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Topological nonsymmorphic ribbons out of symmorphic bulk
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States of matter with nontrivial topology have been classified by their bulk symmetry properties. However, by
cutting the topological insulator into ribbons, the symmetry of the system is reduced. By constructing effective
Hamiltonians containing the proper symmetry of the ribbon, we find that the nature of topological states is
dependent on the reduced symmetry of the ribbon and the appropriate boundary conditions. We apply our model
to the recently discovered two-dimensional topological crystalline insulators composed by IV-VI monolayers,
where we verify that the edge terminations play a major role on the Dirac crossings. Particularly, we find that some
bulk cuts lead to nonsymmorphic ribbons, even though the bulk material is symmorphic. The nonsymmorphism
yields a new topological protection, where the Dirac cone is preserved for arbitrary ribbon width. The effective
Hamiltonians are in good agreement with ab initio calculations.
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I. INTRODUCTION

Topological insulator (TI) materials are characterized by
a bulk gap with band inversions and metallic states on the
borders. These edge (surface) states are topologically protected
by symmetry. A class of TIs protected by time-reversal sym-
metry has been predicted and realized experimentally [1–5],
where a Z2 topological invariant has been used to characterize
them. The crystal lattice symmetry can also lead to topological
protection on the topological crystalline insulators (TCIs)
[6–13], where the topological nontrivial states are character-
ized by a crystal symmetry Chern number. Recently, it has been
shown that yet a new class of topological nonsymmorphic
crystalline insulators [14–20] presenting unique properties
with respect to the topological order exists. The overall
classification of topological insulators has been discussed
based on space group symmetry of the bulk systems [19,21–
23]. However, by reducing the symmetry, forming surfaces
or edges, a question arises—are the topological protected
edge states completely described only by the parent bulk
symmetry?

In this Rapid Communication we build effective Hamil-
tonians using group theory [24–28] for a TCI monolayer
and ribbons to investigate the effects of the edge termina-
tions on its topological properties. A PbSe monolayer is
chosen as a representative two-dimensional (2D) TCI for our
discussion [29–32]. The band structures from the effective
Hamiltonians are compared with ab initio results obtained
from density functional theory (DFT) calculations using the
VASP code [33]. We consider five possible crystallographic
ribbon cuts, starting from the simpler case A (Fig. 1) building
up in complexity towards our main result in ribbon E.
We find that the energy dispersion of the topological edge
states is strongly dependent on both the reduced symmetry
and boundary conditions, resembling graphene’s zigzag and
armchair edges [34,35]. Interestingly, we show that while our
bulk monolayer is a symmorphic lattice, one particular cut
leads the nonsymmorphic ribbon E, whose symmetry group
is not a subgroup of its bulk counterpart. It is known that
nonsymmorphism yields extra degenerescences with respect
to its underlying point group [24–28], which in our case results

in an extra protection that preserves the Dirac cone for ribbons
of arbitrary width. In addition to the fundamental physics
presented here, the nonsymmorphic systems could be potential
materials for nanoscale 2D devices, preserving the topological
state properties even for nanosized ribbons.

Experimentally, atomic layer growth control of IV-VI
materials has been achieved via electrochemical atomic layer
epitaxy/deposition [36,37], and PbSe nanorods and nanotubes
were recently grown [38]. However, a refined edge control
remains as challenging as for any other 2D material. Recently
developed chemical bottom-up approaches were successful in
graphene [39,40]. Effects of edge saturation and substrates are
yet to be experimentally explored. Recently, first-principles
calculations showed that the topological properties and the
energetic stability of IV-VI monolayers can be manipulated
using appropriate substrate [32].

II. MODEL FOR THE INFINITE MONOLAYER

The PbSe monolayer has a square Bravais lattice [Fig. 1(a)]
with a space group symmetry D4h. The time-reversal invariant
momenta (TRIMs) are �, X, Y , and M , as shown in Fig. 1(b).
From first principles [29] it is known that the band inversions
occur at X and Y , where the symmetry is reduced to the D2h

space group. At X, without spin-orbit (SO) couplings the top
of the valence band is composed mostly by px orbitals of
Se, while the bottom of the conduction band is dominated
by pz orbitals of Pb. At Y , all properties are given by a C4

rotation of X, which allow us to focus our discussion on the X

point. To satisfy the Bloch theorem at X the orbitals must be
arranged periodically along y and antiperiodically along the
x direction, as shown in Fig. 2. To emphasize the Cartesian
symmetry of these basis states, we label the kets referring to
the axes through which the state is odd. Hence, the states in
Figs. 2(a) and 2(b) become |xz; s〉 and |x; s〉, respectively. Here
s = {↑,↓} denotes the spin.

