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Half vortex and fractional electrical charge in two dimensions
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Despite fermion doubling, a two-dimensional quasi-relativistic spin-1/2 system can still lead to true
fractionalization of electrical charge, when a massive ordered phase supports a “half-vortex”. Such topological
defect is possible when the order parameter in form of Dirac mass is described by two U (1) angles, and each of
them winds by an angle π around a point. We demonstrate that such a mass configuration in an eight-dimensional
Dirac Hamiltonian exhibits only a single bound zero mode, and therefore binds the charge of e/2. In graphene,
for example, such an ordered phase is provided by the easy-plane spin-triplet Kekule valence bond solid. We
argue that an application of an in-plane magnetic field can cause an excitonic instability toward such ordered
phase, even for weak repulsion, when the on-site, nearest-neighbor, and second neighbor components of it are of
comparable strengths.
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I. INTRODUCTION

Quantization of physical observables, such as energy,
angular momentum, or charge, played the crucial role in
the formulation of quantum mechanics, which revolutionized
physics over the course of the last hundred years. Successful
description of many previously enigmatic experimental obser-
vations in solids and in atomic physics established quantum
mechanics as the fundamental theory of nature. Despite the
ubiquity of quantization, fractionalization of quantum numbers
is also possible. It is believed that the existence of real space
topological defects [1] often, if not always, underlies fraction-
alization. Celebrated examples of these are the domain wall
of a Dirac mass in one dimension [2,3], vortex configuration
between two Dirac masses with requisite U (1) symmetry in
two spatial dimensions [4,5], and t’Hooft-Polyakov monopole
and dyon in three dimensions [2]. All these proposals share few
common features: (i) the underlying fermionic dispersion is
relativistic in nature, (ii) Dirac fermion becomes massive, with
the mass either generated dynamically, or induced externally,
(iii) the Dirac mass constitutes a topologically nontrivial
background in real space. When these conditions are satisfied
[6], an isolated zero energy state appears at the band center
and a fractionalized electrical charge e/2 becomes possible.
However, despite many theoretical proposals [2–4,7–16], a
realization of fractional electrical charge has remained elusive.
The reason is the unavoidable doubling of fermions on a lattice
[17], which doubles the number of zero modes as well, and
that way restores the standard quantization of electrical charge
for spin-1/2 particles such as electrons.

We here demonstrate that despite fermion doubling, when
Dirac masses are wound into a specific real space configuration
which may be called half-vortex, the defect binds exactly one
mode at zero energy and leads to a genuine fractionalization
of electrical charge in two dimensions. The basic idea goes
as follows. Consider an order parameter in a two-dimensional
Dirac system represented by a mass term which is described
by two U (1) angles, with each of them winding by π around
some point [see Eq. (3)]. While the Hamiltonian remains
single-valued, it can be brought into a block-diagonal form,
with one four-component massive block hosting a full vortex

(with a twist by an angle of 2π ), while the other block has
only a topologically trivial mass term. The first block is then
equivalent to the Jackiw-Rossi Hamiltonian [4], and such a
half-vortex binds in total only a single zero energy state,
yielding the electrical charge which is a half of the charge of the
underlying constituents to be accumulated near the half-vortex.

In the prototypical two-dimensional Dirac system such
as graphene, such order could correspond to the easy-plane
components of the spin-triplet Kekule valence bond solid. In
this phase, the nearest-neighbor hopping amplitude acquires
a commensurate periodic modulation, which, however, has
the opposite sign for two projections of electron spin. We
argue that the on-site Hubbard (U ), nearest-neighbor (V1),
and second-neighbor (V2) repulsion when strong enough
and of comparable magnitude can produce such an ordered
phase as the ground state on a half-filled honeycomb lattice.
Furthermore, the application of an in-plane magnetic field,
which due to the Zeeman coupling causes the formation of
compensated electron and hole Fermi pockets for opposite
spin projections, can give rise to excitonic instability toward
the ordered state even for weak such repulsions, due to the
Keldysh-Kopaev mechanism [18–21], with the spin projected
onto the easy-plane perpendicular to the magnetic field. With
the Zeeman coupling fully taken into account the massive
Dirac Hamiltonian with a half-vortex represents a generalized
Jackiw-Rossi Hamiltonian [12], and continues to support a sin-
gle zero energy state. Existence of single zero energy state also
provides local expectation values for two competing orders. On
the honeycomb lattice they correspond to staggered pattern of
electronic density [22] and topological spin Hall insulator [23].

