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We present a generalized model to describe the lattice thermal conductivity of low-dimensional (low-D) and
disordered systems. The model is a straightforward generalization of the Debye-Peierls and Allen-Feldman
schemes to arbitrary dimensions, accounting for low-D effects such as differences in dispersion, density of states,
and scattering. Similar in spirit to the Allen-Feldman approach, heat carriers are categorized according to their
transporting capacity as propagons, diffusons, and locons. The results of the generalized model are compared to
experimental results when available, and equilibrium molecular dynamics simulations otherwise. The results are
in very good agreement with our analysis of phonon localization in disordered low-D systems, such as amorphous
graphene and glassy diamond nanothreads. Several unique aspects of thermal transport in low-D and disordered
systems, such as milder suppression of thermal conductivity and negligible diffuson contributions, are captured
by the approach.
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I. INTRODUCTION

As thermal science expands into the realm of low-
dimensional (low-D) materials [1–8], a variety of intriguing
effects are being revealed [6–10]. The unique physics of
thermal transport in low-D has inspired many potential ap-
plications in the real world [11–13]. This physics is pushed to
its limits when materials are genuinely atomically thin, such as
two-dimensional graphene [14] and one-dimensional carbon
nanotubes (CNTs) [1,3,4,15]. Like their three-dimensional
analogs, low-D materials can also exhibit structural disorder.
For instance, nanoporous graphene [16] and glassy diamond
nanothreads [17,18] are recent examples of materials sys-
tems in which both disorder and low dimensionality are
simultaneously present. Ample applications of these materials
are in incubation [16,17], including thermoelectrics [12] and
thermal barrier coatings [13]. However, while the structural,
electronic [19,20], and mechanical properties [16–18] of low-
D and disordered materials have received comparably greater
attention, their thermal properties are less established.

When disorder is strong enough that phonon mean free
paths become comparable to phonon wavelengths, the quasi-
particle picture breaks down. A different approach is required
to describe vibrational transport, and disorder models that
address this regime have been established for 3D. For weakly
disordered systems, perturbation theory is reasonably accu-
rate [21,22]. Towards the fully amorphous limit, models such
as random walk [23], Allen-Feldman (AF) [24], and two-level
states (TL) [25,26] are available. The random-walk picture was
initiated by Einstein and later extended by Cahill and Pohl and
provides an estimate of the minimum thermal conductivity, the
so-called amorphous limit [23]. In comparison to disordered
3D systems, several interesting questions arise regarding the
thermal physics of disorder in low-D. On one hand, the thermal
conductivity κ of low-D materials such as graphene and carbon
nanotubes can be exceptionally large (suggested in some cases
to diverge with increasing system size [27,28]). On the other

hand, the effects of disorder (or any other perturbation) are
typically more pronounced in low-D.

Our recent work has focused on localization analysis
of vibrational modes and equilibrium molecular dynamics
simulations of κ using two examples of generalized model
low-D, disordered materials [29]: one-dimensional (1D) glassy
diamond nanothreads and two-dimensional (2D) amorphous
graphene. Our equilibrium molecular dynamics simulations
revealed that the suppression of κ in both of these systems
is small, in comparison to suppression commonly observed in
3D materials. In glassy nanothreads, κ drops by a factor of five
in the presence of strong disorder, and only drops by 25% in
amorphous graphene. This is remarkably weak in comparison
to 3D materials for which the suppression can be two to four
orders of magnitude [23]. Localization analysis of the modes
suggests that the mild suppression arises from the resilience of
transverse twist modes in the nanothreads and flexural modes
in amorphous graphene. These modes appear to retain their
wave-like character despite the structural disorder [29].

In this work, we present a generalized model that describes
vibrational transport in low-D and disordered materials. While
state-of-the-art computational modeling of thermal transport
in low-D and/or disordered materials is now possible and has
revealed many insights [5,22,30,31], simplified approximate
models that capture the physics without requiring the full
solution can also be very useful [32]. Such models often give
insight into essential underlying mechanisms and can quickly
reproduce or predict trends. Our model describes the thermal
conductivity κ and its temperature (T ) dependence in disor-
dered, low-D materials. The results are in good agreement with
experiment measurements of low-D systems that have been
reported in the literature, or equilibrium molecular dynamics
simulations of κ for diamond nanothreads and amorphous
graphene [29]. This illustrates that when formulated properly
simple models can reproduce trends even at these scales. The
analysis of disorder presented here is specific to the case of
1D diamond nanothreads and 2D amorphous graphene, but the
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TABLE I. Density of states g(ω), group velocity v, and cutoff frequency ωc for modes with linear and parabolic dispersion. Here, sd is the
surface area of a d-dimensional sphere with unit radius: sd = (2,2π,4π ) for d = (1,2,3). n denotes the average atomic spacing.

Dispersion Density of states g(ω) Group velocity v Cutoff frequency ωc

ω = vq (linear) sdωd−1

(2πv)d
v 2πv

(
nd
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)1/d
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2(2π )d

a− d
2 ω

d
2 −1 2

√
aω (2π )2a

(
nd
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)2/d

framework is general and can apply as well to other low-D,
disordered systems as well.