From this set of orbitals, {|xz; ↑〉,|xz; ↓〉,|x; ↑〉,|x; ↓〉},
we construct the effective Hamiltonian for the monolayer
considering a k-space expansion [34]. Following this ordering,
one obtains a matrix representation for the symmetry elements
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FIG. 1. (a) Unit cell of the PbSe monolayer. (b) The first Brillouin
zone (BZ) with the �, X, Y , and M TRIMs. Confinement (in
red) along y (y ′) projects the TRIMs onto kx (k′

x) to form the
one-dimensional BZ given by X̄ and �̄ (X̄′ and �̄′). (A–E) Illustration
of the five possible crystallographic terminations of PbSe ribbons.
The unit cell of each ribbon is highlighted in gray. The point group
symmetries are indicated with usual notation, except for panel E,
where “NS” stands for nonsymmorphic. The ribbons considered here
have about 45 atoms (∼10 nm) along y (y ′).

of the D2h group, plus the time-reversal operator T [41].
Requiring that the Hamiltonian HX, for k around X, commutes
with these symmetry elements and T up to second order in k,
we obtain

HX = �τz + (αykyσx − αxkxσy)τx

+ (mxτz + δmx)k2
x + (myτz + δmy)k2

y, (1)

(a) (b)

FIG. 2. Representation on the unit cell of the spinless eigenstates
of (a) conduction and (b) valence bands at X. The orientation of the
pz orbitals of Pb in (a) are chosen to satisfy the Bloch periodicity at
X, and the resulting state |xz; s〉 is odd along both x and z directions.
The state |x; s〉 in (b) is composed by a single px orbital of Se on the
unit cell.

E
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FIG. 3. Band structure of the PbSe monolayer from the effective
model for ky = 0 and as a function of kx . (a) Without SO we
consider � = mx = 1, and δmx = αx = 0. (b) With SO the gap
changes sign � = −1, the masses remain the same, and αx = 2. The
colors represent the contributions from the |x; s〉 (red) and |xz; s〉
(blue) orbitals in accordance with the ab initio data [29]. The arrows
represent the spin projection along z.

where the Pauli matrices σi (τi) act on the spin (orbital) degrees
of freedom. From the k · p theory one can associate the αx and
αy with the k-dependent SO contribution, while the gap � has
contributions both from the bare lattice potential V (r) and from
the k-independent SO term via remote bands. Here � plays the
role of the Dirac mass and changes sign as a function of the SO
intensity. The mass (parabolic) terms m(x,y) are anisotropic,
and δm(x,y) could break the particle-hole symmetry. This
Hamiltonian describes the bulk PbSe monolayer, as we can
see in Fig. 3, where the band structure around k = X without
(� = 1) and with SO couplings (� = −1) are in qualitative
agreement with ab initio data [29].

From the effective bulk Hamiltonian, we can calculate the
topological invariants of the system, i.e., the Chern numbers.
The bulk monolayer and all possible ribbons share only
the identity and mirror M (z → −z) symmetry elements.
Therefore, all eigenstates belong to one of two classes [11]
defined by the eigenvalues η = ±i of the mirror operator,
i.e., M|ψη〉 = η|ψη〉. For each class one defines a Chern
number Nη, which allows us to calculate the total Chern
number NT = N+i + N−i , and the mirror Chern number
NM = (N+i − N−i)/2. For � > 0 we find all Nη = 0 and the
system is on the trivial regime as expected. For � < 0 the states
from the occupied bands give N±i = ∓2, which yields NT = 0
and NM = −2, thus characterizing the TCI phase [11].

III. TCI RIBBONS

By cutting the monolayer into ribbons, the introduced
lateral confinement may break some symmetries of the system,
allowing new terms into the effective Hamiltonian. There
are two main crystallographic orientations for the ribbons:
x ‖ [11̄0] and x ′ ‖ [100] directions. The first has three possible
edge terminations, illustrated in Fig. 1, panels A, B, and C,
while the latter has two more possibilities, shown in Fig. 1,
panels D and E. Hereafter we refer to each termination by
these capital letters. Next to each panel in Fig. 1 we label the
corresponding space group symmetry.
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A. Ribbons A, B, AND C

Let us first consider ribbons A, B, and C, which constitute
our simplest cases and provide the context to advance to more
complex scenarios. First, since ribbons A and B belong to the
same D2h space group, they must have the same Hamiltonian
HA = HB . The confinement along y projects Y and � into �̄,
and M and X into X̄ (see Fig. 1). As the bulk gaps at � and
M are much larger than the gap at X and Y , we can neglect
the extra bands coming from these projections. The resulting
Brillouin zone of the ribbon is given by the X̄ and �̄ TRIMs,
whose effective Hamiltonians are obtained replacing ky →
−i∂/∂y in HX and HY = C4HXC−1

4 , respectively. Both are
in the TCI regime and one can expect topologically protected
states at both �̄ and X̄. Second, ribbon C belongs to the C2v

space group, which is a subgroup of D2h. However, we find
that the extra terms [41] in the Hamiltonian for ribbon C play
no significant role in the qualitative analysis of the topological
properties discussed here. Hence, its effective Hamiltonian
HC ≈ HA = HB . Ultimately, the distinction between ribbons
A, B, and C arises from their different terminations, which
enter our effective model via boundary conditions.

