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Current-phase relation and h/e-periodic critical current of a chiral Josephson contact
between one-dimensional Majorana modes
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We explore a long Josephson contact transporting Cooper pairs between one-dimensional (1D) charge-
neutral chiral Majorana modes in the leads via charged Dirac chiral modes in the normal region. We
investigate the regimes of (i) transparent contacts and (ii) tunnel junctions implemented in 3D topological
insulator/superconductor/magnet hybrid structures. The setup acts as a SQUID controlled by the magnetic flux
enclosed by the chiral loop of the normal region. This chirality leads to the fractional h/e-periodic pattern
of critical current. The current-phase relation can have sawtoothlike shape with spikes at unusual even phases
of 2πn.
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I. INTRODUCTION

Intensive studies of Majorana fermion physics in solid state
materials were motivated by possible applications of these
states in topological quantum computation [1,2]. In condensed
matter, initially, Majorana fermions were predicted to exist in
spinless p-wave superconductors (SC) and fractional QHE
[3–5]. Later, the realizations of Majorana bound states (MBS)
[6–8] and one-dimensional (1D) charge-neutral modes [9]
were proposed in hybrid structures where a helical electronic
system has a proximity effect with external s-wave pairing
potential and Zeeman exchange field. The helical systems
with spin and momentum locking are realized in surfaces
and edges of topological insulators (TI), quantum spin-Hall
films [10], and semiconductors with strong spin-orbital cou-
pling [7,11]. The transport signatures of MBS are associated
with anomalous 4π -periodic Josephson effect [3,6,12,13]. On
the other hand, charge-neutral chiral Majorana modes (χMM)
which are, for instance, supported by SC-magnet junctions on
3D TI surface [9,14], are expected to show unconventional
interferometry if involved in charge transfer between normal
metal leads. Various χMM-based devices operating as Mach-
Zehnder [14,15], Fabry-Pérot [16,17], and Hanbury-Brown
Twiss [18] quantum interferometers have been proposed. In
the context of quantum computation they can serve as a readout
tool of qubit states encoded by MBS in vortex cores [15].

In the paper we calculate DC Josephson current-phase
relation (C�R) of a long spinless contact between 1D gapless
χMMs. The system under consideration represents a chiral
Fabry-Pérot interferometer implemented on a surface of 3D
TI partially gapped by SC and magnetic (M) islands. Similar
ideas were explored in Refs. [14–18]. In these works normal
dissipative transport of Dirac fermions influenced by their
splitting to Majorana modes and the interference of the
latter were studied. In contrast, we study the equilibrium
phenomenon of Josephson current carried by the Andreev
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states formed in the chiral Dirac liquid. The latter connects
between two superconducting leads, which are effectively
gapless due to chiral Majorana modes at their edges. Spinless
structure of the junction follows from the absence of spin
degeneracy of 2D helical surface states. Presence of Zeeman
field breaks time-reversal symmetry and produces gapless
chiral channels at the magnetic domain boundaries. In our
system the normal conducting region consists of two separated
chiral Dirac channels supported by magnetic domain walls.

We explore two models of (i) transparent and (ii) tunnel
junctions. The first one involves four chiral Y junctions,
operating as direct charged-to-neutral fermion converters. The
second one has two tunnel contacts formed by thin layers of
magnetic material where Majorana and normal Dirac channels
are hybridized. The length of the N region, formed by two
counterpropagating 1D Dirac modes, is assumed to be larger
than coherence length of the induced superconductivity. In
other words, the Thouless energy of the normal conducting
part of the system under consideration is significantly smaller
than the proximity gap.

We take into account a contribution to the transport from
subgap 1D chiral states only, neglecting 2D bands. Since
our superconducting leads are gapless due to the presence
of χMMs, the spectral current is continuous and consists
of smeared Andreev levels. Assuming that superconducting
leads are large and have a fixed chemical potential, we obtain
the conventional 2π periodicity of the C�R. In other words,
the nonequilibrium 4π -periodic Josephson effect (which is
predicted [19] for systems with zero-energy MBSs) turns out
to be irrelevant here.

The chiral structure of the normal part consisting of two
1D spinless Dirac modes allows one to make Andreev pairs
nonlocal. This means that the pair resides on two separated
Dirac channels and one can apply magnetic flux f inducing
Aharonov-Bohm phase φAB = 2πf/(h/e) = πf/�0, where
�0 = h/(2e). It follows that the critical current has a 2�0

periodicity rather than the conventional �0 one. The spatial
separation of the Andreev pairs distinguishes our setup from
the junctions with 2D topological insulators sandwiched
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between superconducting leads, where Andreev pairs propa-
gate on the same edge [20,21]. Setups with spatially separated
Andreev pairs based on the quantum Hall chiral edges were
analyzed in Refs. [22,23]. In Sec. VI we compare those systems
with ours.