II. THERMAL CONDUCTIVITY OF CRYSTALLINE
MATERIALS IN ARBITRARY DIMENSIONS

For crystalline 3D materials, models of phonon thermal
conductivity are well-established [32–36]. In 1929, Peierls
formulated the lattice conductivity of bulk dielectric crystals
in terms of the phonon Boltzmann transport equation [33,37].
Callaway, in 1959, introduced an approximate solution of the
Peierls Boltzmann equation within the relaxation time approx-
imation invoking a Debye description of solids that separately
accounts for Normal and Umklapp scattering events [34].
This successfully reproduced the κ versus T dependence of
germanium for low temperatures. By further differentiating
longitudinal acoustic (LA) and transverse acoustic (TA)
phonons, Holland extended Callaway’s model and achieved
better high-temperature agreement [35]. These models, and
several others that followed, have proven extremely useful for
understanding phonon transport in conventional 3D materials.

We begin with an approach for crystalline materials
reminiscent of the Callaway-Holland model but applicable in
arbitrary dimensions. It accounts for variations of the phonon
density of states and parabolic dispersions that can arise in
low-D. This will be extended to amorphous or disordered
systems in the next section. The thermal conductivity in the ı̂

direction, κı̂ , is given by a sum over the contributions of the
phonon mode branches m and phonon wave vectors �q,

κı̂ =
∑
m

∑
�q

(�v(�qm)) · ı̂)2 τ (�qm) Cph(�qm), (1)

where �v(�q) = dω/ d �q is the group velocity, τ (�q) is the
mode-specific scattering time, and Cph(�q) is the mode-specific
heat capacity. For an isotropic solid with frequency-dependent
phonon density of states g(ω), this becomes

κ =
∑
m

〈cos2θ〉
∫

v(ω)2 τ (ω,T ) Cph(ω,T ) g(ω) dω

=
∑
m

1

d

∫
v(ω) �(ω,T ) Cph(ω,T ) g(ω) dω, (2)

where the sum over �q in Eq. (1) has been converted into
an integral over modal frequencies, θ is the angle between
wave vector �q and a temperature gradient ∇T , d is the
dimension, and the geometric factor 〈cos2θ〉 = 1/d arises from
summing over modes propagating in all directions. The modal
heat capacity is Cph = kBx2ex(ex − 1)2, where x = �ω/kBT

with Boltzmann constant kB and reduced Planck constant
�. In Eq. (2), we give the expression for κ both in terms
of scattering rates τ (ω,T ), as well as in terms of modal

mean free paths �(ω,T ) = v(ω)τ (ω,T ). For nanostructured
systems, mean free paths may be more accessible and in the
ballistic regime �(ω,T ) can be set to a characteristic length
scale or feature size. Alternatively, in the diffusive regime,
appropriate descriptions of scattering times τ (ω,T ), such as
those in Table I of Ref. [35], can be used instead.

In 3D materials, due to translational lattice symmetry in
all three directions the dispersion of the longitudinal and
transverse acoustic modes is always concave, but this is
not the case for low-D materials. For a 2D system such as
graphene, in addition to the two in-plane branches (LA and
TA), out-of-plane flexural modes (ZA) with parabolic, convex
dispersion are present. The different dispersion arises from
the governing wave equations. For longitudinal, transverse,
and torsional branches, ∂2

t φ = c2∂2
xφ, where the wave speed

c = √
M/ρ and M is the elastic modulus and ρ the density.

For flexural branches ∂2
t φ = a2∂4

xφ where a2 = EI/ρAc, and
EI,ρ,Ac are respectively the flexural rigidity, density, and
cross-section. Due to the presence of these modes, the Debye
model universally assumed in 3D can not be directly applied
in low-D. In addition to different group velocities and density
of states, the physics of scattering (and thus scattering times)
may differ for parabolic modes. Table I gives the density of
states, group velocities, and cutoff frequencies applicable to
linear and parabolic dispersion.

For phonon branches m with linear dispersion m = � and
parabolic disperion m = p, from Eq. (2) and Table I the
corresponding contributions to κ are

κ� = sd

d

kB

(2π )d

(
kBT

�

)d

v1−d

∫ xc

0

�(x,T )xd+1ex

(ex − 1)2
dx (3)

= sd

d

kB

(2π )d

(
kBT

�

)d

v2−d

∫ xc

0

τ (x,T )xd+1ex

(ex − 1)2
dx, (4)

κp = sd

d

kB

(2π )d

(
kBT

�

) d+1
2

a
1−d

2

∫ xc

0

�(x,T )x
d+3

2 ex

(ex − 1)2
dx (5)

= 2sd

d

kB

(2π )d

(
kBT

�

) d+2
2

a
2−d

2

∫ xc

0

τ (x,T )x
d+4

2 ex

(ex − 1)2
dx. (6)

The different scaling of κ with T exhibitted by linear versus
parabolic dispersion is one of the physical distinctions that can
arise in low-D. In the expressions above, sd is the surface area
of a d-dimensional sphere of unit radius, and the dispersions for
linear and parabolic modes are given by ω = vq and ω = aq2,
respectively, see Table I.

