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While bare diagrammatic series are merely Taylor expansions in powers of interaction strength, dressed
diagrammatic series, built on fully or partially dressed lines and vertices, are usually constructed by reordering
the bare diagrams, which is an a priori unjustified manipulation, and can even lead to convergence to an unphysical
result [E. Kozik, M. Ferrero, and A. Georges, Phys. Rev. Lett. 114, 156402 (2015)]. Here we show that for a
broad class of partially dressed diagrammatic schemes, there exists an action S(ξ ) depending analytically on
an auxiliary complex parameter ξ , such that the Taylor expansion in ξ of correlation functions reproduces the
original diagrammatic series. The resulting applicability conditions are similar to the bare case. For fully dressed
skeleton diagrammatics, analyticity of S(ξ ) is not granted, and we formulate a sufficient condition for converging
to the correct result.
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Much of theoretical physics is formulated in the language of
Feynman diagrams, in various fields such as condensed matter,
nuclear physics, and quantum chromodynamics (QCD). A
powerful feature of the diagrammatic technique, used in each
of the above fields, is the possibility to build diagrams on
partially or fully dressed propagators or vertices (see, e.g.,
Refs. [1–5]). In quantum many-body physics, notable exam-
ples include dilute gases, whose description is radically im-
proved if ladder diagrams are summed up so that the expansion
is done in terms of the scattering amplitude instead of the bare
interaction potential, and Coulomb interactions, which one has
to screen to have a meaningful diagrammatic technique.

With the development of diagrammatic Monte Carlo, it
becomes possible to compute Feynman diagrammatic expan-
sions to high order for fermionic strongly correlated quan-
tum many-body problems [6–11]. The number of diagrams
grows factorially with the order, even for a fully irreducible
skeleton scheme [12]. Nevertheless, for fermionic systems on
a lattice at finite temperature, diagrammatic series (of the
form

∑
n an with an the sum of all order-n diagrams) are

typically convergent in a broad range of parameters, due to a
nearly perfect cancellation of contributions of different sign
within each order, as proven mathematically [13] and seen
numerically [6,7,9–11].

One might think that partial or full renormalization of
diagrammatic elements (propagators, interactions, vertices,
etc.) always leads to more compact and better behaving dia-
grammatic expansions. However, such a dressed diagrammatic
series cannot be used blindly: Even when it converges, the
result is not guaranteed to be correct, since it is a priori not
allowed to reorder the terms of a series that is not absolutely
convergent (the sum of the absolute values of individual
diagrams is typically infinite, due to factorial scaling of
the number of diagrams with the order). And indeed, for
a skeleton series, i.e., a series built on the fully dressed
propagator, convergence to a wrong result does occur in the
case of the Hubbard model in the strongly correlated regime

near half filling [14], and preliminary results suggest that
the corresponding self-consistent skeleton scheme converges
to a wrong result as a function of the maximal self-energy
diagram order N [15]. Both of these phenomena are clearly
seen in the exactly solvable zero space-time dimensional
case [16,17].

In this Rapid Communication, we establish a condition that
is necessarily violated in the event of convergence to a wrong
result of the self-consistent skeleton scheme. Furthermore,
we show that this convergence issue is absent for a broad
class of partially dressed schemes. In particular, we propose
a simple scheme based on the truncated skeleton series. The
underlying idea is to construct an action S(ξ ) that depends on an
auxiliary complex parameter ξ such that the Taylor series in ξ

of correlation functions reproduces the dressed diagrammatic
series built on a given partially or fully dressed propagator.
This makes the dressed scheme as mathematically justified
as a bare scheme, provided S(ξ ) is analytic with respect to ξ

and S(ξ=1) coincides with the physical action; these conditions
hold automatically in the partially dressed case, while in
the fully dressed case they hold under a simple sufficient
condition which we provide. Our construction applies to
a general class of diagrammatic schemes built on dressed
lines and vertices, including two-particle ladders and screened
long-ranged potentials.