II. MODEL

Although the following discussion is insensitive to the
choice of basis, to make our discussion specific to graphene, we
work with an appropriate representation for Dirac spinor and
γ matrices. Linearized dispersion at low energies around two
non-equivalent corners of the hexagonal Brillouin zone, cho-
sen here at ±K, where K = (1/

√
3,1/3)2π/a and a (≈2.5 Å

for graphene) is the lattice spacing, can be captured by an eight
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component spinor � = (�↑,�↓)�, with ��
σ = [uσ (K + p),

vσ (K + p), uσ (−K + p), vσ (−K + p)]. Fermion annihilation
operator on two sublattices A and B of the honeycomb
lattice are represented by u and v, respectively, and σ = ↑,↓
corresponds to two projections of electron spin along the
z-direction. When |p| � |K|, the non-interacting tight-binding
Hamiltonian with only nearest-neighbor hopping (t) assumes
a relativistically invariant form H0 = σ0 ⊗ ivγ0(γ1p̂1 + γ2p̂2)
[24], where the Fermi velocity v ∼ ta, and we set � = 1, v =
1. Five mutually anticommuting γ matrices are γ0 = σ0 ⊗ σ3,
γ1 = σ3 ⊗ σ2, γ2 = σ0 ⊗ σ1, γ3 = σ1 ⊗ σ2, and γ5 = σ2 ⊗ σ2,
where σ0 and σ are two-dimensional identity and Pauli
matrices, respectively.

The low-energy Hamiltonian H0 remains invariant un-
der a global chiral Uc(4) rotation, generated by (σ0,
σ ) ⊗
(I4,γ3,γ5,iγ5γ3) [24]. In our representation, σ0 ⊗ iγ5γ3 stands
for the generator of translation [25], and 
S = 
σ ⊗ I4 are the
three generators of rotations of electrons spin. Any pertur-
bation, proportional to a generator of the chiral symmetry,
reduces the Uc(4) symmetry for H0 down to Uc(2) × Uc(2).
For example, if we introduce a term HZ = h(σ3 ⊗ I4), which
one can identify as the Zeeman coupling of the electrons spin
to an external magnetic field B applied along the z-direction,
the Uc(2) × Uc(2) symmetry of H0 + Hz is generated by
(σ0,σ3) ⊗ (I4,γ3,γ5,iγ5γ3). Here h = gB, and g ≈ 2 is the
g-factor of electrons in graphene.

Due to vanishing density of states near the band touching
points, Dirac fermions are robust against a weak electron-
electron interaction. Nevertheless, if the interactions are
sufficiently strong, the vacuum can undergo a quantum phase
transition into a broken symmetry phase. It is quite natural to
expect that the system will minimize the energy in an ordered
phase by opening up a mass gap at the Dirac points. Order
parameter, corresponding to a mass gap, anticommutes with
the Dirac Hamiltonian H0. There is therefore a plethora of
broken symmetry phases available to massless Dirac fermions
for condensation [24–33]. We will here focus on a particular
ordered state which breaks both translational and spin rotation
symmetries. Define the order parameter as 〈�† 
C�〉, with the
matrix 
C = ( 
C⊥,C3), where

( 
C⊥,C3) = (�⊥
σ⊥,�3σ3) ⊗ iγ0(γ3 cos θk + γ5 sin θk). (1)

The amplitudes of the order parameter in the easy-plane and
along the magnetic field axis are denoted by �⊥ and �3,
respectively, and we will for the moment assume that the
angle θk is uniform. In the ordered phase, which in graphene
corresponds to the spin-triplet Kekule valence bond solid, the
fermion spectrum ±

√
p2 + �2

⊥ + �2
3 is fully gapped. We will

discuss its possible microscopic origin shortly.