The paper is organized as follows. In Sec. II we present
the main ideas of χMMs realization in hybrid structures on
a surface of 3D topological insulator. In Sec. III we consider
the regime of transparent Josephson contacts. We derive the
S matrix of the contacts by means of matching the field
operators in the chiral channels. Next we calculate Josephson
C�R at arbitrary temperature and flux enclosed by Dirac
modes. Section IV addresses the tunneling regime, in which
Majorana and Dirac modes meet at the tunnel contacts formed
by magnetic constrictions. In Sec. V we discuss the Majorana
representation of charged-to-neutral fermion scattering in
transparent and tunnel contacts. Section VI summarizes the
results of this paper. The technical details are provided in
Appendixes A and B.

II. MAJORANA MODES IN 3D TI HYBRID STRUCTURE

As was proposed by Fu and Kane [6], the χMM is supported
by SC/magnet/3D-TI structure like that shown in Fig. 1,
with an effective low-energy 1D Hamiltonian following from
a solution of a 2D Bogolyubov–de Gennes equation. The
2D surface states are described by the Rashba Hamiltonian.
The system is assumed to have a chemical potential μ = 0,
corresponding to the Dirac point. The induced s-wave SC
pairing potential is given by �ei�SC in the y < 0 half plane,
while at y > 0 there is magnetic material inducing Zeeman
exchange field Mσz. The full Hamiltonian reads

H = 1

2

∫
dx dy �+h�,

h = ivτzz · (σ × ∇) − Mθ (y)σz

+ (τ+�e−i�SC + τ−�ei�SC )θ (−y), (1)

where the field operator of the 2D surface is � =
[ψ↑,ψ↓,ψ+

↓ , − ψ+
↑ ]T , and σ and τ are Pauli matrices in

spin and Nambu spaces, respectively. The field � satisfies
the charge conjugation constraint � = σyτy�

∗, while the
eigenstates obey ξp = σyτyξ

∗
−p. The low-energy |εp| < �,M

eigenvalues of the Bogolyubov–de Gennes equation hξp =
εpξp are single degenerate and correspond to a 1D chiral mode

FIG. 1. Superconductor/magnetic insulator boundary on the sur-
face of 3D topological insulator. The boundary supports a chiral
Majorana mode with the chirality depending on the sign of the
magnetization.

with the linear spectrum

εp = sgn(M)vp. (2)

Single degeneracy of eigenvalues implies that Bogolyubov
quasiparticle operator

χp =
∫

dx dy
(
ξ (M)
p

)†
(x,y) · �(x,y) (3)

represents a Majorana mode obeying χp = χ+
−p. The corre-

sponding wave function of the χMM reads

ξ (M)
p (x,y) = 1

2
g(M)(y)

⎡
⎢⎢⎢⎢⎢⎣

ei( π
4 − �SC

2 )

−sgn(M)e−i( �SC
2 + π

4 )

−sgn(M)ei( �SC
2 + π

4 )

−ei( �SC
2 − π

4 )

⎤
⎥⎥⎥⎥⎥⎦eipx. (4)

The momentum p here is directed along x axis and g(M)(y) =
ey(l−1

sc θ(−y)−l−1
m θ(y))/

√
2(lsc + lm) is the transverse shape of 1D

guiding channel. The coherence lengths (transversal decay
lengths) are given by lsc = �v/� and lm = �v/M . The
superscript (M) in Eqs. (3) and (4) emphasizes the Majorana
nature of the mode.

Another building block of chiral interferometers is a domain
wall on a surface of a 3D TI where the magnetization sign
is changed. If we consider such a −M/+M boundary along
the x axis, which is described by the term Mσzsgn(y) in
the Bogolyubov–de Gennes Hamiltonian, we end up with
the Dirac chiral mode with the same spectrum found for
χMM (2). In the Nambu notation any of ε eigenvalues are
doubly degenerate and related to orthogonal electron and hole
eigenstates ξ (e)

p and ξ (h)
p = σyτyξ

(e)∗
−p , where

ξ (e)
p (x,y) = 1√

2
g(D)

⎡
⎢⎣

1
i sgn(M)

0
0

⎤
⎥⎦eipx (5)

and g(D) = exp(−|y|/lm)/
√

2lm. There are two independent
excitations with energy ε in Nambu notation in this −M/+M
case—the electron with momentum p and Bogolyubov op-
erator ψp and the −p hole with ψ+

−p. This field is complex
ψp �= ψ+

−p and corresponds to a charged mode. We introduce
here 1D operators ψ(x),χ (x)

χ (x) = χ+(x) =
∫

dp

2π
χpe−ipx, ψ(x) =

∫
dp

2π
ψpe−ipx,

with the anticommutation rules given by

{ψ+(x1),ψ(x2)} = δ(x1 − x2),

{ψ(x1),ψ(x2)} = 0,

{χ (x1),χ (x2)} = δ(x1 − x2) .