Partially dressed single-particle propagator. We consider a
generic fermionic many-body problem described by an action

S[ψ,ψ̄] = 〈ψ |G−1
0 |ψ〉 + Sint[ψ,ψ̄], (1)

where ψ,ψ̄ are Grassmann fields [18], and we use bra-
ket notations to suppress space, imaginary time, possible
internal quantum numbers, and integrals/sums over them,
i.e., 〈ψ |G−1

0 |ψ〉 denotes the integral/sum over r,τ and σ of
ψ̄σ (r,τ )(G−1

0,σ ψσ )(r,τ ). G−1
0 stands for the inverse, in the sense

of operators, of the free propagator. The full propagator G

and the self-energy � are related through the Dyson equation
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G−1 = G−1
0 − �. The bare Feynman diagrammatic expansion

corresponds to perturbation theory in Sint. In order to generate
a diagrammatic expansion built on a partially dressed single-
particle propagator G̃N , we introduce an auxiliary action of
the form

S
(ξ )
N [ψ,ψ̄] = 〈ψ |G−1

0,N (ξ )|ψ〉 + ξSint[ψ,ψ̄], (2)

where

G−1
0,N (ξ ) = G̃−1

N + ξ�1 + · · · + ξN�N , (3)

ξ is an auxiliary complex parameter, and �1, . . . ,�N are
appropriate operators. G̃N is the single-particle propagator for
S

(ξ=0)
N . At ξ �= 0, one can still view G̃N as the free propagator,

provided one includes in the interaction terms not only ξSint,
but also the quadratic terms 〈ψ |ξn�n|ψ〉. Accordingly, ξ

is interpreted as a coupling constant, and the ξn�n acquire
the meaning of counterterms. These counterterms can be
tuned to cancel out reducible diagrams, thereby enforcing the
dressed character of the diagrammatic expansion. A natural
requirement is that S

(ξ=1)
N coincides with the physical action

S, i.e., that

G̃−1
N +

N∑
n=1

�n = G−1
0 . (4)

For given G0, this should be viewed as an equation to be
solved for G̃N (it is nonlinear if the �n’s depend on G̃N ). The
unperturbed action for the dressed expansion 〈ψ |G̃−1

N |ψ〉 is
shifted by the �n’s with respect to the unperturbed action for
the bare expansion 〈ψ |G−1

0 |ψ〉.
We can then use any action of the generic class (2) for

producing physical answers in the form of a Taylor expansion
in powers of ξ , provided the propagator G̃N and the shifts �n

satisfy Eq. (4). More precisely, consider the full single-particle
propagator GN (ξ ) of the action S

(ξ )
N , and the corresponding

self-energy

�N (ξ ) := G−1
0,N (ξ ) − G−1

N (ξ ). (5)

Note that since S
(ξ=1)
N = S, we have GN (ξ = 1) = G and

hence also �N (ξ = 1) = �. We assume for simplicity that
�N (ξ ) is analytic at ξ = 0, and that its Taylor series,∑∞

n=1 �
(n)
N [G̃N ]ξn, converges at ξ = 1. We expect these

assumptions to hold for fermionic lattice models at finite
temperature in a broad parameter regime, given that the action
S

(ξ )
N is analytic in ξ [6,7,9–11,13,19]. Then, since S

(ξ )
N is an

entire function of ξ , we can conclude that

� =
∞∑

n=1

�
(n)
N [G̃N ], (6)

i.e., the physical self-energy is equal to the dressed diagram-
matic series.

This last step of the reasoning can be justified using the
following presumption: Let D be a connected open region of
the complex plane containing 0. Assume that S(ξ ) is analytic
in D, that the corresponding self-energy �(ξ ) is analytic at
ξ = 0, and that �(ξ ) admits an analytic continuation �̃(ξ ) in
D. Then, � and �̃ coincide on D. This presumption is based
on the following argument: Since S(ξ ) is analytical, if no phase

transition occurs when varying ξ in D, then �(ξ ) is analytical
on D, and by the identity theorem for analytic functions, �

and �̃ coincide on D. If a phase transition would be crossed
as a function of ξ in D, analytic continuation through the
phase transition would not be possible [20], contradicting
the above assumption on the existence of �̃. Applying
this presumption to �̃(ξ ) := ∑∞

n=1 �
(n)
N [G̃N ]ξn, which has

a radius of convergence R � 1 (from the Cauchy-Hadamard
theorem), and taking for D the open disk of radius R, we
directly obtain Eq. (6) provided R > 1. If R = 1, we can still
derive Eq. (6), using Abel’s theorem and assuming that �N (ξ )
is continuous at ξ = 1, which, given that the action is entire
in ξ , is generically expected (except for physical parameters
fined-tuned precisely to a first-order phase transition, where �

is not uniquely defined).
Semibold scheme. We first focus on the choice

�n = �
(n)
bold[G̃N ] (1 � n � N ), (7)

where �
(n)
bold[G] is the sum of all skeleton diagrams of order n,

built with the propagator G and the bare interaction vertex
corresponding to Sint, that remain connected when cutting
two G lines. This means that G̃N is the solution of the
bold scheme for maximal order N [cf. Eq. (4)]. For a given
N , higher-order dressed graphs can then be built on G̃N .
The numerical protocol corresponding to this “semibold”
scheme consists of two independent parts: Part I is the
bold diagrammatic Monte Carlo simulation of the truncated
order-N skeleton sum employed to solve iteratively for G̃N
satisfying Eqs. (4) and (7); part II is the diagrammatic Monte
Carlo simulation of higher-order terms, �

(n)
N [G̃N ], n > N ,

that uses G̃N as the bare propagator. Note that here N is
fixed (contrarily to the conventional skeleton scheme discussed
below), and the infinite-order extrapolation is done only in
part II.

