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Ion-beam sputtering (IBS) is a cost-effective technique able to produce ordered nanopatterns on the surfaces
of different materials. To date, most theoretical studies of this process have focused on systems which become
amorphous under irradiation, e.g., semiconductors at room temperature. Thus, in spite of the large amount of
experimental work on metals, or more recently on semiconductors at high temperatures, such experimental
contexts have received relatively little theoretical attention. These systems are characterized by transport
mechanisms, e.g., surface diffusion, which are anisotropic as a reflection of the crystalline structure not being
overruled by the irradiation. Here, we generalize a previous continuum theory of IBS at normal incidence, in
order to account for anisotropic surface diffusion. We explore systematically our generalized model in order
to understand the role of anisotropy in the space-ordering properties of the resulting patterns. In particular, we
derive a height equation which predicts morphological transitions among hexagonal and rectangular patterns as
a function of system parameters and employ an angular correlation function to assess these pattern symmetries.
By suitably choosing experimental conditions, it is found that one might be able to experimentally control the
type of order displayed by the patterns produced.
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I. INTRODUCTION

Ion-beam sputtering (IBS) is a technique employed to
efficiently nanostructure surfaces [1]: a solid target is bom-
barded with energetic ions, which erode material inducing
self-organized pattern formation at the target surface. There is
a wide technological interest in this technique, since it allows
us to obtain ordered nanostructures with controlled roughness,
wavelength, and orientation [2,3]. Moreover, it is scalable,
cost efficient, and can be used in many materials, including
semiconductors, metals, and insulators. One challenge that
still limits the widespread use of IBS is the lack of a unified
theoretical framework which guides experimental designs.

In this regard, continuum models have been relatively
successful in describing the dynamical behavior of these
nanostructures, typically in terms of macroscopic variables
like the target surface height. For materials which are or
become amorphous under low-energy (E � 1 keV) IBS, such
as semiconductors [4], Bradley and Harper (BH) pioneered this
approach through a linear continuum theory which explains
the formation of ripples and their orientation [5], based on
Sigmund’s theory of sputtering [6] and Mullins’ thermal
surface diffusion [7]. The success of this model in accounting
for the origin of the patterns triggered an intense activity
and further generalizations. In particular, relevant nonlinear
corrections were identified in Ref. [8], leading to an equation
of the Kuramoto-Sivashinsky (KS) type [9]. Importantly,
nonlinearities were seen to moderate the pattern-forming linear
instability and eventually stabilize the surface morphology.

The BH equation and its generalizations were similarly
derived as in Ref. [5], by adding together physically diverse
contributions into a single equation for the target height.
Alternatively, as shown in Refs. [10] and [11], one can

describe the dynamics of two different fields, the surface
height and the density of material (e.g., adatoms, advacancies)
subject to transport at the surface. This approach describes
surface dynamics successfully in many different contexts,
from granular matter [12] to epitaxial growth [13]. In the IBS
context, it enables improvements [9], most notably by coupling
different physical mechanisms in a natural way. For instance
irradiation is expected to influence surface diffusion and be
reflected in the corresponding terms in the height equation,
typically as a linear high-order derivative term. However, direct
expansion of Sigmund’s contribution in the erosion velocity to
such linear [14,15] or nonlinear orders [16,17] are affected by
consistency issues with respect to pattern formation [18–20].
Such types of issues do not occur in two-field formulations
[9]. Thus, the KS equation was consistently generalized into
the so-called extended KS (eKS) model for IBS [21,22]. For
normal incidence conditions, this model has been studied for
one-dimensional (1D) systems [23], and for 2D systems and
rotating targets [24]. Oblique incidence is studied in Ref. [25].
While being a phenomenological approximation of fuller
hydrodynamic descriptions [26], two-field modeling provides
a generic framework which allows us to modify the interface
equation when improved models of erosion and/or transport
are considered. To date, the two-field model and/or the eKS
equation have been (semi)quantitatively validated in several
IBS experiments [27–31].

The scenario just described focuses almost exclusively on
targets for which the crystalline structure is overruled by the
IBS process. However, there are important instances in which
this is not the case, most notably metals [2,32] and semicon-
ductors at high temperature [33–35]. In both cases, the strong
dependence of the diffusivities of adatoms and advacancies
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on the crystallographic direction can play a crucial role in
the pattern formation process. For metals, the surface is not
amorphized after ion impact. For semiconductors, increasing
temperatures above the recrystallization value analogously
restores dynamical dominance of crystalline anisotropies. As
discussed in Refs. [32] and [36] for metallic systems, two
regimes can be distinguished: (i) diffusive regime, when pattern
formation is governed by thermal surface diffusion, typically
for intermediate temperatures and relatively low ion fluxes,
and (ii) erosive regime, when pattern formation is controlled
by the direction of the ion beam, usually for very high or
very low temperatures and for large enough ion fluxes. For
instance, the diffusive regime allows for anisotropic ripple
formation under isotropic, normal incidence conditions, and in
general implies that both the ripple wavelength and orientation
are controlled by temperature [32]. This behavior cannot be
explained using previous models of IBS for amorphous targets,
in which the diffusive terms are isotropic. A generalization of
the linear BH model to anisotropic materials was proposed
in Refs. [37] and [38]. Some properties observed in IBS
of metals could thus be described, but in this formulation
surface transport does not couple with erosion in a natural
way. Likewise, with a focus on strongly kinetic effects,
previous two-field [10,11] and one-field models [33–35] have
described crystalline anisotropies, but only at nonlinear order.
However, in principle under these conditions surface diffusion
currents need to include anisotropic linear terms [39,40],
which account for, e.g., the direction dependence of barriers
to adatom/advacancy diffusion on terraces, along step edges,
etc. [41].

In view of the above, there is a need for studies in which
crystalline anisotropies to material transport are systematically
addressed, for surfaces undergoing low-energy IBS. Already
the simplest scenario of anisotropic linear surface diffusion
can lead to nontrivial modifications of pattern properties,
even if possibly not modifying others, such as stability phase
diagrams [39,40]. For instance, recent experiments with gold
targets [30,42] have obtained highly ordered nanodot patterns
by sequential ion-beam sputtering (SIBS). The procedure
consisted of sputtering under normal incidence a prepatterned
ripple structure previously obtained by oblique bombardment.
When the initial surface is flat and not prepatterned, a
more disordered dot pattern is obtained, which still shows
square in-plane order [42]. Although the (isotropic) eKS
model reproduces many of the experimental properties of the
ensuing nanobead pattern [30,42], it is not able to predict this
square symmetry, being limited to describing more isotropic,
hexagonal order. Square patterns of dots have been also
reported for IBS of semiconductor substrates such as Si or
Ge, when metallic contaminants are co-deposited [43,44].
Even though contamination had been neglected in the original
derivation of the eKS model, the latter has proven to have a
large predictive power even for IBS experiments on Si where
metallic impurities are known to be relevant [28]. Hence, it
is conceivable that generalizations of the eKS equation that
incorporate surface anisotropies can account for nonhexagonal
(e.g., square) pattern symmetries.

In this paper we put forward a two-field model of IBS
nanopatterning under conditions in which anisotropies to

surface transport are relevant. As a basis for further studies,
our goal is to demonstrate nontrivial effects arising already
within the simplest anisotropic scenarios, which will motivate
our choices in the modeling of both transport and irradiation-
related mechanisms. As a result, we obtain a generalization
of the eKS equation, which is integrated numerically for
normal ion incidence. Our results show that anisotropic
surface diffusion has nontrivial effects and allows us to
reproduce nanopatterns with different local ordering structures
in monoelemental systems, from hexagonal to square, akin to
those experimentally reported for IBS of metals [30,42].