III. HALF-VORTEX AND FRACTIONALIZATION

In the presence of an appropriate chiral symmetry break-
ing perturbation such as HZ , the easy-axis and easy-plane
components of this order parameter affect the energy dif-
ferently. The spectrum of the mean-field single-particle
Hamiltonian in presence of the ordering under consideration,
H0 + HZ + 
C⊥ + C3, is

Eσ (p) = ±[{(
p2 + �2

3

)1/2 + σh
}2 + �2

⊥
]1/2

, (2)

for σ = ±. Notice that the Zeeman term (HZ) commutes and
anticommutes with the easy-axis (C3) and easy-plane ( 
C⊥)
components of the spin-triplet order ( 
C), respectively. Hence,
the ground state energy of the massive Dirac sea is minimized
when the spin component of the triplet order parameter is
restricted onto the easy-plane, i.e., for C3 = 0. We will argue
that beside confining the order parameter onto the easy-plane,
Zeeman coupling induces such excitonic ordering even for
infinitesimally weak repulsive interaction. Assuming that the
order parameter is confined to the easy-plane for reasons of
energetics, we can cast the above mean-field Hamiltonian into
an elegant form

H⊥
SP = H0 + �(r)(σ1 cos θs + σ2 sin θs)

⊗ iγ0(γ3 cos θk + γ5 sin θk) + h(σ3 ⊗ I4), (3)

where the second angle θs describes the global direction of the
spin in the easy-plane. For generality, we permitted a spatial
modulation of the amplitude of the order parameter by taking
�⊥ → �(r), which is assumed to be arbitrary.

To exhibit the topological properties of this ordered state,
we transform H⊥

SP into a block-diagonal form. In the present
representation this can be most easily achieved by exchanging
the second and the fourth 2 × 2 blocks. Then, H⊥

SP becomes
H+ ⊕ H−, with

H± = HD + |�(r)|iγ0(γ3 cos θ± + γ5 sin θ±) ± hiγ5γ3, (4)

where θ± = θk ± θs and HD = iγ0(γ1p̂1 + γ2p̂2). With the
above form of the effective single-particle Hamiltonian one
can construct the half-vortex topological defect in the ordered
phase. If we allow both angles θk and θs to become space
dependent and to wind in arbitrary ways from 0 to π around
some point, the angle θ+ will wind by total amount of 2π

around the same point, whereas the other combination θ− will
remain without any winding. In this configuration H+ contains
a single full vortex and becomes topologically non-trivial,
whereas H− assumes a topologically trivial background. If,
on the other hand, θk and θs wind as before, but with one of
them in the opposite sense, then H− will host a single vortex,
whereas H+ would contain a topologically trivial background.
Since the original angles θk and θs wind only by π , the above
defect will be named half-vortex. Notice that although both
angles wind only by ±π , the Hamiltonian in Eq. (3) or (4) is
nevertheless a single-valued function of coordinate.

To be specific, let us assume that it is the H+ block
that contains a vortex. In the absence of Zeeman coupling
H+ is then equivalent to the Jackiw-Rossi Hamiltonian, and
as such it yields a single eigenstate at precise zero energy
[4,5]. When h = 0, there exists a unitary operator γ0, which
anticommutes with H+, ensuring its spectral symmetry, as well
as the existence of a single zero energy state. When h �= 0, γ0

evidently no longer anticommutes with H+. Nevertheless, even
then there exists an anti-unitary operator A = UK , where U

is a unitary operator and K is the complex conjugation, which
still anticommutes with H+ [12,34]. In our representation U =
iγ2γ3 = σ1 ⊗ σ3. The spectral symmetry of H+, generated by
the anti-unitary operator A also ensures the existence of the
single zero energy state even in the presence of finite Zeeman
coupling. Explicit form of the zero energy state for the simplest
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choice of θs = θk = φ/2 is