III. EFFECTS OF DISORDER

Next, we modify the approach to account for amorphous
or disordered systems. For fully amorphous systems, we
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FIG. 1. (a) The integrand of κam
� from Eq. (7), which converges for d = 2,3, but diverges for d = 1. (b) Schematic of the boundary σ (k)

demarcating propagons and diffusons. The Ioffe-Regel transition occurs around wave number k = 2π/ξ .

generalize the Cahill-Pohl 3D random-walk approach to arbi-
trary dimensions. To account for the disordered intermediate
regime, we use an approach motivated by Allen and Feldman,
in which phonon carriers are categorized according to their
degree of localization and their mobility. This provides a
simple framework to understand low-D phonon transport on
materials ranging from crystalline to amorphous, and the
results of the model are in good agreement with experimental
results (when available) and our computational simulations
(otherwise). We also make predictions for the scaling behavior
of κ versus T for low-D and disordered materials such as
defective and amorphous graphene and disordered carbon
nanothreads, which to our knowledge have not yet been
measured or reported.

We start from Cahill’s model for fully amorphous solids,
which extended the original model proposed by Einstein [23].
In the original Einstein model, the thermal conductivity of
a 3D amorphous solid is obtained from Eq. (3) by setting
the mean free path to the mean atomic spacing � = n−1/3,
where n = (total number of atoms/total volume). The small
mean free path reflects the localized nature of vibrational
carriers in amorphous solids, which transport heat via short,
diffusive “random walk steps.” Cahill’s approach to amorphous
solids allows for more delocalized vibrations (as suggested
by Debye and Slack [38]) by using a larger mean-free path
� = λ/2 = πv/ω equal to half the modal wavelength λ

for the random-walk step in Eq. (3). Cahill’s model yields
satisfactory agreement with experiment for various 3D glassy
materials. Substituting the random-walk step � = πv/ω into
Eqs. (3) and (5), we can generalize Cahill’s model to arbitrary
dimensions for both linear and parabolic dispersion:

κam
� = π

sd

d

kB

(2π )d

(
kBT

�

)d−1

v2−d

∫ xc

0

xdex

(ex − 1)2
dx, (7)

κam
p = sd

d

kB

(2π )d−1

(
kBT

�

) d
2

a1− d
2

∫ xc

0

x1+ d
2 ex

(ex − 1)2
dx. (8)

Note that the original Cahill formula for linear modes is
recovered for d = 3. However, κam

� derived above diverges

for 1D glasses [the integrand is plotted in Fig. 1(a)]. The
divergence can be traced back to the nonvanishing 1D density
of states of long-wavelength phonons near the � point. Such
a divergence is unphysical and is also related to the large
random walk step � = λ/2 = πv/ω assigned to the modes in
the low-frequency limit ω → 0 in the Cahill approach.

Based on these considerations, we instead implement an
approach based on Allen-Feldman (AF) theory [24], in which
heat carriers—so-called vibrons—are categorized according
to their degree of localization. Vibrons are composed of
extendons and locons, the former (typically low frequency
modes) are spatially extended and the latter (typically high
frequency modes) are localized. The boundary is called the
mobility edge. Extendons contribute the most to the thermal
conductivity, and they are further categorized as propagons and
diffusons. Propagons are the lowest-frequency members that
transport heat in a manner reminiscent of typical phonons,
while by contrast, diffusons remain spatially delocalized
but transport heat via diffusive random walk steps. The
Ioffe-Regel boundary λ = ξ represents the wavelength of the
propagon/diffuson crossover and is an important parameter
for obtaining an accurate and descriptive theory. Here and
hereafter, kξ = 2π/ξ denotes the wave number and ωξ the
frequency corresponding to the crossover.

In our formalism, the boundary between propagons and
diffusons will be approximated by a smooth sigmoid func-
tion σ (x) = (1 + e−α(x−xξ ))−1, where α and xξ = �ωξ/kBT

respectively control the steepness and location of the boundary.
A schematic example of this boundary σ , plotted here as a
function of wave vector k, is indicated in Fig. 1(b). The modes
far to the left of the boundary are propagons, while those far to
the right are diffusons. The modes appearing in the transition
region are assigned a mixed character weighted between that
of propagons and diffusons.