The Feynman rules for this scheme are as follows:

�
(n)
N [G̃N ] = �

(n)
bold[G̃N ] for n � N , (8)

while for n � N + 1, �
(n)
N [G̃N ] is the sum of all bare

diagrams, built with G̃N as free propagator and the bare
interaction vertex corresponding to Sint, which do not contain
any insertion of a subdiagram contributing to �

(n)
bold[G̃N ] with

n � N . Indeed, each such insertion is exactly compensated by
the corresponding counterterm. To derive Eq. (8), we will use
the relation

�N (ξ ) =̂
∞∑

n=1

�
(n)
bold[GN (ξ )] ξn, (9)

where =̂ stands for equality in the sense of formal power series
in ξ , and we will show the proposition

�N (ξ ) =̂
k∑

n=1

�
(n)
bold[G̃N ]ξn + O(ξk+1) (Pk)

for any k ∈ {0, . . . ,N + 1}, by recursion over k. (Pk=0)
clearly holds. If (Pk) holds for some k � N , then we
have GN (ξ ) =̂ G̃N + O(ξk+1), as follows from Eqs. (5), (3),
and (7). Substitution into Eq. (9) then yields (Pk+1).

Alternatively to the semibold scheme Eq. (7), other choices
are possible for the shifts �1, . . . ,�N and the dressed
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propagator G̃N . For example, the shifts can be based on
diagrams containing the original bare propagator G0 instead of
G̃N . In the absence of exact cancellation, all diagrams should
be simulated in part II of the numerical protocol, and �n will
enter the theory explicitly. This flexibility of choosing the form
of �n’s, along with the obvious option of exploring different
N ’s, provides a tool for controlling systematic errors coming
from truncation of the ξ series.1

Skeleton scheme. We turn to the conventional scheme in
which diagrams are built on the fully dressed single-particle
propagator. The corresponding numerical protocol is identical
to part I of the above one, with the additional step of
extrapolating N to infinity, as done in Refs. [8–11,21].
Accordingly, we assume that the “skeleton sequence” G̃N
converges to a limit G̃ when N → ∞. The crucial question
is under what conditions one can be confident that G̃ is the
genuine propagator G of the original model. The answer comes
from the properties of the sequence of functions

L
(ξ )
N :=

N∑
n=1

�
(n)
bold[G̃N ]ξn. (10)

Let us show that G̃ = G holds under the following sufficient
conditions: (i) For any ξ in a diskD = {|ξ | < R} of radius R >

1, and for all (p,τ ), L(ξ )
N (p,τ ) converges forN→∞; moreover,

this sequence is uniformly bounded, i.e., there exists a function
C1(p,τ ) such that ∀ξ ∈ D,∀(N ,p,τ ), |L(ξ )

N (p,τ )| � C1(p,τ );
and (ii) G̃N (p,τ ) is uniformly bounded, i.e., there exists a
constant C2 such that for all (N ,p,τ ), |G̃N (p,τ )| � C2.

Our derivation is based on the action

S(ξ )
∞ := lim

N→∞
S

(ξ )
N . (11)

Clearly,

S(ξ )
∞ = 〈ψ |G̃−1 + L(ξ )|ψ〉 + ξSint (12)

with

L(ξ )(p,τ ) := lim
N→∞

L
(ξ )
N (p,τ ). (13)

Since S
(ξ=1)
N = S, we have S

(ξ=1)
∞ = S, and thus G∞(ξ = 1) =

G, where G∞(ξ ) is the full propagator of the action S
(ξ )
∞ .

We first observe that L(ξ )(p,τ ) is an analytic function of
ξ ∈ D for all (p,τ ), and that

1

n!