The same relations hold in the Heisenberg picture at equal
times t1 = t2. After that the secondary quantized operators
in the low energy range |ε| < �,M can be found as sums
over subgap chiral states. For the charge-neutral Majorana
excitations we obtain

�M (x,y) =
∫

dp

2π
ξ (M)
p (x,y)χp,

155411-2



CURRENT-PHASE RELATION AND h/e-PERIODIC . . . PHYSICAL REVIEW B 93, 155411 (2016)

while for the Dirac mode the field reads

�D(x,y) =
∫

dp

2π

(
ξ (e)
p (x,y)ψp + ξ (h)

p (x,y)ψ+
−p

)
.

Substituting these fields into the second quantized
Bogolyubov–de Gennes Hamiltonian and performing the
transverse integration we obtain the following 1D Hamilto-
nians:

HM = sgn(M)
iv

2

∫
dx χ (x)∂xχ (x) (6)

and

HD = sgn(M)iv
∫

dx ψ+(x)∂xψ(x). (7)

The Hamiltonians (6) and (7) correspond to coherent
propagation of the excitations in 1D guiding channels with
the Fermi velocity v and chirality dependent on the sign of
the magnetization. The 1/2 in the Majorana Hamiltonian HM

reflects the fact that independent excitations in the χMM can
be considered either at positive or negative energies only. Say,
the bottom branch of the chiral mode (2) at p < 0 is redundant.

The wave functions ξ (M) or ξ (e) show that the spin direction
is locked to the momentum. More specifically, the spin
textures of the guiding channels of Majorana and Dirac modes
are orthogonal to the momentum direction in the particular
case of Rashba type Hamiltonian (1). As a consequence
the spin textures are antiparallel in the counterpropagating
channels. More generally, any scattering at a junction will be
accompanied by the corresponding spin rotation.

III. TRANSPARENT REGIME

A. S matrix of a transparent contact

In this section we consider the Josephson junction shown
in Fig. 2. This consists of two counterpropagating chiral Dirac
modes which scatter at the left and right contacts with the
superconducting leads. Each of these contacts consists of a
pair of chiral Y junctions where electrons convert into a pair
of Majorana fermions with opposite chiralities or vice versa
(see Fig. 3). The full S matrix of this contact is derived
from two operator relations for both upper and lower Y

FIG. 2. Scheme of transparent Josephson junction on the surface
of 3D topological insulator. Red lines stand for gapless Majorana
fermion channels and arrows reflect chiralities. Superconducting
electrodes, marked as green, have phase difference �. Light and
dark gray bars are magnetic materials which induce exchange fields
of the opposite polarizations ±M. The line of the sign change of M
supports chiral charged modes marked as blue. Magnetic flux f in
−M region induces Aharonov-Bohm phase φAB = πf/�0.

FIG. 3. Structure of the contact. Black arrows shows spin texture
of the chiral modes.

junctions, described by Sout and Sin matrices found in
Refs. [14,15]. Let us assume first that �SC = 0 in the electrode.
The matrix Sin involves phase difference between electron and
hole converting into two Majorana fermions. This phase is
denoted as α and is included in the scattering matrix as follows:

[
ηout

χout

]
= Sin

[
ψin

ψ+
in

]
, (8)

Sin =
[

1/
√

2 1/
√

2
i/

√
2 −i/

√
2

][
eiα 0
0 e−iα

]
. (9)

The fields entering Eq. (8) are Heisenberg operators at a given
energy. The Sout matrix was found in Ref. [15] by means of time
reversal transformation of Sin which changes the magnetization
sign M → −M

Sout(M) = ST
in(−M). (10)

We assume here that both Y junctions have identical geome-
tries (and, in particular, α is the same). In this work we set
the value of α as a free parameter which is to be found from
a particular geometry of the Y junction. The scattering in the
upper Y junction in Fig. 3 reads as[

ψin

ψ+
in

]
= Sout

[
ηin

χin

]
. (11)