Finally, considering together the effects of disorder and the
presence of both linear (�) and parabolic (p) modes that appear
in low-D, the generalized expression for κ is

κ =
∑

�

κ� +
∑

p

κp, (9)
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where κ� and κp are decomposed into contributions from propagons and diffusons so that

κ� =
⎧⎨
⎩

sd

d
kB

(2π)d
(

kBT
�

)d
v2−d

�

∫ x�

0 (1 − σ (x)) τ (x,T ) xd+1ex

(ex−1)2 dx (propagons)

π sd

d
kB

(2π)d
(
kB

T
�

)d−1
v2−d

�

∫ x�

0 σ (x) xdex

(ex−1)2 dx (diffusons)
, (10)

κp =
⎧⎨
⎩

2 sd

d
kB

(2π)d
(

kBT
�

) d+2
2 a

2−d
2

∫ xp

0 (1 − σ (x))τ (x,T ) x
4+d

2 ex

(ex−1)2 dx (propagons)

2π sd

d
kB

(2π)d
(

kBT
�

) d
2 a

2−d
2

∫ xp

0 σ (x) x
d+2

2 ex

(ex−1)2 dx (diffusons)
, (11)

where x� and xp are the cutoff xc for the linear � and parabolic p

modes, respectively. For the propagons we leave the scattering
time τ (x,T ) as-of-yet undetermined; for the diffusons we
have used Cahill’s mean free path for the random walk step
� = πv/ω. Equations (9)–(11) are the governing equations
that we will make use of in the following sections. The
problem of accurately estimating κ is thus reduced to finding
a good description of the boundary σ (x) and the propagon
scattering time τ (x). This decomposition of carriers into
propagons and diffusons avoids the previous divergence of the
Cahill model, because the lowest frequency modes now retain
their propagon character (rather than being assigned a diffu-
son random walk step � = πv/ω).

IV. VALIDATION AND PREDICTIONS

A. Three-dimensional a-SiO2: entire temperature range

For 3D amorphous materials, it has historically been
challenging to capture the low-temperature dependence of
κ [23,35]. We first validate the disorder model in 3D amor-
phous materials by comparing it to actual measurements of
amorphous silica reported in Ref. [23]. For a 3D material,
there are three acoustic branches (LA, TA1, TA2) exhibiting
the usual linear dispersion � and there is no contribution from
p modes. Equations (9)–(11) become

κ =
∑

�=LA,TA1,TA2

κ�, (12)

where

κ� =
⎧⎨
⎩

kB

6π2

(
kBT
�

)3 1
v�

∫ x�

0 (1 − σ (x)) τ (x,T ) x4ex

(ex−1)2 dx (propagons, 3D)

kB

6π

(
kBT
�

)2 1
v�

∫ x�

0 σ (x) x3ex

(ex−1)2 dx (diffusons, 3D)
. (13)

The parameters to be determined are the scattering time
τ (x) and those of the function σ (x) that define the
propagon/diffuson boundary. For scattering time τ (x), we
use common models of boundary scattering τB and defect
scattering τD . Phonon-phonon scattering is neglected as it is
small in the temperature range of interest (T = 0 to 300 K).
Boundary scattering is given by τ−1

B = vb(1 − ps)/L(1 + ps)
with vb = 3/(1/vl + 2/vt ) and surface specularity ps = 0.
The specimen length L = 300 μm as reported in Ref. [23], and
transverse and longitudinal sound speeds are vt = 3740 and
5980 m/s, respectively [23]. For defect scattering [34,35,39],
we use Klemens’ scaling relationship τD ∼ ωn−d with n = 3/2
as suggested by experiment [21], so τ−1

D = Ax3/2T 3/2, and the
factor A is an adjustable parameter. The total scattering τ (x)
is then given by Matthiessen’s rule τ−1 = τ−1

B + τ−1
D .

The only free parameters in our model are A and
those of the function σ (x) = (1 + e−α(x−xξ ))−1 to set the
propagon/diffuson boundary location and width. Here we
choose α → ∞ so that the diffuson/propagon boundary
becomes a sharp step function located at frequency ωξ , which is
also an adjustable parameter, but gives insight to the frequency
at which the transition between diffusons/propagons occurs.
The results are shown in Fig. 2. We obtain the best fit to experi-
mental data for A = 7.4 × 107 (kB/�)3/2 and ωξ = 0.25 THz.
Our estimate of the propagon/diffuson boundary is not far
from the ∼1 THz estimate obtained from molecular dynamics
using a modified van Beest potential for amorphous silica [40].

Using these parameters, the predictions of the model agree very
well with the experimental data within the whole temperature
range, and “the plateau” appears to be the transition regime
from propagon-dominated to diffuson-dominated transport.
Diffusons gain dominance as contributors to κ as T increases,

T (K)
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κ
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W
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K
)

10-4
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10
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2222

00000
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0

FIG. 2. Comparison of generalized model (solid purple line)
to experimental results (blue dots) of κ vs T for 3D amorphous
silica. The isolated contributions of propagons (short-dashed red line)
and diffusons (long-broken yellow line) are also shown. The inset
schematically illustrates an amorphous silica sample.
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TABLE II. Scattering models and parameters adopted in this work for linear (�) and parabolic (p) phonon modes.
These models are extensively used in single mode relaxation time modeling [33,39,42–44]. The atomic mass of a
carbon atom C is M = 1.99 × 10−26 kg. S0 = δa0 is the cross section of each C atom, with δ = 3.35 Å as graphene
thickness, and a0 = 1.42 Å the length of a C-C bond. The volume per C atom is Vm = δ/n, where n = 3.82 × 1019 m−2

is the number of atoms per unit area. �m = 7.54 × 10−5 represents the defect scattering in pristine graphene based
on the natural isotopic abundance of 98.9% 12C and 1.1% 13C [45]. The Gruneisen parameters are γ� = 2 for linear
modes [36] and γp = −18.64 for parabolic modes [46]. � is the Debye temperature.