This paper is organized as follows. Our generalized two-
field model with anisotropic diffusion is put forward in
Sec. II. In principle, the model holds for arbitrarily oblique
ion incidence. However, in order to isolate the effect of
anisotropy in diffusion, rather than in irradiation, we then
restrict ourselves to normal incidence. For this case we derive
an equivalent interface equation which generalizes the eKS
model. This nonlinear equation is studied numerically in
Sec. III, where the effect of each one of the parameters which
control the system behavior is discussed in detail. Finally,
Sec. IV contains our conclusions and an outlook on future
developments. Some details on our modeling are provided in
the Appendix.

II. GENERALIZED TWO-FIELD MODEL

A. Derivation

A two-field model is a system of two coupled partial
differential equations describing the temporal evolution of
two important macroscopic variables [9]. The first variable
corresponds to the height of the bombarded surface, h(x,t),
at substrate position x = (x,y) and time t . The second one
describes the thickness (which, for a fixed atomic volume,
is proportional to the density) of the mobile surface adatoms
layer, R(x,t). For semiconductors at room temperature, irradi-
ation creates an amorphous layer with a thickness of the order
of the ion range [4], within which transport can be described
in terms of viscous flow [26,45,46]. However, for metals or
for semiconductors at high temperatures, such amorphization
does not take place [32,36], so that the surface layer on which
transport occurs can be assumed to have roughly an atomic
thickness. In such cases, the dynamics of h and R are coupled
by mass conservation as

∂R

∂t
= (1 − φ)�ex − �ad − ∇ · J, (1)

∂h

∂t
= −�ex + �ad. (2)

Here, �ex is a function that describes the rate at which target
atoms are excavated (locally decreasing h) and can become
mobile (locally increasing R), while �ad models the rate of
atom addition back to the solid (increasing h and decreasing
R). The parameter φ ∈ [0,1] measures the fraction of eroded
atoms that are actually sputtered away from the surface, while
φ̄ = 1 − φ measures the fraction of eroded atoms that remain
subject to transport at the surface.

Equation (1) includes an additional conserved current,
J , which accounts for surface transport mechanisms. For
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instance, this current could readily incorporate Carter-
Vishnyakov (CV) contributions [47] due to mass redistribu-
tion, believed to be relevant in the case of semiconductors at
room temperature [48]. These have been employed in a number
of similar two-field models for IBS of compound systems, or
for IBS of monoelemental targets under concurrent impurity
co-deposition; see, e.g., Ref. [49] for a partial overview. For
monoelemental targets, CV-type effects can also be reflected
in �ex [21]. In any case, for metals or semiconductors at
high temperatures this type of mass redistribution is not
expected to play a role, nor is, on a more mesoscopic
level, surface-confined viscous flow [26,45,46,50]. The main
transport mechanism is expected to be, rather, thermal surface
diffusion. Microscopically, this is an activated process for
which energetic barriers exist, whose depths depend on the
crystallographic directions [51]. On a more coarse-grained
level, as, e.g., in Mullins’ classic theory [7], surface diffusion
is mediated by surface tension, which for metals is paradig-
matically anisotropic [52]. Mathematically, we thus consider
Fickian diffusion at the surface as described by

J = −D∇R, (3)

where D ∈ R2×2 is a (positive definite) diffusion tensor, rather
than a constant, that implements the present type of anisotropy.
Its most general form reads

D = M(ψ)

[
D‖ 0
0 D⊥

]
M−1(ψ) =

[
Dxx Dxy

Dxy Dyy

]
, (4)

where M(ψ) is a counterclockwise rotation matrix of angle
ψ which gives the orientation of the fast diffusion direction
with respect to the x̂ direction, so that D‖ � D⊥ > 0 without
loss of generality. Accurate estimations of anisotropy in
surface diffusion coefficients are in general complex, as many
underlying atomistic processes (such as terrace diffusion, edge
diffusion, or sticking to islands) are anisotropic. STM-based
estimates for, e.g., Si(001) obtain that diffusion can be up to
1000 times faster along than across dimer rows [53]. For Au
(111) faces, molecular dynamics simulations suggest a relative
variation of the surface diffusion coefficient by up to 100
when considering different steps [54]. Still, many uncertainties
exist; see, e.g., Ref. [51] for a review on the complexities
of quantifying surface diffusion at surfaces. At any rate, we
presently wish to explore (some of) the generic consequences
that diffusion anisotropies may have when in competition with
the kinetic processes induced by ion-beam irradiation.

Models of anisotropic surface diffusion which are similar to
Eqs. (3) and (4) have been employed to describe the dynamics
of, e.g., vicinal [55] and singular [56] surfaces in epitaxy,
which have been experimentally validated [57]. Note that
the present (surface diffusion) anisotropy is independent of
that induced by ion bombardment under an oblique angle of
incidence; consequently, it is still relevant under otherwise
isotropic normal incidence conditions. In principle, J could
incorporate additional terms, most notably (linear and nonlin-
ear) contributions depending on the surface height, which are
related with Ehrlich-Schwoebel (ES) anisotropic barriers to
surface diffusion [33–35,41,58]. However, the morphological
instability associated with these terms differs physically from
the BH instability. In order to assess more clearly the interplay
between anisotropic surface diffusion and IBS, at this stage

ES-related mechanisms are left for further work. They are
expected to play a significant role in patterns whose in-plane
order extends to a longer range, and in which wavelength
coarsening is more sizable, than in, e.g., experiments on
nanobead formation [30,42].

In order to close the system of Eqs. (1) and (2), the
excavation and addition rates have to be related to the density
of adatoms (R) and to the geometry of the substrate (h and its
space derivatives) themselves. For an arbitrary incidence angle
θ and assuming that the projection of the ion beam is along
the x̂ direction, we consider [21,22]

�ex = α0

[
1 + α1x

∂h

∂x
+ α2x

∂2h

∂x2
+ α2y

∂2h

∂y2

+α3x

(
∂h

∂x

)2

+ α3y

(
∂h

∂y

)2]
, (5)

where α0 = �Y0/nv > 0 defines the excavation rate of a
flat surface, being directly related to the sputtering yield,
Y0, the ion flux, �, and the number of atoms per unit
volume in the solid, nv . Typical values of these parameters
in the class of experiments that we are describing imply [25]
α0 ≈ 10−3 to 102 nm s−1.

In Eq. (5) the terms with coefficients α1x , α2j correspond
to the lowest linear-order approximation to the dependence
of the sputtering yield on the local height derivatives, as in
BH’s theory [5], while those with coefficients α3j characterize
the corresponding lowest-order nonlinear corrections [8].
Explicit forms for these parameters can be derived from
physical models of the influence of ion irradiation on the
surface dynamics. Thus, assuming, e.g., the predominance of
sputtering events as described within Sigmund’s linear cascade
approximation, the coefficients αij are shown to depend on
physical parameters such as the average ion flux and energy,
their penetration depth, and the lateral stragglings of the space
distribution of collision cascades [8,15]. More recently, so-
called crater function mechanisms [59,60] have additionally
related the coefficients αij with material redistribution taking
place at the surface.