∂n

∂ξn
L(ξ )(p,τ )

∣∣∣∣
ξ=0

= �
(n)
bold[G̃](p,τ ). (14)

This follows from conditions (i) and (ii), given that momenta
are bounded for lattice models. Indeed, for any triangle T
included in D,

∮
T dξ L

(ξ )
N (p,τ ) = 0. Owing to condition (i),

the dominated convergence theorem is applicable, yielding∮
T dξ L(ξ )(p,τ ) = 0. The analyticity of ξ 	→ L(ξ )(p,τ ) follows

1The case where N = 1 and �1 is a number is known as Screened
Perturbation Theory in thermal φ4 theory; its extension to gauge
theories is known as Hard-Thermal-Loop Perturbation Theory [4].
We thank E. Braaten for pointing this out.

by Morera’s theorem. To derive Eq. (14) we start from

1

n!

∂n

∂ξn
L

(ξ )
N (p,τ )

∣∣∣∣
ξ=0

= �
(n)
bold[G̃N ](p,τ ). (15)

By Cauchy’s integral formula, the left-hand side of Eq. (15)
equals 1/(2iπ )

∮
C dξ L

(ξ )
N (p,τ )/ξn+1, whereC is the unit circle.

Using again condition (i) and the dominated convergence theo-
rem, whenN→∞, this tends to 1/(2iπ )

∮
C dξ L(ξ )(p,τ )/ξn+1,

which equals the left-hand side of Eq. (14). To show that
�

(n)
bold[G̃N ](p,τ ) tends to �

(n)
bold[G̃](p,τ ), we consider each

Feynman diagram separately; the dominated convergence
theorem is applicable owing to condition (ii), the boundedness
of the integration domain for internal momenta and imagi-
nary times, and assuming that interactions decay sufficiently
quickly at large distances for the bare interaction vertex to be
bounded in momentum representation.

Hence

L(ξ ) =
∞∑

n=1

�
(n)
bold[G̃]ξn. (16)

As a consequence, the action S
(ξ )
∞ generates the fully dressed

skeleton series built on G̃, i.e., its self-energy �∞(ξ ) has the
Taylor expansion

∑∞
n=1 �

(n)
bold[G̃]ξn, and the Taylor series of

G∞(ξ ) reduces to the ξ -independent term G̃. This can be
derived in the same way as Eq. (8), by showing by recursion
over k that for any k � 0, �∞(ξ ) = ∑k

n=1 �
(n)
bold[G̃]ξn +

O(ξk+1). Furthermore, having shown above the analyticity
of L(ξ ), i.e., of S

(ξ )
∞ , we again expect that G∞(ξ ) is analytic at

ξ = 0 (for fermions on a lattice at finite temperature), and
we can use again the above presumption to conclude that
G∞(ξ = 1) = G = G̃.

Dressed pair propagator. So far we have discussed dressing
of the single-particle propagator while keeping the bare
interaction vertices. We turn to diagrammatic schemes built
on dressed pair propagators. We restrict to spin-1/2 fermions
with on-site interaction,

Sint[ψ,ψ̄] = U
∑

r

∫ β

0
dτ (ψ̄↑ψ̄↓ψ↓ψ↑)(r,τ ), (17)

where U is the bare interaction strength. For simplicity we
discuss dressing of the pair propagator while keeping the
bare G0. It is necessary to perform a Hubbard-Stratonovich
transformation in order to construct the appropriate auxiliary
action. Introducing a complex scalar Hubbard-Stratonovich
field η leads to the action

S[ψ,ψ̄,η,η̄] = 〈ψ |G−1
0 |ψ〉 − 〈η|−1

0 |η〉 − 〈η|�0|η〉
+ 〈η|ψ↓ψ↑〉 + 〈ψ↓ψ↑|η〉, (18)

where �0(r,τ ) = −(G0,↑G0,↓)(r,τ ) and 0 is the sum of the
ladder diagrams, −1

0 (p,�n) = U−1 − �0(p,�n), with �n the
bosonic Matsubara frequencies.

We first consider the diagrammatic scheme built on G0

and 0. We denote by �
(n)
lad[G0,0] the sum of all self-

energy diagrams of order n, i.e., containing n 0 lines. This
diagrammatic series is generated by the shifted action

S (ξ )
lad [ψ,ψ̄,η,η̄] = 〈ψ |G−1

0 |ψ〉 − 〈η|−1
0 |η〉 − ξ 2〈η|�0|η〉

+ ξ (〈η|ψ↓ψ↑〉 + 〈ψ↓ψ↑|η〉), (19)
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in the sense that self-energy �lad(ξ ) corresponding to this
action has the Taylor series