Scattering Mechanism Scattering model Parameters

Boundary scattering τ−1
B,� = v�/L AB = 2(akB/�)1/2/L

τ−1
B,p = vp/L = ABx1/2T 1/2

Defect scattering (Rayleigh) τ−1
I,� = AI,�x

3T 3 AI,� = S0�m(kB/�)3/4v2

τ−1
I,p = AI,px2T 2 AI,p = S0�m(kB/�)2/8a

Umklapp process τ−1
U,� = AU,�x

2T 3 e−��/3T AU,� = k2
Bγ 2

� /�Mv2
���

τ−1
U,p = AU,px−2 e−�p/3T AU,p = 2γ 4

p �
2ωB/27M2a2

ωB = 28GHz [42]

Normal process τ−1
N,LA = AN,LAx2T 5 AN,� = k5

Bγ 2
� Vm/�

4Mv5
�

τ−1
N,TA = AN,TAxT 5

due to both the increased population of high frequency carriers
and the increased scattering of long-wavelength propagons.

The isolated contributions from diffusons and propagons
are also shown in Fig. 2. It is evident that the original
Cahill minimum thermal conductivity approach captures
well the contribution from diffusons which dominate at
higher T . Now, the Callaway contribution of long-wavelength
propagons is able to reproduce the low T behavior. As
a result, the sum of these two contributions matches the
experimental results in the whole temperature regime. It
is interesting to note that the boundary ωξ controls the
turning point before the plateau, and the system characteristic
length L determines the ultralow temperature conductivities.

B. Two-dimensional graphene

For 2D materials, we consider graphene-like materials,
ranging from ordered crystalline to mildly disordered to fully
amorphous. For a 2D material, Eqs. (9)–(11) become

κ =
∑

�=LA,TA

κ� +
∑

p=ZA

κp (14)

to reflect that κ is the sum of two in-plane linear modes � =
(LA,TA) and one out-of-plane parabolic mode p = ZA. Here,

κ� =
⎧⎨
⎩

kB

4π

(
kBT
�

)2 ∫ x�

0 (1 − σ (x)) τ (x,T ) x3ex

(ex−1)2 dx (propagons, 2D)

kB

4

(
kBT
�

) ∫ x�

0 σ (x) x2ex

(ex−1)2 dx (diffusons, 2D)
, (15)

κp =
⎧⎨
⎩

kB

2π

(
kBT
�

)2
a

∫ xp

0 (1 − σ (x))τ (x,T ) x3ex

(ex−1)2 dx (propagons, 2D)

kB

2

(
kBT
�

)
a

∫ xp

0 σ (x) x2ex

(ex−1)2 dx (diffusons, 2D)
. (16)

in which the parameters to be determined are the scattering
time τ (x) and those of the function σ (x). For the in-plane
modes, the group velocities are vt = 13.6 km/s and vl =
21.3 km/s, for transverse, longitudinal (respectively), and
for the parabolic ZA modes the parameter a = 6.2 ×
10−7 m2/s [41].

1. Description of scattering

To utilize Eqs. (15) and (16), scattering models for τ (x)
for in-plane and out-of-plane modes need to be selected. The
descriptions adopted here are summarized in Table II. For
all forms of scattering, we differentiate between linear and
parabolic modes; the latter are discussed in detail in Ref. [47].
Unless otherwise stated, in all cases, the parameters in Table II
are obtained directly from experimental or density functional

theory (DFT) results (i.e., no parameters are fitted). From
Table II, at low temperatures, boundary scattering is dominant
but as temperature increases, first defect scattering and then
interphonon scattering will successively become dominant. We
employ the Peierls-Klemens model to represent the first-order
umklapp processes. As suggested in Ref. [47], N processes for
ZA modes are assumed to be higher-order effects and are not
considered.

2. Crystalline graphene

The thermal transport properties of even nominally crys-
talline graphene continue to be the subject of research
attention. Accurate experimental and computational studies
have been published recently [2,45,46], but there is still
debate about the nature of the dominant carrier modes. On
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FIG. 3. (a) Comparison of generalized model to available experimental and density functional theory results of κ vs T for pristine graphene.
The generalized model predicts a T 3/2 scaling at low T consistent with a predominant contribution from ZA modes, and a T −2 scaling at high
temperature. Individual contributions from ZA, TA, and LA modes are also shown. (b) Influence of Stone-Wales defects on κ vs T according
to both equilibrium molecular dynamics, and generalized model for different degrees of defect scattering �m = γ�0, where �0 is the defect
scattering for crystalline graphene (see Table II). The statistical error bars marked on the equilibrium molecular dynamics results correspond
to the first standard deviation.

one hand, first-principles calculations show that ZA modes
contribute the most (76%) to the thermal conductivity at room
temperature [45]. Similarly, it has been shown that by including
only ZA modes but neglecting all others, a Callaway approach
with an appropriate relaxation model [47] can accurately
account for κ within the whole temperature range [48]. On the
other hand, it has also been suggested that ZA modes contribute
negligibly to overall thermal conductivity, due to their low
group velocities but large Gruneisen parameters [2,44,46].