Due to the assumed geometry for ion bombardment, for
normal incidence (θ = 0) one has α1x = 0, while α2x =
α2y , α3x = α3y , as can be verified in the physical models
just mentioned that provide specific dependencies of αij on
physical parameters, in particular with the incidence angle.
In general, in the absence of CV-type effects, one expects
α2j > 0 leading to pattern formation (BH instability), while
nonzero α3j guarantee nonexponential increase of the surface
roughness for long times, as mentioned above.

Finally, for the local addition rate we consider [22]

�ad = γ0

[
R

(
1 + γ2x

∂2h

∂x2
+ γ2y

∂2h

∂y2

)
− Req

]
, (6)

where γ0 > 0 is the nucleation rate; i.e., 1/γ0 represents the
average time in which adatoms incorporate to a flat surface,
typically in the range of picoseconds. As discussed earlier
[24,25], in the absence of ion-beam driving Eq. (6) describes
Mullins’ thermal surface diffusion, in such a way that Req is
related with the surface concentration of mobile species, while
γ2j � 0 are surface tension coefficients which, in general, can
also be anisotropic.
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The two-field model (1)–(6) supports a flat solution in
which the surface height erodes with a uniform speed and both
h and R are space-independent functions [61]. Performing
a standard linear stability analysis of perturbations of this
solution which are periodic with wave vector k, we can obtain
the pattern wavelength, 
i , along each direction i = x,y within
linear approximation. Specifically, we define 
i = 2π/k


i as
the length scales at which the dispersion relation is maximized
in each direction. In our case [61], k


i = (εφγ0α2i/2Diγ2i)1/2,
where the nondimensional parameter ε ≡ α0/(γ0Req) turns out
to be small as a consequence of the difference between the
typical time scales associated with diffusion and the ion-beam
driving [25]. Indeed, for the typical values of α0 and γ0

quoted above, and if Req ≈ 1 nm, then ε ≈ 10−12 to 10−7. This
separation in time scales allows one to simplify the analysis
of the mathematical model [Eqs. (1) and (2)] since it allows
one to perform a multiple-scale perturbative analysis to obtain
a closed equation for the height. Analysis that closely follows
Ref. [25] (see the Appendix for full details) leads to an effective
nonlinear equation for the time evolution of h, which reads

∂h

∂t
= γx

∂h

∂x
+

∑
i=x,y

ij

∂2

∂i∂j

(
∂h

∂x

)

+
∑
i=x,y

[
−νi

∂2h

∂i2
+ λ

(1)
i

(
∂h

∂i

)2]

−
∑

i,j,k=x,y

[
Kijk

∂2

∂i∂j

(
∂2h

∂k2

)
+ λ

(2)
ij

∂2

∂i∂j

(
∂h

∂k

)2]
,

(7)

where the coefficients γx , ij , νi , λ
(j )
i , and Kijk depend on ion

energy, flux, incidence angle, etc., through their dependencies
on αij and all other parameters entering �ex and �ad, as
specified in the Appendix in Eq. (A28).

Equation (7) is partially similar to the evolution equation
obtained in Ref. [22] for isotropic surface diffusion and oblique
ion incidence. However, in that case the only geometrical
condition responsible for breaking the x ↔ y symmetry was
the nonzero value of the incidence angle, in such a way that
the system was symmetric under space reflection in the y

direction, but not in the x direction. In the case of Eq. (7), this
same cause for space anisotropy is enhanced by anisotropic
surface diffusion and by anisotropic surface tension. As a
consequence, not only are the x ↔ y and x ↔ −x symmetries
broken, but the y ↔ −y symmetry is broken as well, now by
the two latter conditions. The differences between Eq. (7) and
the one obtained in Ref. [22] will be further discussed in the
following sections, for the case of normal ion incidence.

B. Effective equation for normal incidence

Having as reference experimental behaviors those reported
in Refs. [42] and [30], in which an initial Au-prepatterned
surface was further irradiated at normal incidence, we will
focus here on such condition θ = 0. This implies [24,25]
α1x = 0, α2x = α2y = α2, and α3x = α3y = α3, and will allow
us to isolate the effects purely due to anisotropies in surface
diffusion. For this reason, we will moreover assume isotropic

surface tension, namely, γ2x = γ2y = γ2. As in Refs. [42] and
[30], we will also take x and y to be aligned with the substrate
directions along which surface diffusivities are optimized.
Under these conditions, both the excavation and the addition
rates become isotropic, Eq. (7) taking the simpler form

∂h

∂t
= −ν∇2h + λ(1)(∇h)2

−∇ · [K∇(∇2h)] − ∇ · {�2∇[(∇h)2]}, (8)

where K and �2 are matrices defined as

K =
[
Kx 0
0 Ky

]
and �2 =

[
λ(2)

x 0
0 λ(2)

y

]
. (9)

The number of independent parameters in Eqs. (8) and (9)
has reduced dramatically, the remaining ones being
ν = φα0α2, λ(1) = −φα0α3, Ki = DiReqγ2 + (φReqα0γ2 −
φ̄Diα0/γ0)α2, and λ

(2)
i = (φReqα0γ2 − φ̄Diα0/γ0)α3, where

i = x,y. It is important to note that, in contrast to the equation
obtained in Refs. [22,24], in which only terms of the form ∇2h

and (∇h)2 appear under normal ion incidence, in the case of
Eq. (8) the second-order derivatives ∂2/∂x2 and ∂2/∂y2 are
weighted by parameters that depend on the different diffusion
coefficients.

Under experimental conditions leading to pattern forma-
tion, ν > 0 in Eq. (8). With respect to the coefficients of the
linear fourth-order derivative term in this equation, note that
they contain contributions that couple different physical mech-
anisms in a natural way. Thus, the contribution proportional to
surface diffusivity and surface tension is completely analogous
to the form of Mullins’ surface diffusion, although note that
the coefficients may also include ion-induced contributions
which are temperature-independent [25]. The remaining term
in Ki couples erosion (being proportional to α2) with transport
(surface diffusivity) and surface tension, further implementing
ion-induced diffusivity. We will consider conditions in which
this fourth-order derivative term has a net smoothing effect, so
thatKi > 0. Finally, we consider the products λ(1)λ

(2)
j to also be

positive. Mathematically, this condition is required for Eq. (8)
to be free of so-called “cancellation modes,” known to occur
under appropriate conditions in related continuum models,
such as the anisotropic KS [62] and eKS [18,22] equations.

We next rescale Eq. (8) in order to work in dimensionless
units. This allows us to perform generic statements on the
system behavior, while at the same time it also simplifies
the discussion by minimizing the number of free parameters.
Hence, we define

x =
(K

ν

) 1
2

x ′, y =
(K

ν

) 1
2

y ′, t = K
ν2

t ′, h = ν

λ(1)
h′,

where K = (Kx + Ky)/2. Dropping the primes, Eq. (8) now
reads

∂h

∂t
= −∇2h + (∇h)2 − 2∇ · [A∇(∇2h)]

− 2r0∇ · {B∇[(∇h)2]}, (10)
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where the matrices A and B are

A = K
Kx + Ky

=
[
αx 0
0 1 − αx

]
,

B = �2

λ
(2)
x + λ

(2)
y

=
[
βx 0
0 1 − βx

]
,

with

αx = Kx

Kx + Ky

, βx = λ(2)
x

λ
(2)
x + λ

(2)
y

,

r0 = ν

λ(1)

(
λ(2)

x + λ(2)
y

Kx + Ky

)
.

Given that three independent rescalings have been performed
on Eq. (8), which depends on six independent parameters, the
final Eq. (10) depends on three independent constants only,
αx , βx , and r0. Note that in all the physically relevant cases,
r0 > 0.