�0 =

⎡
⎢⎢⎢⎣

u↑(K)

v↑(K)

u↓(−K)

v↓(−K)

⎤
⎥⎥⎥⎦ = ce−i π

4 −∫ r

0 |�(t)|dt

⎡
⎢⎢⎢⎣

f (rh)

ie−iφg(rh)

if (rh)

eiφg(rh)

⎤
⎥⎥⎥⎦, (5)

where f (rh) = J0(rh), g(rh) = J1(rh), φ is the azimuthal
angle, and c is the normalization constant. Jks are the Bessel
functions of first kind of order k. In contrast, H−, containing
a topologically trivial background, has no zero modes, and its
spectrum is fully gapped.

The existence of a single zero energy state gives a net
electrical charge of ±e/2 bound to the half-vortex, depending
on whether the zero mode is occupied or vacant, leading to
desired fractionalization of electrical charge. In contrast, if we
assume that θs is uniform but θk to wind by 2π [7], or vice
versa [9], there would be two zero modes, yielding the total
bound electrical charge of e.

IV. COMPETING ORDERS

The existence of an isolated bound state at zero energy
also gives rise to local expectation value of some additional,
competing orders [9]. Any operator that commutes or anti-
commutes with the Hamiltonian H⊥

SP in Eq. (3) leaves the zero
energy subspace invariant. In particular, when h = 0, there are
two such operators belonging in the second category, namely
σ0 ⊗ γ0 and σ3 ⊗ iγ1γ2. The average of the fermionic bilinear,
associated with the former operator

�†(σ0 ⊗ γ0)� = u†
σ ( 
p,ω)uσ ( 
p,ω) − v†

σ ( 
p,ω)vσ ( 
p,ω), (6)

can be recognized as the staggered-density wave in honeycomb
lattice. The same quantity for the other operator

�†(σ3 ⊗ iγ1γ2)� = σ
[
u†

σ ( 
K,ω)uσ ( 
K,ω)

−u†
σ (− 
K,ω)uσ (− 
K,ω)

] − [u → v],

(7)

represents the z-component of the topological quantum spin
Hall insulator. Furthermore, it can be shown that these two
order parameters acquire their expectation value from the zero
energy subspace even when the Zeeman coupling is included.
The ground state average of a physical observable 〈q(
x)〉,
associated with a traceless operator Q, can be written as [9,35]

〈q(
x)〉 = 1

2

( ∑
occupied

−
∑
empty

)
ψ

†
EQψE, (8)

where {ψE} are the eigenstates of a generic Hamiltonian
H with energy E. If there exist an operator, say T , which
anticommutes with H , but commutes with Q, the above-
mentioned sum gets restricted to the zero energy subspace.
When h = 0, then we can choose T = σ0 ⊗ iγ1γ2 for Q =
σ0 ⊗ γ0, and vice versa. On the other hand, when h �= 0, we
cannot find any unitary operator T , for either Q = σ0 ⊗ γ0

or for σ3 ⊗ iγ1γ2. However, for both we can choose an
anti-unitary T = σ1 ⊗ iγ2γ3K .

Consequently, these two order parameters receive the
ground state expectation values from the isolated zero mode,

which reads as

〈q(r)〉 = c−2
∫ r

0
r dr

[
J 2

0 (rh) − J 2
1 (rh)

]
exp

(
−2

∫ r

0
�tdt

)
,

(9)

for Q = σ0 ⊗ γ0 as well as σ3 ⊗ iγ1γ2.