To establish the appropriate boundary conditions for the
envelope functions for each termination, we extend Brey and
Fertig’s approach [35] from graphene to our PbSe monolayer
ribbon of width 2W . In ribbon A the edges are composed by
Pb atoms, say at y = ±W . If the ribbon was uncut, the next
line of atoms on top would be of Se at y = W + a/2, where a

is the lattice parameter (Fig. 1). Following those, there would
be yet a line of Pb atoms at y = W + a. However, since those
atom lines were cut off to form the ribbon, we set the envelope

function of each sublattice to zero at these positions. A similar
definition follows for the bottom edge of ribbon A, and a
generalization to ribbons B and C is immediate. Note that the
boundary condition for the top edge of ribbon C is equivalent
to those of ribbon B, while the bottom of C is equivalent to the
boundaries of A.

The resulting band structures of ribbons A, B, and C are
shown in the bottom panels of Fig. 4 to be compared with the
ab initio data on top. We can see some differences between the
effective model and the ab initio results. First, we observe
a band gap at top panels A and B, which is absent from
our model (bottom panels). The band gap opening occurs
because the ribbon in the DFT calculation is narrow, 2W ≈
10 nm, and quantum tunnel coupling between topological
states from opposite edges takes place. This hybridization
gap vanishes asymptotically with the ribbon width. We also
observe additional states crossing the Fermi level in the ab
initio results (upper panels of Fig. 4, panels A–C), due to
dangling bonds at the edges.

B. Ribbons D AND E

The other possible terminations occur in ribbons aligned
along the (x ′,y ′) coordinates, illustrated in Fig. 1, panels D
and E, having both Pb and Se atoms at the edges. In these
cases we set the envelope functions to zero on the next
(absent) line of atoms of both lattices, i.e., at |y ′| = W + a′,
with a′ = a/

√
2. Since the boundary conditions for ribbons

D and E are the same, their distinction occurs only via the
different space groups. Next we show that this translates
into distinct XY valley couplings. Interestingly, for ribbon

FIG. 4. Comparison of the ab initio (top) and effective model (bottom) band structures of PbSe topological insulator ribbons A, B, C, D,
and E. The colors represent the spinful mirror parity +i (red) and −i (blue). The thickness of the lines for the effective model represents the
localization of the state into an edge. In A, D, and E we show the states and mirror parities projected on the top edge of the ribbons. In B these
projections are taken for the bottom edge. In C the upper (lower) Dirac crossing belongs to the top (bottom) edge states. In A, B, D, and E the
states shown here are degenerate with ones from the opposite edge, with opposite mirror parity. The ab initio data are colored by hand as a
guide to the eyes.
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E, the nonsymmorphism of the crystal lattice introduces extra
topological protections.

Ribbon D belongs to the D2h space group, the same of
ribbons A and B. The confinement along y ′ projects M

and � into �̄ and both X and Y into X̄′ [see Fig. 1(a)].
Therefore one can expect topological states only at X̄′. Since
the monolayer bands around Y are simply the ones at X

rotated by C4, to obtain the effective Hamiltonian around
X̄′ we have to expand our basis to incorporate the bands
coming from Y . Therefore we establish a new matrix rep-
resentation for the symmetry elements of D2h with a basis set
as {|xz; ↑〉,|xz; ↓〉,|x; ↑〉,|x; ↓〉,|yz; ↑〉,|yz; ↓〉,|y; ↑〉,|y; ↓〉}.
Following the same procedure discussed previously for HX,
we obtain

HX′ =
(

H̃X VXY

V
†
XY H̃Y

)
, (2)

where H̃X and H̃Y are equivalent to HX and HY rotated towards
the r ′ coordinates, i.e., x̂ → (x̂ ′ − ŷ ′)/

√
2,ŷ → (x̂ ′ + ŷ ′)/

√
2,

and equivalent rotations for kx, ky, σx , and σy . The relevant
term in the XY valley hybridization VXY for ribbon D is

VXY ≈ ivDk2
yτzσz. (3)

If VXY were zero, the boundary conditions of ribbon D
would give us four degenerate Dirac cones at E = 0, leading
to eightfold degeneracy (labeled by M = ±i, X/Y valleys,
and top/bottom edges). However, the main contribution to VXY

shown in Eq. (3), which is proportional to the mirror symmetry
operatorM = iτzσz, couples states from opposite valleys with
the same mirror eigenvalue (±i). This splits the Dirac points
into the top and bottom (gapped) cones of Fig. 4, panel D. The
hybridization gap opens due to the coupling between top and
bottom edge states, which is allowed by Eq. (3), and consistent
with the group character tables shown in the Supplemental
Material, which guarantees only twofold degeneracy for ribbon
D. Other terms of VXY are shown in the Supplemental Material.
Their contribution is only quantitative to the fine tuning of the
band structure.