To provide some insights, we consider the predictions of our
generalized model for crystalline graphene. For the crystalline
case, there are only propagons so σ (x) = 0. Using the
descriptions of scattering in Table II, our results in comparison
to both DFT [49] and experimental [50] results are shown in
Fig. 3(a). We obtain a close match to the DFT calculation (blue
diamonds) [49] throughout the entire temperature regime, with
no adjustable parameters. In the high-temperature regime,
our results match both the DFT results and the available
experimental results, but the predicted scaling appears to be
more similar to the experimental measurements.

Apart from the good agreement, there are several ob-
servations for the low, intermediate, and high temperature
regime. From Eqs. (15) and (16) and Table II, the temperature
dependence of κ for linear and parabolic modes depends on the
dominant scattering mechanism. (i) At low temperatures when
boundary scattering is dominant, κ� ∼ T 2 and κp ∼ T 3/2. Our
analysis predicts a T 3/2 dependence, and thus a dominant
contribution of ZA modes. (ii) As temperature increases to an
intermediate regime, the scaling may change for several rea-
sons. More LA/TA modes are excited and their influence can
change the temperature dependence. Additionally, other forms
of scattering (defect and/or phonon-phonon) may emerge and
also change the scaling. (iii) In the high-temperature regime
when phonon-phonon scattering is dominant, our predictions
contain some ambiguity due to the uncertainty of the scattering

model for ZA modes. However, the high-order scattering
model used here successfully captures the T −2 behavior
at high temperature measured from experiments [50] and
continuum-theoretical predictions [51]. This is in contrast to
the DFT results which instead predict a T −1.5 dependence.

3. Crystalline Graphene with Stone Wales Defects

Although impedance of phonon conduction due to the
presence of vacancies has been studied [52], the detailed
temperature dependence of graphene with defects has not yet
been established. We consider here how a mild distribution of
Stone-Wales defects affects κ . Since no experimental results
are available, we use equilibrium molecular dynamics (EMD)
and the Green-Kubo formulation to calculate κ and compare
to the results of our model. The optimized Tersoff potential is
used, and simulation details are available in Ref. [29]. The sam-
ple size is 1.25 × 2.16 nm2, which is 50 × 50 unit cells. The
sample, shown in Fig. 3(b), is produced by selecting bonds at
random and rotating by ninety degrees (Stone-Wales transfor-
mation). The system is then relaxed before increasing its tem-
perature. The defect density in Fig. 3(b) corresponds roughly
to 0.38 defects per nm2 (equivalent to 8% defective unit cells).

In our model, we consider the material as crystalline, but
incorporate the effects of the Stone-Wales defects indirectly
through the scattering parameter �m = γ�0, where �0 =
7.54 × 10−5 is the value for natural graphene due to its isotopic
composition (see Table II). As shown in Fig. 3(b), the Stone-
Wales defects reduce κ as well as its temperature sensitivity.
The EMD results are in reasonable agreement with the gener-
alized model at high temperatures for the choice γ ≈ 800.

4. Amorphous graphene

We now consider “amorphous graphene,” a 2D sheet that
maintains the sp2 bond order of pristine graphene, but contains
a disordered distribution of rings of different sizes varying

155414-6



GENERALIZED DEBYE-PEIERLS/ALLEN-FELDMAN MODEL . . . PHYSICAL REVIEW B 93, 155414 (2016)

T (K)
102 103

κ
 (

W
/m

K
) 

10-10

10-5

100

EMD
Propagons
ZA
LA
TA
Diffusons

ZA
LA
TA

FIG. 4. κ vs T according to generalized model and equilib-
rium molecular dynamics for amorphous graphene. The dominant
carriers are predicted to be out-of-plane (ZA) propagons. Unlike
3D amorphous materials, diffusons contribute negligibly to κ over
the entire temperature range. The statistical error bars marked on
the equilibrium molecular dynamics results correspond to the first
standard deviation.

from 4–8 atoms [19]. For amorphous graphene, both diffusons
and propagons are present, and now contributions from all
parts of Eqs. (15) and (16) give rise to the total κ . Similar to
3D amorphous silica case, the Ioffe-Regel boundary between
diffusons and propagons is of importance. We compare the
results of the generalized model to our EMD simulation
results [29].