It is interesting to stress some of the features of Eq. (10): (i)
As expected, the anisotropies are only caused by the different
diffusivities Dx and Dy . This is reflected in the fact that the
parameters αx and βx will generally take values different from
1/2. Therefore, the weights for both directions in the last
two terms of Eq. (10) will be different. When αx = βx =
1/2 the isotropic diffusion equation for normal incidence
proposed in Ref. [21] is recovered. (ii) The dimensionless
parameter r0 is the squared ratio of two length scales. One
of these length scales is computed as the ratio between the
parameters of the conserved Kardar-Parisi-Zhang (KPZ) [22]
nonlinear terms appearing in the equation, λ

(2)
i , and that of

the nonconserved KPZ nonlinearity that ensues, λ(1), namely,
[(λ(2)

x + λ(2)
y )/λ(1)]1/2. The second length scale is set by the

parameters of the linear terms, as [(Kx + Ky)/ν]1/2. The
parameter combination r0 thus provides an estimate of the
relative relevance of the various contributions that compete in
the dynamics of the system.

As just stressed, in general Eq. (10) is anisotropic; thus
the patterns will present different wavelengths along each
principal direction. These can be estimated as functions of the
parameters of the equation, by performing a standard linear
stability analysis [25]. This leads to


i = 2π

k

i

= 2π

√
2Ki

ν
≈ 2π

√
2Diγ2i

εφγ0α2i

, (11)

where we have substituted the values of Ki and ν provided
after Eq. (9). As expected, these wavelengths coincide with
the values obtained in Sec. II for the linear stability analysis
of the full two-field model. Importantly, the expressions
obtained for 
i can be often used to perform (semi)quantitative
comparisons between the present type of continuum models
and experiments at short times, prior to the onset of nonlinear
effects [28,30,63].

III. RESULTS

Thus far, we have been able to derive an effective di-
mensionless equation for normal ion incidence that contains
all the physical mechanisms of the problem and depends on

three free parameters only, Eq. (10). In this section we study
systematically this equation by independently changing the
values of each of these three parameters. Given the strong non-
linearities in the equation, we resort to a numerical integration.
Specifically, our code was implemented in MATLAB, being
based on a standard finite-difference scheme in space (for the
linear terms) and a fourth-order Runge-Kutta method for the
time evolution, using a spatial grid with 256×256 nodes, a time
step �t = 0.01, and a space step �x = 1. The discretization
of the nonlinear terms was based on the one proposed by
Lam and Shin in Ref. [64]. We have employed periodic
boundary conditions and initial height values which are
uniformly distributed between 0 and 0.1. Besides inspection
of the resulting surface morphologies, in all cases we have
calculated the global surface roughness, W , as well as the
wavelengths, 
x and 
y , after averaging over 10 realizations
of the initial condition for each parameter set. Additionally,
we have computed the normalized autocorrelation function,
RN , that allows one to determine the local arrangement of the
patterns and is defined as [65]

RN (x,t) = 1

W

1

L2

∫
[h(x + r,t)h(r,t) − h̄2(t)]d r, (12)

where W is the surface roughness and h̄ is the mean height
over the whole spatial grid of size L×L.

A. Isotropic case: αx = βx = 1/2

To begin with our analysis, and for the sake of later
comparison with anisotropic parameter conditions, we first
recall the results obtained in Ref. [24] for isotropic systems
under normal ion incidence, as a special case of our model in
which both surface diffusivities are equal, D = Dx = Dy . In
this case Eq. (8) simply reduces to the eKS equation,

∂h

∂t
= −ν∇2h − K∇4h + λ(1)(∇h)2 − λ(2)∇2(∇h)2, (13)

where K = Kx = Ky and λ(2) = λ(2)
x = λ(2)

y . After a rescaling
which is similar to the one employed in the previous section,
this equation reduces to the particular case of Eq. (10) in
which αx = βx = 1/2. Note that, in principle, the simulations
reported in Ref. [24] correspond to the unrescaled Eq. (13).

The following features for the surface roughness and pattern
wavelength were obtained in this case [24]: (i) The surface
morphology shows a short-time transient behavior. During
this interval W grows exponentially with time and a dot
pattern appears whose characteristic wavelength is accurately
described by the linear analysis. Indeed, this stage is controlled
by the linear terms ν∇2h and K∇4h. (ii) After this linear
regime, a crossover takes place towards a behavior which is
controlled by the conserved nonlinear term λ(2)∇2(∇h)2, in
which the growth of W and 
 in time can be approximated
by power laws, with effective exponents whose values depend
on equation parameters. (iii) For long times, the nonconserved
nonlinear term λ(1)(∇h)2 induces eventual saturation of W and

, and height disorder at large scales.

Actually, the relative duration of the various dynamical
regimes turns out to be controlled by the parameter r0 [23,24].
Thus, large r0 values correspond to the predominance of the
conserved KPZ nonlinearity at intermediate times, allowing
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FIG. 1. (a) Top-view surface morphologies (left column), normalized autocorrelation functions, RN (center column), and normalized
autocorrelation functions along the x and y directions, RN

x and RN
y , respectively (right column), predicted by Eq. (10) at t = 1000 for αx = 0.5,

βx = 0.5, and different values of r0 (see legends). (b) Temporal evolution of the roughness, W , and the wavelengths along the x and y directions,

x (solid symbols) and 
y (open symbols), respectively, for the same parameter values as in (a).

for a stronger coarsening process and an improved order of
the height values throughout the surface, namely, a smaller
roughness. On the contrary, small r0 values correspond to a
nonlinear regime dominated by the KPZ nonlinearity, with a
relatively short intermediate coarsening regime and a rougher
surface at long times.

At this point, it is important to remark that the 1D and 2D
behaviors of Eq. (13) differ quite strongly with respect to the
ordering properties. To begin with, note that, given the fact that
the band of unstable modes extends down to k = 0, combined
with the occurrence of the nonconserved KPZ nonlinearity,
order in the pattern can be short range at most [66]. This
does not prevent the equation from providing a quantitatively
accurate description of experimental patterns [28,63]. Then,
while relative homogeneity in height values correlates posi-
tively with an enhanced “in-plane” order for Eq. (13) in 1D
[23], this is not the case in 2D. Namely, for the 2D case, smaller
r0 values seem to feature improved in-plane short-range
hexagonal ordering of the dot structure. Conversely, larger
values of r0, which allow for stronger coarsening (wider cells)
and smaller overall roughness, correspond to surfaces with
poorer in-plane ordering. For a thus-far unreported explicit
comparison, see Fig. 1, in which the r0 = 10 and 50 cases are
explicitly illustrated. The results shown in Fig. 1 also show
that in both cases the wavelengths along each direction, 
x and

y , are equal, since the surface diffusion is isotropic.

The rich crossover behavior of Eq. (13) will be useful to
better understand the morphologies described by Eq. (10) as a
function of parameter values.

B. General values of αx

To study the effect of nonisotropic values of the parameter
αx mediating the linear surface-diffusion terms in Eq. (10), we
have integrated numerically Eq. (10) for r0 = 10, βx = 0.5,

and values of αx ∈ [0, 1
2 ]. Due to the symmetry of Eq. (10)

with respect to reflections of αx around the isotropic 1/2 value,
the behavior for αx ∈ [ 1

2 ,1] can be easily obtained from our
simulations by simply swapping the x and y axes.

