed
lines represent the correlation between the time-reversed
scattering processes. The core calculation of the maximally
crossed diagrams can be formulated into the particle-particle
correlation, known as the cooperon. The cooperon of the
double-Weyl semimetal is found to be (see Ref. [36] for details)

h e 2(@2—¢1)
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where q = k; + k; is the cooperon wave vector, k; and k, are
the wave vectors of incoming and outgoing states, respectively,
¢; and ¢, are the azimuth angles of corresponding wave
vectors, D = 8t Erv /3w and D, = rv? are the diffusion
coefficients, N is the density of states, and 7 is the momentum
relaxation time. In contrast, the cooperon of the single-Weyl

FIG. 2. The maximally crossed Feynman diagram that describes
the quantum interference between the time-reversed scattering tra-
jectories in Fig. 1 as q — 0. The arrowed solid and dashed lines
denote the Green functions and impurity scattering, respectively. This
kind of diagrams can give the quantum interference correction to the
conductivity [38—40]. A negative (positive) correction corresponds to
the weak (anti)localization effect, with the sign sensitive to the parity
of the monopole charge.
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semimetal is known to take the form [33]

h ei(wz—fﬂl),

—_— 6
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Fkl,kz ~
where the diffusion coefficient D = v%r /2 [41]. Note that the
main difference between Eqgs. (5) and (6) lies in the phase factor
involving ¢, — @1, which originates from different eigenstates
of Weyl semimetals with different monopole charges.

As q — 0, ie., k; = —k;, the cooperon becomes diver-
gent and becomes the most dominant contribution to the
backscattering. In this limit, ¢, = ¢ + 7 [42]. Then, for the
double-Weyl semimetal,

h 1
Pea-k ™ +277NFT2 Di(q2 + 6]5) + Dyg?’ @
and for the single-Weyl semimetal,
[kq-k ~ —LL ®)
’ 27 Npt? Dg?

Note the different signs in Egs. (7) and (8), which correspond
to the WL and WAL effects, respectively. This is a direct
consequence of different phase factors in the wave functions,
generated by different monopole charges in double- and single-
Weyl semimetals. In other words, a connection is therefore
firmly established between the parity of monopole charge N/
and the sign of the quantum interference correction, with odd
and even parity giving rise to WAL and WL, respectively. This
is the main result of the paper.

Weak-localization — conductivity. From the obtained
cooperon above, it is straightforward to compute the quan-
tum interference corrections to the Drude conductivity (see
Ref. [36] for details). For double-Weyl semimetals, the
quantum interference corrections to the Drude conductivity are
intrinsically anisotropic because of the anisotropic dispersions
in double-Weyl semimetals

9% v, [ 1 1 1 1
472h 2 2UH TEp Zz Z(b ’
2 1
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where ¢; is the mean free path and £, is the phase coherence
length. The mean free path ¢; is defined as ¢; = v/ D;t. In
the quantum diffusive regime, ¢; is much shorter than £y,
so the correction is negative in all directions. This negative
correction is one of the signatures of the WL effect, consistent
with the above Berry-phase argument of monopole charge.
Note that this negative correction due to the WL effect
is not divergent, as expected in 3D. Moreover, the total
conductivity o = o + 0% where o is the semiclassical
Drude conductivity, is s;ill finite. From ¢ =vt and T
1/Ep, we obtain that o' —E;ﬂ and oy —Eiﬂ at low
temperatures. The semiclassical conductivity is found to be
05 = e*Npv2t o EY and 0 = (8/3m)e*>tNpEpvy « EF,
where the density of states at the Fermi level per valley is
NF = EF/th3va||.

Weak localization induced magnetoconductivity. The neg-
ative quantum interference correction in Eq. (9) can be
destroyed by a small magnetic field, giving rise to a positive

ol =

®
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magnetoconductivity as another signature of the weak local-
ization in double-Weyl semimetals. The magnetoconductivity
is anisotropic, depending on the field direction. When the
field is applied along the z direction, the quantum interference
correction of the conductivity is found as

. 3e2tv? [k
o(B) = _871—715,/0 dq;

@ T, e T

(10)

where v is the digamma function and {5 = /h/4eD, B is the
effective magnetic length in the z direction. When the field is
applied in the x — y plane, the conductivity is given by the
same formula as Eq. (10) but with 6% = h/4eB/D|D,. The
magnetoconductivity is defined as 8o 2(B) = o (B) — 0 2(0).
In the limit of £4 > £ > £, which can be approached at
low temperatures, the magnetoconductivity So+ (B) o +/B.In
the limit of £ > €4 and £p > £,,80.(B) < B%. As a good
approximation, the weak localization induced magnetocon-
ductivity in double-Weyl semimetals can be fitted as

2 2np2
(So-qi — qu B \/E qu BLB
2z 1 Bg + B2 2 BS + B2’

an

where the fitting parameters C|" and C5' are positive and the
critical field B, is related to the phase coherence length £,
according to B, ~ h/eﬁi. Empirically, the phase coherence
length becomes longer with decreasing temperature and can
be written as £, ~ T~7/%; then B, ~ T”, where p is positive
and determined by decoherence mechanisms such as electron-
electron interaction (p = 3/2) or electron-phonon interaction
(p = 3). Athigh temperatures, £, — 0; thus, B. — oo and we
have §o;: oc B2. At low temperatures, £5 — 00; then B, = 0
and we have 8o « +/B.