The sample is generated following the procedure outlined in
Ref. [53]: pristine samples of the same size are first melted into
2D carbon gases at T = 4500 K, then quenched to the target
temperature in 1 ns, which is followed by a Nose-Hoover
thermostating for 0.5 ns. The amorphous graphene buckles
naturally, as shown in Fig. 4, where the buckling height is
denoted by the color map. Note that the current samples
are homogeneously sp2-bonded carbon materials, and thus
different from those generated by introducing vacancies [54]
where dangling carbon bonds are present.

The thermal conductivity of amorphous graphene, obtained
both from EMD and the generalized model, is plotted in Fig. 4.
This thermal conductivity is suppressed by a factor of 1.65 at
300 K in comparison to crystalline graphene, for an equivalent
sized system. For the generalized model, we have again
assumed a sharp diffuson/propagon boundary ωξ and fitted
it to best match the EMD results. The best match corresponds
to ωξ = 0.8 THz, which gives very reasonable agreement with
the EMD results. Remarkably, this also agrees very well with
our estimate from phonon localization analysis in which the
boundary is obtained from phonon modal diffusivities [29]. It
is encouraging that two independent approaches yield a very
similar estimate of the boundary.

There are some interesting differences to note in the
predicted trends for 2D amorphous systems, in comparison to
their 3D counterparts. There is no “plateau region” nor is there
an observable transition from propagon to diffuson -dominated
transport. In fact, Fig. 4 also shows the separate contributions

of the propagons and the diffusons, from which it is evident that
diffusons barely contribute to the overall κ up to temperatures
as large as T = 1000 K. As described in detail in Ref. [29],
we speculate that this arises from the inherent difference in the
nature of random walks in different dimensions: random walks
of dimension d = 1,2 are recurrent, while those of dimension
d = 3 are transient. Moreover, it is noteworthy that throughout
the entire temperature range, the generalized model predicts
that the out-of-plane ZA modes dominate the heat transport
for the amorphous system.

C. One-dimensional and quasi-one-dimensional
nanotubes and nanothreads

For our analysis of ordered and disordered 1D systems,
we consider carbon nanotubes and disordered diamond nan-
othreads. Phonon transport on carbon nanotubes (CNTs) is
featured by its sensitivity to the tube radius [3,55,56]. To a first
approximation, the CNT phonon dispersion can be considered
to be a zone-folded dispersion of 2D graphene [55]. This
approximates most modes well, but is less accurate for the
low-energy phonons. When rolled into a tube, the graphene
LA modes remain effectively unchanged, but the graphene TA
modes become the nanotube twist (TW) modes, the graphene
down-to-zero flexural ZA modes transform into nonzero
breathing modes, and a new set of TA modes (TA1, TA2) unique
to the rolled system emerges. The latter two considerations
cause discrepancies between the actual dispersion of a carbon
nanotube, and the equivalent zone-folded graphene dispersion.

For example, Fig. 5 shows a comparison of the actual
dispersion of a (13,13) CNT (red lines) to that of appropriately
zone-folded graphene (blue lines), obtained by direct solution
of the eigenproblem of the dynamical matrix. We use the
(13,13) CNT here, since its radius is close to the one for
which κ has been measured in experiments [57] to which we
will compare. Of the down-to-zero modes, the LA and the TW
modes clearly exhibit an acoustic nature, while the degenerate
TA1, TA2 modes exhibit a more quadratic nature. For the latter
set, the transition from parabolic to linear dispersion only
becomes complete in the limit of vanishing radius (truly 1D
systems); the (13,13) CNT dispersion shown in Fig. 5 therefore
shows remnants of 2D dispersion and in some sense this CNT
can be considered a quasi-1D system.

An interesting question is “for which diameter D will
the CNT thermal properties be close to that of a true 1D
system?” We assume that the CNT dispersion will reduce
to that of graphene when D � λ0, where λ0 represents a
dominant graphene phonon wavelength. We define the ballistic
transporting capability K(x) of a parabolic mode with x =
�ω/kBT from Eq. (5) with d = 2 as

κp = kB

4π

(
kBT

�

) 3
2

a− 1
2

∫ xp

0

�(x,T )x
5
2 ex

(ex − 1)2
dx

= kB

4π

(
kBT

�

) 3
2

a− 1
2

∫ xp

0
�(x,T )K(x) dx, (17)

so that

K(x) = x5/2ex

(ex − 1)2
. (18)
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Then K(x) is maximized for x0 ≈ 1.77603, or

λ0 = 2π

(
kBT

�a
x0

)−1/2

. (19)

For graphene, λ0 ≈ 10.326/
√

T nm, which sets the critical
diameter to D = 6.0 Å at T = 300 K. Therefore, for most
experimental data, where usually D > 1 nm, phonon transport
may resemble almost 2D transport. For the (13,13) CNT
pictured in Fig. 5, the diameter is close to 18 Å and the
remnant parabolic dispersion is clear for the modes labeled
TA1 and TA2.