Figure 2(a) shows the surface morphologies, the normalized
autocorrelation function, and cross-cuts of the normalized
autocorrelation function along the x and y axes, RN

x and RN
y ,

respectively, at t = 1000 and for different values of αx . Note
that, as discussed above, αx = 0.5 corresponds to the isotropic
case already studied in Ref. [24]. As noticed by inspecting
the left column of the figure, the surface morphology does not
change qualitatively for different values of αx . This robustness
with respect to αx is further evidenced in the middle and right
panels of Fig. 2(a), in which RN is shown side-by-side with RN

x

and RN
y . The x and y wavelengths, 
x and 
y , can be obtained

by measuring the distance from the origin to the first maximum
of the autocorrelation function along the corresponding axis.
For all the values of αx considered, we obtain 
x � 
y , the only
significant difference being that, for αx = 0.25 and αx = 0.3,
the first peak of the autocorrelation function along the y

direction is higher than the first peak along the x direction,
both peaks having the same heights for αx = 0.5. This implies
that, for αx ∈ (0,0.5), dots are more correlated along the y

direction, although the differences are not substantial.
Figure 2(b) shows the time evolution of the global rough-

ness W and wavelengths, 
x (solid symbols) and 
y (open
symbols), for the same values of αx as in Fig. 2(a). As for the
isotropic eKS model, three time regimes can be distinguished:
Initially the roughness grows exponentially, up to intermediate
times when its growth rate slows down; eventually it reaches a
similar time-independent value for all αx . On the other hand,
the behavior of the pattern wavelengths with αx is different.
Initially both 
x and 
y start growing slowly, with 
y being
larger than 
x for αx < 0.5. This is due to the fact that the
fourth-order linear terms controlled by the parameter αx are
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FIG. 2. (a) Top-view surface morphologies (left column), normalized autocorrelation functions, RN (center column), and normalized
autocorrelation functions along the x and y directions, RN

x and RN
y , respectively (right column), predicted by Eq. (10) at t = 1000 for βx = 0.5,

r0 = 10, and different values of αx (see legends). (b) Temporal evolution of the roughness, W , and the wavelengths along the x and y directions,

x (solid symbols) and 
y (open symbols), respectively, for the same parameter values as in (a).

expected to play an important role precisely at the small spatial
and time scales at which the linear instability develops. As a
matter of fact, looking at the expressions of the wavelengths
predicted by the linear instability analysis, Eq. (11), we can
easily note that 
x should be smaller than 
y if Kx < Ky ,
which is indeed the case for αx < 0.5. This linear transient
behavior is followed by a coarsening process controlled by
the nonlinear terms, which finally drive both wavelengths
to similar saturation values. Thus, since the parameters of
the nonlinear terms r0 and βx are fixed, the final surface
topographies are very similar at long times for the different
values of αx . Additionally, because the nonlinear terms are
isotropic (βx = 0.5) the wavelengths reach similar values in
both directions at long times. In the next sections we study the
impact of the coefficients of the nonlinear terms on the system
dynamics and pattern formation and evolution.

C. General values of βx

We next consider the influence on the topography of
the anisotropic, conserved nonlinearity which is controlled
in Eq. (10) by the parameter βx . To this end, numerical
integrations of Eq. (10) have been performed for fixed values
of αx and r0, and βx ∈ [0, 1

2 ]. Similarly to the case of αx ,
results for βx ∈ [ 1

2 ,1] can be deduced from the simulations
shown next by swapping the x and y axes. Figure 3(a) displays

the morphology, the normalized autocorrelation function,
and the autocorrelation function along the x and y axes
at t = 1000 for different values of βx . The additional case
βx = 0.5 for the chosen αx corresponds to the isotropic system
already shown on the third row of Fig. 2(a). The temporal
evolution of the surface roughness and wavelengths is shown in
Fig. 3(b).

If βx is small, the conserved nonlinearity acts predomi-
nantly along the y axis, inducing stronger coarsening behavior,
hence 
y becomes larger than 
x for times beyond the linear
regime; see Fig. 3(b). Actually, this behavior is associated with
a change in the pattern symmetry; see, e.g., the βx = 0.2 case
in Fig. 3(a). Indeed, the larger value of 
y implies that the dots
or cells become more elongated in the y direction, leading
to the emergence of a ripple pattern with periodicity parallel
to it or, equivalently, with ridges along the x axis. This can
be noted both in the morphology and in the autocorrelation
functions, and is in spite of the fact that we are considering
normal incidence conditions for the ions. Note, this is a purely
nonlinear effect, as Eq. (10) is completely isotropic at linear
order for this parameter condition. On the other hand, if βx

increases, the elongation of the dots along the y direction is
attenuated, they form arrangements with a more square (rather
than rectangular) symmetry, and the effect is mitigated; see
Fig. 3(a) for βx = 0.3. At any rate, for βx �= 1/2 the isotropy
of the pattern is clearly broken.
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FIG. 3. (a) Top-view surface morphologies (left column), normalized autocorrelation functions, RN (center column), and normalized
autocorrelation functions along the x and y directions, RN

x and RN
y , respectively (right column), predicted by Eq. (10) at t = 1000 for αx = 0.5,

r0 = 10, and different values of βx (see legends). (b) Temporal evolution of the roughness, W , and the wavelengths along the x and y directions,

x (solid symbols) and 
y (open symbols), respectively, for the same parameter values as in (a).

With respect to the time evolution of the surface roughness,
Fig. 3(b) indicates an unambiguous dependence with the value
of βx , which contrasts with the results obtained for αx in
the preceding section. For small values of βx , saturation
occurs later and the saturation value is larger. This seems
reminiscent of results for the 1D eKS equation when increasing
the strength of the conserved KPZ nonlinearity with respect
to the remaining terms in the equation [23]. On the other
hand, for short times the roughness values are practically
the same for all βx , suggesting that such an increase of the
roughness is indeed a nonlinear effect. Regarding the pattern
wavelengths in the two directions, both grow very slowly and
take similar values during the short times associated with the
linear instability. At intermediate times, both grow at increased
rates; ultimately, they reach very different saturation values
depending on the specific value of βx . Indeed, as already noted
above, for relatively small values of this parameter the pattern
wavelength in the y direction, 
y , becomes larger than 
x , as
can be clearly appreciated in Fig. 3(b) already for βx = 0.3.
For even smaller values of βx , such as βx = 0.2, 
x interrupts
its growth process early while 
y keeps growing for a long
time (note that its coarsening process has not yet stopped at
t = 1000 for βx = 0.2), resulting in very different 
y > 
x .
This is due to the fact that the conserved nonlinear term,
which induces the coarsening process, is stronger along the
y direction. In summary, the role of βx is twofold: it modifies
the local arrangement (symmetry and order) of the patterns
and it amplifies/reduces the coarsening dynamics selectively
along one of the system directions.

D. General values of r0

We continue in this section with the morphological effects
of the third independent parameter in Eq. (10), namely, the ratio

of nonlinear to linear length scales, r0. The simulation results
for different values of r0 are shown in Fig. 4(a). Analogously to
the isotropic case for normal incidence studied in Sec. III A and
illustrated in Figs. 1(a) and 1(b), in the presence of anisotropic
surface diffusion the patterns present more coarsening and a
smaller roughness when r0 is larger. However, the quality of
in-plane ordering of the dots is poorer. For the parameter values
considered in Fig. 4(a), slightly elongated dots group together
following square arrangements, as can be noted looking at the
surface morphologies. However, the short-range square order
is hindered for larger r0 values. This is also reflected in the
autocorrelation function, where a more perfect square pattern
is revealed for smaller values of r0.