V. GRAPHENE

The ordered phase considered so far on the honeycomb
lattice of graphene corresponds to a spin-triplet Kekule valence
bond solid. In this phase hopping amplitudes between the
nearest-neighbor sites acquire a commensurate periodic mod-
ulation that is, however, of opposite sign for two projections of
electrons spin. We discuss next a possible microscopic origin
of this phase.

Spinless fermions in graphene, for example, can sponta-
neously develop a staggered pattern of charge [22] or an intra-
sublattice circulating current [23], if the nearest-neighbor (V1)
or the next-nearest-neighbor (V2) component of the Coulomb
repulsion is sufficiently strong, respectively [26,36,37]. When
both V1 and V2 are strong and of similar magnitude, however,
these two orderings become frustrated, and spinless Dirac
fermions can find themselves in the singlet-Kekule phase
[29,31,32]. The order parameter for the singlet-Kekule phase
reads as σ0 ⊗ iγ0(γ3 cos θk + γ5 sin θk) [7,25]. If one neglects
the contribution to the ground state energy from the states
residing far from the Dirac points, the configurations with
different values of θk are exactly degenerate, and a perfect
U (1) symmetry emerges. In the mean field approximation
which treats all the quasi-particles as sharp excitations, the
contribution from these states weakly breaks this degeneracy
deep inside the ordered phase, and the configuration with θk =
0 becomes energetically slightly preferred [29,30]. However,
as one approaches the transition point from the ordered side,
the energy difference among various choices of θk vanishes,
restoring a U (1) symmetry at the semimetal-insulator quantum
critical point. In addition, upon including the fluctuations, the
existence of a massless Goldstone mode should enhance the
condensation energy gain. Therefore, we believe that lattice-
induced C3v-symmetric perturbations are irrelevant near the
semimetal-insulator transition, and spin-singlet valence bond
solid carries a U (1) symmetry, which only gets lifted sponta-
neously inside the ordered phase.

Once the spin degrees of freedom is restored, the on-site
Hubbard interaction (U ) alone, when strong enough, supports
a Néel antiferromagnetic order [24,38]. However, various finite
range components of the actual long-range Coulomb repulsion
are likely to be of comparable strength in graphene [39]. Given
that V1 and V2, when strong, prefer a singlet valence bond solid
[29,31,32], and that comparable and strong U and V2 stabilize
the topological spin Hall insulator [26,37], it is conceivable that
the triplet Kekule valence bond solid becomes the preferred
ground state when U , V1, and V2 are all both strong enough,
and of comparable magnitudes.

This possibility notwithstanding, the strength of the actual
Coulomb interaction in pristine graphene appears not strong
enough to support any broken symmetry phase. Next we argue
that when graphene is placed in a parallel magnetic field,
yielding only Zeeman coupling, but no Landau quantization,
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the proposed ground state can be realized even for sufficiently
weak repulsive interactions.

In the presence of the parallel magnetic field, the Zee-
man coupling induces compensated electron and hole Fermi
pockets for the two projections of the electron spin. Due to
the resulting finite density of states, it is well known that
a BCS-type instability towards an excitonic ordering sets
in even for infinitesimal strength of interactions [18–21].
Assuming that the dominant ordering tendency in pristine
graphene is towards the formation of triplet Kekule ordering
(for comparable U , V1, and V2), one expects that its easy-plane
version would be the resulting phase in the presence of Zeeman
coupling and at infinitesimally weak repulsion.

VI. CONCLUSION

To conclude, we showed that the half vortex in two-
dimensional quasi-relativistic systems, in spite of the usual

fermion doubling due to the lattice and spin, supports only a
single zero mode and thus binds the electrical charge of a e/2.
In graphene, an example of the ordered phase that allows such
a topological defect is the spin-triplet Kekule valence bond
solid, with its spin components lying in an easy-plane. We
argued that such ordering may be preferred for weak on-site,
nearest-neighbor, and second-neighbor Coulomb repulsion,
when these are all of comparable strength, and when graphene
is subjected to an in-plane magnetic field.
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