∑∞
n=1 �

(n)
lad[G0,0] ξ 2n. Indeed,

the counterterm ξ 2�0 cancels out the reducible diagrams
containing G0G0 bubbles. Therefore, if this diagrammatic
series converges, then it yields the physical self-energy. This
follows from the same reasoning as below Eq. (5). The same
applies to the series for the pair self-energy � in terms of
[G0,0]. Here � is defined by −1 = −1

0 − �, where 

denotes the fully dressed pair propagator, used in Refs. [8,11].
More complex schemes, built on dressed pair propagators

other than 0, can be generated by the shifted action

S (ξ )
N [ψ,ψ̄,η,η̄] = 〈ψ |G−1

0 |ψ〉 − 〈η|−1
0,N (ξ )|η〉 − ξ 2〈η|�0|η〉

+ ξ (〈η|ψ↓ψ↑〉 + 〈ψ↓ψ↑|η〉), (20)

where

−1
0,N (ξ ) = ̃−1

N + ξ 2�1 + · · · + ξ 2N�N (21)

and one imposes 0,N (ξ = 1) = 0. In particular, the semibold
scheme is defined by

�n = �
(n)
bold[̃N ], (22)

where �
(n)
bold[γ ] is the sum of all skeleton diagrams of order n

built with the pair-propagator γ that remain connected when
cutting two γ lines. As usual, �

(1)
bold = −GG + G0G0. This

scheme was introduced previously for N = 1 [22].
Finally, we consider the skeleton scheme built on G0

and . Assuming that the skeleton sequence ̃N converges
to some ̃, one can show analogously to the above rea-
soning that ̃ is equal to the exact  under the following
sufficient conditions: (i) For any ξ in a disk D = {|ξ | <

R} of radius R > 1, and for all (p,�n), M
(ξ )
N (p,�n) :=∑N

n=1 �
(n)
bold[̃N ](p,�n)ξn converges for N→∞; moreover,

this sequence is uniformly bounded, i.e., there exists C(p,�n)
such that ∀ξ ∈ D,∀(N ,p,�n),|M (ξ )

N (p,�n)| � C(p,�n); and
(ii) ̃N (p,�n) is uniformly bounded.

Screened interaction potential. Finally, we briefly address
the procedure of dressing the interaction line, which is
particularly important for long-range interaction potentials.
Restricting for simplicity to a spin-independent interaction
potential V (r), the interaction part of the action writes

1

2

∑
σ,σ ′

∑
r,r′

∫ β

0
dτ (ψ̄σψσ )(r,τ )V (r − r′)(ψ̄σ ′ψσ ′)(r′,τ ). (23)

We again keep the bare G0 for simplicity and consider dressing
of V only. Introducing a real scalar Hubbard-Stratonovich field

χ leads to the action

S[ψ,ψ̄,χ ] = 〈ψ |G−1
0 |ψ〉 + 1

2
〈χ |V −1|χ〉 + i

∑
σ

〈χ |ψ̄σψσ 〉.

(24)

Here we assume that the Fourier transform V (q) of the
interaction potential is positive, so that the quadratic form
〈χ |V −1|χ〉 = (2π )−d

∫ β

0 dτ
∫

ddq|χ (q,τ )|2/V (q) is positive
definite. The auxiliary action takes the form

S (ξ )
N [ψ,ψ̄,χ ] = 〈ψ |G−1

0 |ψ〉
+1

2
〈χ |Ṽ −1

N + ξ 2�1 + · · · + ξ 2N�N |χ〉

+ iξ
∑

σ

〈χ |ψ̄σψσ 〉. (25)

The semibold scheme corresponds to �n = �
(n)
bold[ṼN ], where

� now stands for the polarization. In particular, Ṽ1 is the
random phase approximation (RPA) screened interaction.

Summarizing, we have revealed an analytic structure
behind dressed-line diagrammatics. More precisely, we have
exhibited the function which analytically continues a dressed
diagrammatic series. This function originates from an action
that depends on an auxiliary parameter ξ . When the action
is a polynomial in ξ , the situation reduces to the one of a
bare expansion. Within this category, a particular case well
suited for numerical implementation is the semibold scheme
for which the bare propagator is taken from the truncated
bold self-consistent equation. For the fully bold scheme, we
construct an appropriate auxiliary action, but only under a
certain condition. If this condition is verified numerically, it is
safe to use the fully bold scheme. If not, the semibold scheme
remains applicable.

Furthermore, we have demonstrated the generality of the
shifted-action construction by treating the case of a dressed
pair propagator and of a screened long-range interaction.
Further extensions left for future work are dressing of
three-point vertices, as well as justifying resummation of
divergent diagrammatic series by considering non-disk-shaped
analyticity domains D.
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