1. (13,13) carbon nanotube

Based on the discussion above, we model the (13,13) CNT
thermal conductivity as

κ =
∑

�=LA,TW

κ� +
∑

p=TA1,TA2

κp, (20)

where κ� and κp are given by the 2D description in Eqs. (15)
and (16). Only propagon contributions are included for the
ordered system, and we use the same parameters as for
graphene in the previous section, except that the ZA mode
disappears, and the TA1 and TA2 mode group velocities from
the dispersions in Fig. 5 are both 9.4 km/s. The description of
scattering in Table II is used again. This approach is able to
reproduce the available experimental data [see Fig. 6(a)] [57],
also with no adjustable parameters. The dominant contribution
to κ throughout the full temperature range comes from the twist
mode TW. As discussed in Ref. [57], the measured temperature
dependence of κ arises from a competition between three-
phonon scattering processes. Above room temperature it was
fitted as 1/(AT + BT 2), where A,B are constants, and is
thus dominated by T −2 at high temperature. The scaling is
well-captured by the current model.

The influence of Stone-Wales defects is also shown in
Fig. 6(b), for a 4% defect density at randomly selected sites.
Figure 6(b) shows the resulting κ according to EMD results
as well as the model predictions for difference degrees of
defect scattering incorporated through the scattering parameter
�M = γ�0 (see Table II). The defects reduce the thermal
conductivity approximately threefold compared to the pristine
CNT.

2. Diamond nanothreads

One-dimensional diamond nanothreads have been recently
synthesized in the laboratory for the first time [17]. The
thermal properties of an actual 1D system, particularly a highly
disordered one, may be better exhibited by these nanothreads.
Diamond nanothreads are based on (3,0) nanotubes, but differ
because they (i) are hydrogenated so that the bonding exhibits
an sp3 configuration, and (ii) contain a random distribution
of Stone-Wales defects at high density (≈ 20%) is present,
introducing structural disorder. We consider κ for both a
pristine (3,0) hydrogenated system and a disordered system
with 20% Stone-Wales defects introduced at random sites.
Since the radius of a (3,0) CNT is only 4 Å we use a true 1D
representation. All modes are approximated as linear in wave
vector [55], and the thermal conductivity is given by

κ =
∑

�=LA,TA1,TA2,TW

κ�, (21)
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generalized model the influence of defects is accounted for by the defect scattering �m = γ�0, where �0 is the defect scattering parameter
for the pristine material (see Table II). The statistical error bars marked on the equilibrium molecular dynamics results correspond to the first
standard deviation.

where

κ� =
⎧⎨
⎩

k2
BT

π�
v�

∫ x�

0 (1 − σ (x)) τ (x,T ) x2ex

(ex−1)2 dx (propagons, 1D)

kBv�

∫ x�

0 σ (x) xex

(ex−1)2 dx (diffusons, 1D)
. (22)

We use the same scattering parameters we used for graphene in
the previous sections, except that the ZA mode disappears, and
the TA and TW group velocities are reduced to 8.1 km/s and
12.4 km/s respectively, as obtained from lattice dynamics. The
thermal conductivity of the 1D ultrathin nanotube is plotted in
Fig. 7(a). Compared to the (13,13) nanotubes, the conductivity
is reduced by a factor of three, due largely to the reduction of
group velocities.
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FIG. 7. κ vs T for (a) a crystalline (3,0) hydrogenated sp3 carbon nanotube and (b) a glassy diamond nanothread, both according to
equilibrium molecular dynamics and generalized model. The generalized model predicts dominant contributions from LA modes for the
pristine system; for the glassy case the contributions of propagons is dominant throughout the entire temperature range and the diffuson
contribution is negligible. The statistical error bars marked on the equilibrium molecular dynamics results correspond to the first standard
deviation.

The amorphous version is shown in Fig. 7(b), according to
the generalized model and EMD simulations. For the general-
ized model, we have again assumed a sharp diffuson/propagon
boundary ωξ and fitted it to best match the EMD results. The
best match gives ωξ = 0.45 THz. This estimate of Ioffe-Regel
boundary also agrees very well with our phonon localization
analysis [29]. In the disordered system κ is suppressed by
a factor of 5 at T = 300 K in comparison to the crystalline
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(3,0) hydrogenated tube. The twisting modes are predicted to
be the predominant energy carriers. Similar to 2D amorphous
graphene, diffusons are observed to contribute negligibly to
overall κ . Furthermore, once again in contrast to 3D, there
is no “plateau region” nor is there a corresponding transition
from propagon-dominated to diffuson-dominated transport.

V. CONCLUSION

We have presented a generalized framework to describe the
lattice thermal conductivity of low-dimensional and disordered
materials. The approach is motivated by the Allen-Feldman
description of thermal transport in amorphous 3D materials,
in which heat carriers are categorized as propagons and
diffusons based on their transporting capacity. Results of the
model are compared to experimental measurements and/or
equilibrium molecular dynamics simulations, and show good
agreement. Some interesting aspects to thermal transport
in low-dimensional and disordered materials are suggested,
including a more mild suppression of the thermal conductivity

in comparison to 3D, the lack of a “plateau” in the temperature
dependence of the thermal conductivity, and the negligible
contribution of diffusons to the transport.
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