The temporal evolution of the roughness and wavelengths
for different values of r0 are represented in Fig. 4(b). Again
three main regimes can be distinguished. The roughness grows
exponentially in the first, linear regime, followed by power-law
growth, and by saturation at very long times. As in Refs. [22]
and [24], the final roughness is indeed smaller for large r0

values, the long-time configurations showing more uniform
height values. For such large r0, the two wavelengths 
x and 
y

are also larger, due to the longer coarsening process undergone.
Note, because αx = 0.5, the linear terms have the same effect
in both directions. Since βx = 0.3 in the simulations shown,
and as we saw in the previous section, the wavelength grows
more in the y direction and patterns with 
y > 
x are always
obtained.

E. Unusual patterns and order under normal incidence:
Ripples and square or hexagonal dot arrangements

As suggested by Fig. 4(a), for intermediate values of
βx it is possible to generate surfaces for which the dot
patterns display short-range order with square symmetry. Such
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x (solid symbols) and 
y (open symbols), respectively, for the same parameter values as in (a).

a morphology is locally characterized by each single dot
having on average four nearest neighbors located along the
two Cartesian directions. Here we employ the normalized
height autocorrelation function, RN , to quantify the spatial
order on the surface. If the morphology does correspond to
a pattern with such a square-symmetric order, the central
maximum of RN lies within a perfect square formed by eight
nearest satellite peaks on a square arrangement. Although the
surfaces described by Eq. (10) present this type of structure to
a certain degree, it is not possible to obtain a strictly square
symmetry due to the anisotropy introduced by the conserved
nonlinearities controlled by the parameter βx . Indeed, the
heterogeneous surface diffusivities in the two space directions
lead to different wavelengths, even under isotropic (normal
incidence) irradiation, producing a relatively ordered array of
dots, but with different typical sizes in each direction. For
β ∈ (0,0.5), dots are more correlated with their neighbors
along the x direction than along the y direction, as can be
noticed in the height autocorrelation functions obtained in
the previous sections. See for example Fig. 4(a), where the
correlation values are clearly larger along the x axis. Recall
that decreasing βx in this range of values actually increases
the elongation of dots along the y axis.

Enhancement of local square order can be achieved bringing
together the previous property with the fact that local order is
improved for relatively small r0 values. Thus, Fig. 5 displays
the surface morphologies obtained for r0 = 5 and different
values of βx and their corresponding autocorrelation maps.
The symmetry of the short-range order of the pattern can
be identified easily in the autocorrelation map, which has
been calculated for the (100×100) black boxes indicated.
Indeed, since the morphology is disordered at long distances,
some of the local order information is lost when the height
autocorrelation function is computed in the whole domain.

At any rate, Fig. 5 shows how dots with square-symmetric
short-range order can actually occur for intermediate values of
βx when the elongation along the y direction exists but is not
excessively pronounced.

Closer inspection of Fig. 5 actually suggests that up to three
main types of patterns can be expected for Eq. (10), depending
on the value of βx : ripples (with a dotted substructure) and dots
with square or with hexagonal short-range order. Moreover,
as we have already seen, the degree of local order of the
pattern can be enhanced by tuning the value of r0. Indeed,
the three main different patterns just mentioned can be clearly
distinguished in Fig. 5, where r0 = 5 has been fixed. In
the case of isotropic surface diffusion (βx = 0.5), dots with

x = 
y group into hexagonal short-range order, where each
dot tends to be in the center of a hexagon formed by the
nearest-neighbor dots, and local regions tend to have the
same average height. For intermediate values βx ∈ [0.25, 0.3],
square-ordered elongated dots with 
y > 
x occur. Moreover,
for these parameter values the surface heights becomes more
heterogeneous, different local regions presenting different
average heights. For even lower values of βx , a ripple structure
appears, with a periodicity along the y direction. Again this
morphology displays quite heterogeneous average heights in
different regions, while it still features a short-scale structure
of rather elongated dots which are quite ordered along the
x direction. Hence, decreasing the value of βx induces a
transition from short-range hexagonal, to square, and then to
rectangular ordering of the dots.

An analogous transition between hexagonal and square
patterns has been studied in Ref. [67] for the case of magnetic
fluids under applied magnetic fields. In this work the authors
employ an angular correlation function that makes use of
the discrete Fourier transform of the height field in order to
characterize the (hexagonal or square) symmetry of the pattern,
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FIG. 5. Top-view surface morphologies (left column) predicted
by Eq. (10) at t = 1000 for αx = 0.5, r0 = 5, and different values
of βx (see legends). Corresponding normalized autocorrelation
functions (right column) computed over the indicated squares of size
100×100.

and thus assess morphological transitions under changes
in external parameters. Here, we define a similar angular
correlation function, but relative to the values of RN , rather
than those of h(x,t). Specifically, the angular autocorrelation
function, P (ψ,t), which we propose to quantify the pattern
order is

P (ψ,t) = 1

L2
w

∫ [
RN (x,t)RN (M(ψ)x,t) − R̄2

N (t)
]
dx, (14)

where R̄N (t) is the space average of the autocorrelation func-
tion, RN (x,t), over a square window of lateral size Lw, and as
above M(ψ) is the counterclockwise rotation matrix of angle
ψ . The function P (ψ,t) thus measures the height correlation
at every position in the considered domain and compares
it with the result obtained at a position which is rotated
by an angle ψ . We further define the normalized angular
autocorrelation function as PN (ψ,t) = P (ψ,t)/P (0◦,t). The
reason for considering an area of lateral size Lw < L is because
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FIG. 6. Normalized angular autocorrelation function, PN (ψ,t),
at t = 1000 with Lw = 16 for the morphologies in Fig. 5 in which
βx = 0.1 (dotted red line), βx = 0.25 (solid blue line), and βx = 0.5
(dash-dotted green line). The dashed blue line shows PN (ψ,t) for
βx = 0.25 with Lw = 10.

some rotated points M(ψ)x could remain out of the considered
domain for a square grid. Besides, due to the global disorder of
the patterns induced by the KPZ nonlinearity, the short-range
order of the pattern needs to be quantified in smaller areas.

The normalized angular autocorrelation functions corre-
sponding to the three basic morphologies shown in Fig. 5
are displayed in Fig. 6. The local extrema in P (ψ,t) signal
how well correlated are the points in the morphology with
those rotated by an angle ψ . In all cases, due to the system
symmetry under a 2D space inversion (x,y) → (−x, − y), this
function is periodic with 180◦ period. For βx = 0.1 (dotted red
line) ripples form and the only rotation that leaves the system
unchanged is precisely one with ψ = 180◦, hence the maxima
in P (ψ,t) as a function of ψ are separated by this value. A
different behavior is found for βx = 0.25 (solid blue line),
when a dot pattern with square-symmetric order appears. In
this case the distance between consecutive maxima of P (ψ,t)
is 90◦, since the height correlation is itself maximized after a
rotation of 90◦ for a pattern with this type of order. Note that,
due to the large-scale disorder of the morphology, secondary
maxima are smaller than 1, indicating a smaller degree of
correlation. Improved correlation values for the secondary
maxima are obtained for βx = 0.5 (dash-dotted green line),
when dots group into short-range hexagonal order. In this
case the angular autocorrelation function suggests the best
correlation among surface points for ψ = 60◦ and ψ = 120◦,
signaling hexagonal symmetry in the dot arrangement.