Our main result is the unexpected nonsymmorphic space
group DNS

2h of ribbon E, which yields extra topological
protections [19,25]. Here the point group symmetry elements
are the same as in D2h, however, some of them must be
complemented by a nonprimitive translation χ = a′x̂ ′ of
half a unit cell along x ′, i.e., glide planes and screw axis
elements [24–28]. To obtain the matrix representation for these
symmetry elements we use the same basis set from ribbon D
above, but with the coordinates shifted (see Fig. 1). Requiring
that the Hamiltonian commutes with these elements and T ,
we obtain again HX′ , but with different XY valley couplings
VXY , whose relevant terms for ribbon E are

VXY ≈ vEk2
y(iτxσy − τyσx). (4)

Similarly to ribbon D, this XY valley coupling splits the
otherwise eightfold degeneracy into the top and bottom Dirac
cones of Fig. 4, panel E. Here they remain gapless. Other terms
of VXY compatible with the symmetries of ribbon E contribute
only with the fine tuning of the band structure. These are shown
in the Supplemental Material.

We emphasize that the edge state dispersions for ribbons
D and E, shown in Fig. 4, panels D–E, differ only by the
hybridization gaps at X, which is the main consequence
of the nonsymmorphic lattice of ribbon E. Here, all edge
state branches are doubly degenerate with states located at
opposite edges having opposite mirror parities. The color code
in the figure refers to the states located on the top edge.
Therefore, at each crossing around X′ there are four states.
The agreement between the effective Hamiltonian and the ab
initio results is patent. In ribbon D the gap between edge
branches is a consequence of top/bottom edge hybridization
for narrow ribbons. The gap is closed in the nonsymmorphic
ribbon E, which is consistent with its double group character
table [41]. We have calculated this character table using
standard group theory method [25] to find that the double group
is composed by two-dimensional irreducible representations
(IRREPs), which yields twofold degeneracies. However, while
for ribbons A, B, C, and D the time-reversal symmetry does
not lead to extra degeneracies, for ribbon E the pair of 2D
IRREPs form Kramers partners. This leads to the fourfold
degeneracy of the edge states of ribbon E at X′, which must
survive even for narrow ribbons or arbitrary width, despite the
overlap between top and bottom edge states. Usual edge state
branches, as in ribbon D, can only close the gap asymptotically
for wide ribbons, constituting an accidental degeneracy, which
is not protected by symmetry.

IV. FINAL REMARKS AND CONCLUSIONS

The double crossing band structure of ribbon C resembles
those of D and E, with closed gaps. However, here edge
state branches are nondegenerate. The bottom crossing at X

corresponds to a pair of opposite mirror parity states coming
from the top edge, which are equivalent to half of the edge
states of ribbon B. Similarly the top crossing at X involves
states from the bottom edge of ribbon C, which are equivalent
to half of the states of ribbon A. Consequently, the crossings
of pairs of edge states from opposite sides are already split in
energy, thus avoiding a direct hybridization, which keeps the
gap closed, in contrast to its counterparts in ribbons A and B.

Interestingly, the gap oscillation with even/odd number
of layers recently reported in Ref. [13] originates in the
alternation between symmorphic and nonsymmorphic lattices
in three dimensions, which can be understood as a 3D
counterpart of our results.

In conclusion, we showed that, although the Chern number
and topological classification of insulators remain a bulk
property, the reduced symmetry of the ribbons and the
characteristics of its edge terminations play a fundamental role
in the topological state properties. Particularly, we focused on
the TCIs given by IV-VI monolayers, whose pair of distinct
atoms lead to distinct sublattices, similarly to graphene. While
different cuts of the bulk in graphene give us the armchair
and zigzag ribbons, here we identify five main types of
ribbons due to the more complex structure of the lattice.
Interestingly, we find that the extra topological protection
introduced by nonsymmorphic symmetry yields protected
crossings for ribbons of arbitrary width. This is in contrast
with the usual topological protections, where the gaps are
only asymptotically closed for large enough samples. The
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extra nonsymmorphic protection of the ribbon could not be
predicted by the bulk topological classification, since the bulk
is symmorphic. This feature may allow topological properties
to be explored in nanoscale nonsymmorphic TIs.
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