Chiral-anomaly induced magnetoconductivity. Another
mechanism that can also contribute a positive magnetoconduc-
tivity is the chiral anomaly. The nontrivial momentum-space
Berry curvature in Weyl semimetals can induce an anomalous
velocity which can couple with external magnetic fields [34],
leading to a positive magnetoconductivity when the electric
current is in parallel with magnetic fields [43,44]. In single-
Weyl semimetals at weak fields, this “chiral anomaly” induced
magnetoconductivity is found to be proportional to B? [43,44]
or B [45], depending on the Fermi energy. As a semiclassical
effect, the chiral anomaly is not as sensitive to phase coherence
and temperature as the weak localization effect is, so a similar
positive magnetoconductivity is also expected in double-Weyl
semimetals, without sign reversing, although the monopole
charge is doubled. In addition, the chiral anomaly has a
strong angle dependence, becomes prominent only in parallel
magnetic fields. In contrast, the weak localization happens
in all directions. These properties distinguish the positive
magnetoconductivity of the chiral anomaly from that of the
weak localization effect. In perpendicular magnetic fields, the
Lorentz force gives rise to the classical negative magnetocon-
ductivity that is proportional to —u?B?, where the mobility
u=2eD/Er in double-Weyl semimetals. Because of the
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TABLE 1. Comparison between 3D single- and double-Weyl
semimetals. +Fy is the dispersion relation of the conduction and
valence bands, N(E) is the density of states; 859/ (B) is the weak
(anti)localization magnetoconductivity when £, > £5. N is the
monopole charge.

3D single-Weyl 3D double-Weyl

Ex B+ R+ 022 R JURRE 4 R + 022
N(E) E2/2n2vﬁvzh3 E/8mv, v’
809 (B) —-JB VB
N 1 2

functional relations, at sufficiently low temperatures the WL
effect induced +/B magnetoconductivity always overwhelms
the magnetoconductivity from the chiral anomaly and Lorentz
force. For a comparison between single- and double-Weyl
semimetals, we summarize the key results in Table 1.

Effects of intervalley scattering. For single-Weyl semimet-
als, in the limit where intervalley scattering dominates,
the quantum interference correction can be negative, i.e., a
crossover to the weak localization [33], which is a result
of the cancellation of £m Berry phase when circulating
monopoles with opposite charges. Similar phenomena were
also studied in 2D graphene [40,46—48]. However, in double-
Weyl semimetals, even if intervalley scattering is considered
where the electron scattering trajectory encloses the nodes
of double-Weyl semimetals with opposite monopole charges,
the weak localization is still robust since the total phase
acquired by circulating the two monopoles is still an integer
multiple of 27r. The crossover can be also understood from the
symmetry classification [37], with 7 (£27) Berry phase
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corresponding to the symplectic (orthogonal) class. In the
limit of weak intervalley scattering, the qualitatively different
quantum interference corrections can distinguish the Weyl
nodes with different monopole charges.

Conclusions and discussions. To summarize, we have
presented an intuitive picture revealing the connection
between quantum interference correction to the conductivity
and monopole charge in three-dimensional Weyl semimetals.
The picture is verified by standard Feynman diagram
calculations. It explains the weak antilocalization observed
in single-Weyl semimetals [24-27] and predicts the weak
localization in double-Weyl semimetals. Experimentally,
the quantum interference correction can manifest through
magnetoconductivity. In the zero temperature limit, the
magnetoconductivity o F+/B for single- and double-Weyl
semimetals, respectively. So far, there have been several
materials, e.g., HgCr,Sey [5,16] and SrSi, [18] proposed as
candidates for double-Weyl semimetals.

It is worthwhile to mention that, if weak higher order terms
which may break the time-reversal symmetry are included in
the k - p Hamiltonian, the quantum interference correction will
be slightly smaller, as pointed out in Ref. [48]. Even though
interactions can also contribute to conductivity, interaction-
induced magnetoconductivity usually has much weaker mag-
netic field dependence compared to the one induced by the
quantum interference [33,35,49]; it is expected that our results
above are robust if weak interactions are included.
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