We should remark that the size of the patterns and the
spatial range of the order can be different in each parameter
regime, which requires suitable window sizes for appropriate
assessment. In particular, the square-order dots pattern reaches
smaller distances than the ripples or the hexagonal dots
pattern, so that the maxima of the corresponding angular
autocorrelation function are smaller if the same lateral window
size is employed. As an example, the angular autocorrelation
function for βx = 0.25 using a smaller window is shown by
the dashed blue line in Fig. 6. We note that this window size
is more appropriate to measure the square-order pattern, since
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the peak values of the angular autocorrelation at ψ = 90◦ and
ψ = 270◦ are larger and, therefore, the square pattern can be
identified better.

IV. DISCUSSION AND CONCLUSIONS

Motivated by the experimental results in Refs. [42] and [30],
we have generalized the eKS model proposed in Refs. [21]
and [22] for anisotropic materials considering anisotropic
surface diffusion. We have obtained a continuum equation
for the surface height, Eq. (8), which, in contrast to the
isotropic eKS model, presents anisotropies caused by the
heterogeneous diffusivities along each substrate direction. This
model allows to reproduce rippled and square-ordered patterns
for normal incidence, akin to those observed in IBS of metals
[30,32,37,42]. In particular, in the experiments of Refs. [42]
and [30], prepatterned gold targets were bombarded at normal
incidence with Ar+ ions. Although the initial ripples influence
the pattern formation substantially—to the extent that dots
align preferentially along preexisting ripple ridges leading to
so-called nanobead structures, (semi)quantitatively described
by the eKS equation—rows of such nanobeads tend to further
align in such a way that, on average, each bead has four
nearest-neighbor beads: two along the same row and two in the
adjacent bead rows. Such short-range ordering had remained
beyond description by the eKS model, while it is similar to
what is obtained in Fig. 5; compare, e.g., with Fig. 1(c) in
Ref. [30].

Systematic numerical integration of the anisotropic model
at normal incidence was carried out, which has provided
indications on the effect of the various terms in the equation
and, consequently, of the underlying mechanisms behind each
one. In particular, we have focused on observables such as
the roughness W , the wavelengths along the two independent
directions, 
x and 
y , and the type of pattern and order that
ensues. Two main characteristics should be highlighted: (i)
Eq. (8) is able to predict patterns with 
x �= 
y and (ii) this
continuum model can also predict patterns with short-range
square order. Both features have been observed in IBS of
metals under normal incidence [30,32,37,42] and had not
been predicted by previous models. We have also introduced
an angular correlation function which has been proven to
usefully characterize quantitatively the pattern symmetry.
Furthermore, since the parameters of the equation depend
explicitly on physical conditions, it could be possible to design
specific experiments to control the resulting pattern if different
geometrical properties are required for applications. It is worth
mentioning that square patterns have also been observed in IBS
experiments on semiconductors (Si and Ge) when metallic
contaminants are co-deposited [43,44]. In those cases, the role
of metals is twofold: on the one hand they trigger pattern
formation even for angles below a critical one (a feature that
is not observed on clean experiments [48]) and, on the other
hand, they introduce anisotropy, as predicted by our model in
the present work.

On general grounds, these conclusions seem to substantiate
further the applicability of twofield models such as Eqs. (1)–(6)
for IBS of metallic systems in the erosive regime. One relevant
question in this connection is whether (anisotropy-enhanced)
short-range order of the type predicted by this model suffices to
account for all of the experimental morphologies, or whether

stronger ordering properties are required, akin to those found,
e.g., in IBS of binary materials [68].

Finally, the type of model and derivation that we have
employed may actually be helpful in two additional contexts in
which surface anisotropies play a role. One is IBS of metallic
systems under diffusive conditions [32] or of semiconductor
targets at high temperatures [33–35]. In both cases the
(anisotropic) crystalline structure proves to be of paramount
importance. Model (1)–(6) should probably be generalized in
order to account for anisotropic surface tension and diffusion,
allowing for nonlinear contributions. The second context is
that of surface nanopatterning by ion implantation, in which
anisotropic surface diffusion terms have been invoked in order
to account for experimental patterns with novel symmetries
[69].
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APPENDIX A: PARAMETER VALUES OF THE
ANISOTROPIC EFFECTIVE EQUATION

To obtain the effective height equation (7), we follow a
multiple-scales approach which is similar to that employed
in Refs. [22] and [25], but now assuming anisotropic surface
diffusion.

As shown in Sec. II and in Ref. [25],

k

x,y ∼ ε1/2, Re ω(k
) ∼ ε2, Im ω(k
) ∼ ε3/2, (A1)

where k
 is the wave vector characterizing the most unstable
Fourier mode of the system and ω(k) is the (complex) linear
dispersion relation characterizing the dynamics of periodic
perturbations around the flat homogeneous solution of the
coupled system (1) and (2) [66]. These scalings with ε

make it natural to consider the spatial variables X = ε1/2x

and Y = ε1/2y, that are of order unity at scales of the
order of the pattern wavelength 
, and to define the slow
time variables T1 = ε3/2t and T2 = ε2t , which are associated
with the translation and growth of the linear instability,
respectively. These variables will allow us to perform a
multiple-scale analysis and to obtain an effective (closed)
equation for h, instead of a coupled system for R and h. This
is possible because the dynamics of R is much faster than that
of h.

The derivatives with respect to the original space and time
variables are related with the derivatives with respect to the
new slow variables by the chain rule, as

∂

∂x
= ε1/2 ∂

∂X
, (A2)

∂

∂y
= ε1/2 ∂

∂Y
, (A3)

∂

∂t
= ε3/2 ∂

∂T1
+ ε2 ∂

∂T2
. (A4)
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The coupled equations (1) and (2) can be written in terms of these slow variables as

ε3/2 ∂R

∂T1
+ ε2 ∂R

∂T2
= (1 − φ)�ex − �ad + ε∇ · (D∇R), (A5)

ε3/2 ∂h

∂T1
+ ε2 ∂h

∂T2
= −�ex + �ad, (A6)

where

�ad = γ0{R − Req[1 − ε∇ · (�2∇h)]}, (A7)

�ex = γ0Req

{
ε + ε3/2α1x

∂h

∂X
+ ε2[∇ · (A2∇h) + ∇h · (A3∇h)]

}
, (A8)

and

�2 = diag(γ2x,γ2y), A2 = diag(α2x,α2y), A3 = diag(α3x,α3y),

∇ · (�2∇h) = γ2x

∂2h

∂X2
+ γ2y

∂2h

∂Y 2
, ∇ · (A2∇h) = α2x

∂2h

∂X2
+ α2y

∂2h

∂Y 2
, ∇h · (A3∇h) = α3x

(
∂h

∂X

)2

+ α3y

(
∂h

∂Y

)2

. (A9)

If (A5) and (A6) are added together, we obtain the following equation:

ε3/2 ∂h

∂T1
+ ε2 ∂h

∂T2
= −φ�ex + ε∇ · (D∇R) − ε3/2 ∂R

∂T1
− ε2 ∂R

∂T2
. (A10)

The method consists of expanding R and h in powers of ε1/2 as [25]

R =
∞∑

n=0

Rnε
n/2, h =

∞∑
n=0

hnε
n/2, (A11)

and substituting the expansion into Eqs. (A5)–(A8). Equation (A5) is used to obtain the coefficients Rn as functions of lower-order
terms in the expansions of R and h. Such values of the coefficients Rn will be substituted into Eq. (A10) and this will allow us
to obtain a closed equation for h.

Order ε0. Replacing (A11) in Eq. (A5) and matching the terms at order ε0 on both sides of the equation, we obtain that

R0 = Req. (A12)

Order ε1/2. At this order, there is no contribution on the right-hand side of Eq. (A5), therefore

R1 = 0. (A13)

Order ε1. Doing the same at this order, we obtain

R2 = φ̄ − Req∇ · (�2∇h0). (A14)

Order ε3/2. At this order, from Eq. (A5) we obtain

R3 = φ̄α1x

∂h0

∂X
− Req∇ · (�2∇h1). (A15)

We substitute the values obtained for the expansion of R in Eq. (A10) and we obtain a closed equation for h0,

∂h0

∂T1
= −φ̄γ0Reqα1x

∂h0

∂X
. (A16)

Order ε2. From Eq. (A5)

R4 = φ̄

γ0
�ex(ε2) − Req∇ · (�2∇h2) + 1

γ0
∇ · (D∇R2), (A17)

where �ex(ε2) denotes the contribution of �ex at order ε2,

�ex(ε2) = γ0Req

[
α1x

∂h1

∂X
+∇ · (A2∇h0)+∇h0 · (A3∇h0)

]
. (A18)

Note that the expansion term Rn to order εn/2 depends only on terms Rm and hm with m = 0, . . . ,n − 2. To order ε2, Eq. (A10)
becomes

∂h1

∂T1
+ ∂h0

∂T2
= φ�ex(ε2) + ∇ · (D∇R2). (A19)
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Order ε5/2. We continue with the procedure and using Eq. (A10) we get

∂h2

∂T1
+ ∂h1

∂T2
= −φ�ex(ε5/2) + ∇ · (D∇R3) − ∂R2

∂T1
, (A20)

where �ex(ε5/2) denotes the contribution of order ε5/2 to �ex. Using Eqs. (A14) and (A16) we can obtain

∂R2

∂T1
= Reqφγ0α1x∇ ·

[
�2∇

(
∂h0

∂X

)]
. (A21)

Order ε3. At this order, from Eq. (A10) we have

∂h3

∂T1
+ ∂h2

∂T2
= −φ�ex(ε3) + ∇ · (D∇R4) − ∂R3

∂T1
− ∂R2

∂T2
. (A22)

Since �ex does not depend explicitly on R and we have obtained the Rn terms for n � 4 as functions of hm with m � 2, we can
finally obtain a closed equation for the height h up to order h3.

The expression which relates the time derivative with the slow time derivatives

∂

∂t
= ε3/2 ∂

∂T1
+ ε2 ∂

∂T2
(A23)

allows us to obtain ∂h/∂t up to order ε3 as

∂h

∂t
= ε3/2 ∂h0

∂T1
+ ε2

(
∂h0

∂T2
+ ∂h1

∂T1

)
+ ε5/2

(
∂h1

∂T2
+ ∂h2

∂T1

)
+ ε3

(
∂h2

∂T2
+ ∂h3

∂T1

)
. (A24)

In this equation, ∂T1h0 is given by Eq. (A16) and the terms (∂T2hn + ∂T1hn+1), for n = 0,1,2, are given by Eqs. (A19), (A20), and
(A22), respectively. If we substitute these expressions into Eq. (A24) we obtain

∂h

∂t
= ε3/2

(
−φγ0Reqα1x

∂h

∂X

)
+ ε2{−φγ0Req[∇ · (A2∇h) + ∇h · (A3∇h)] − Req∇ · D∇[∇ · (�2∇h)]}

+ ε5/2

{
α1x

[
φ̄∇ · D∇

(
∂h

∂X

)
− φγ0Req∇ · �2∇

(
∂h

∂X

)]}
+ ε3

{
φ̄∇ · D∇[∇ · (A2∇h) + ∇h · (A3∇h)]

− φγ0Req∇ · (�2∇[∇ · (A2∇h) + ∇h · (A3∇h)]) + φ̄φγ0R
2
eqα

2
1x

∂2h

∂X2

}
. (A25)

Equation (A25) is the effective height equation up to order ε3, written in the slow space variables X and Y , in which 6th-order
derivatives have been neglected. The final step is to undo the change of variables X = ε1/2x and Y = ε1/2y, obtaining

∂h

∂t
= (−φα0α1x)

∂h

∂x
+ α1x

α0

γ0

[
φ̄∇ · D∇

(
∂h

∂x

)
− φγ0Req∇ · �2∇

(
∂h

∂x

)]

−φα0[∇ · (A2∇h) + ∇h · (A3∇h)] + α2
0

γ0
φ̄φα2

1x

∂2h

∂x2
− Req∇ · D∇[∇ · (�2∇h)]

+ α0

γ0
{φ̄∇ · D∇[∇ · (A2∇h) + ∇h · (A3∇h)] − φγ0Req∇ · �2∇[∇ · (A2∇h) + ∇h · (A3∇h)]}, (A26)

with

∇ · D∇[∇ · (�2∇h)] =
∑

i,j,k=x,y

Dijγ2k

∂2

∂i∂j

(
∂2h

∂k2

)
, ∇ · D∇[∇ · (A2∇h)] =

∑
i,j,k=x,y

Dijα2k

∂2

∂i∂j

(
∂2h

∂k2

)
,

∇ · �2∇[∇ · (A2∇h)] =
∑

i,j,k=x,y

γ2iδijα2k

∂2

∂i∂j

(
∂2h

∂k2

)
, ∇ · D∇[∇h · (A3∇h)] =

∑
i,j,k=x,y

Dijα3k

∂2

∂i∂j

(
∂h

∂k

)2

,

∇ · �2∇[∇h · (A3∇h)] =
∑

i,j,k=x,y

γ2iδijα3k

∂2

∂i∂j

(
∂h

∂k

)2

, (A27)

where δij is the Kronecker delta.
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Making use of (A27), we finally obtain a closed expression for h by writing Eq. (A26) as (7), with the coefficients being
specifically given by [61]

γx = −φα0α1x, νx = φα0α2x − α2
0

γ0
φ̄φα2

1x, νy = φα0α2y, ij = α0

(
φ̄Dij

γ0
− φReqγ2iδij

)
α1x,

Kijk = DijReqγ2k + α0

(
φReqγ2iδij − φ̄Dij

γ0

)
α2k, λ

(1)
i = −α0φα3i , λ

(2)
ijk = α0

(
φReqγ2iδij − φ̄Dij

γ0

)
α3k, (A28)

where i,j,k = x,y.
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[22] J. Muñoz-Garcı́a, M. Castro, and R. Cuerno, Nonlinear Ripple
Dynamics on Amorphous Surfaces Patterned by Ion Beam
Sputtering, Phys. Rev. Lett. 96, 086101 (2006).
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[25] J. Muñoz-Garcı́a, R. Cuerno, and M. Castro, Coupling of
morphology to surface transport in ion-beam irradiated surfaces:
Oblique incidence, Phys. Rev. B 78, 205408 (2008).

[26] M. Castro and R. Cuerno, Hydrodynamic approach to surface
pattern formation by ion beams, Appl. Surf. Sci. 258, 4171
(2012).

[27] R. Gago, L. Vázquez, O. Plantevin, J. A. Sánchez-Garcı́a, M.
Varela, M. C. Ballesteros, J. M. Albella, and T. H. Metzger,
Temperature influence on the production of nanodot patterns
by ion beam sputtering of Si(001), Phys. Rev. B 73, 155414
(2006).
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