We match Majorana operators ηin and ηout for the given energy
ε as ηin,ε = eikεηout,ε, where the dynamic phase kε = εd/v

is accumulated by the Majorana excitation in course of the
propagation from the lower to the upper Y junction separated
by the distance d. The full S(�SC=0) matrix of the left contact
is found straightforwardly after the exclusion of η fields from
Eqs. (9), (10) and their Hermitian conjugates. To reinstate a
nonzero SC phase of the electrode �SC (colored as green in
Fig. 3), we employ the transformation ψ → ei�SC/2ψ , yielding

S =

⎡
⎢⎢⎣

1
2ei(kε+2α) i√

2
ei

2α−�SC
2

1
2ei(kε−�SC)

i√
2
ei

2α+�SC
2 0 −i√

2
e−i

2α+�SC
2

1
2ei(kε+�SC) −i√

2
ei

�SC−2α

2
1
2ei(kε−2α)

⎤
⎥⎥⎦. (12)
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This unitary S matrix has particle-hole symmetry

S(ε) = ZS∗(−ε)Z, Z =
⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

and acts on (ψin,ε, χin,ε, ψ+
in,−ε)T . It describes the partial An-

dreev reflection in spinless Dirac channel, which is combined
with neutral Majorana excitations. The Andreev part of this
process is accompanied by a Cooper pair absorption by the SC
electrode.

B. Current-phase relation of transparent junction

In the following consideration we assume that chiral Dirac
channels have equal lengths, are parallel to each other, and
separated by the distance d. Using the above approach based
on S-matrix (12), we find ψ operators of charged fermions as
linear combinations of uncorrelated field operators χl and χr

of incident Majorana modes. The latter are characterized by
the Fermi distribution function:

〈χ †
ε,iχε,j 〉 = v−1δi,j

1 + eε/T
, χε = χ

†
−ε =

∫
χ (t)eiεtdt, (13)

where v−1 is the density of states in the χMM channels. We
assume kB = 1 everywhere and recover it in final expressions.
Using operator relations, we calculate chiral local densities
of states ρ(a)

ε ,ρ(b)
ε and currents ja,jb. The linear spectrum of

the system (2) means that chiral current ji is proportional to

charge density and, hence, the Josephson current j is given by

j = ja − jb = −ev(〈ψ+
a ψa〉 − 〈ψ+

b ψb〉). (14)

The positive direction of the current is defined from left to right
SC, bias voltage is zero, and the SC phases on the electrodes
are equal to ±�/2, as shown in Fig. 2. While solving for Dirac
ψε,i operators, we take into account the dynamic ϕε and the
Aharonov-Bohm φAB phases

ϕε = ε

ET

, φAB = π
f

�0
.

The Thouless energy ET here is equal to inverse dwell time of
the interferometer (or the level spacing in the N region)

ET = �v

2L + 2d
. (15)

Dynamic phase ϕε is accumulated by ε electron or −ε

hole enclosing the interference loop of total length 2L + 2d.
Calculations of expressions for ψε,i are analogous to those
presented in Appendix B for tunnel junction.

Within this S-matrix formalism, valid for energies in the
range |ε| < �,M , we find the following result for the C�R:

j (�,φAB) = e

�

∫
Jε(�,φAB)nF (ε,T )dε, (16)

where the distribution function is determined by that of the
incoming χMMs defined in (13). The spectral current Jε can
be associated with the local densities of states in the arms a,b

via Jε = ev(ρ(a)
ε − ρ(b)

ε ). The densities of states ρ(a)
ε , discussed

in Sec. IV C 2, have dimension of inverse velocity; hence Jε

is dimensionless. We obtain

Jε(�,φAB) = − sin ϕε sin �

1 + ( cos(φAB+4α)+cos �

2

)2 − ( cos(φAB + 4α) + cos �) cos ϕε

. (17)

This is a nonsingular 2π -periodic function which reflects the
structure of the broadened Andreev levels. As we mentioned
in the Introduction, conventional 2π periodicity with respect
to � is related to the assumption of equilibrium (no transport
voltage). This means that there are no parity effects resulting
in anomalous 4π Josephson effect.

The integration in Eq. (16) is reduced to a sum over positive
Matsubara fermionic frequencies iT (2πn + π ). We note that
the dynamical phase takes the values ϕε → iT (2πn + π )/ET

at these Matsubara frequencies. Evaluating the sum, we obtain
the C�R

j (�,φAB) = 4π
ekBT

�
sin �

×
∞∑

n=0

1

2e
π

kB T (1+2n)
ET − cos(φAB + 4α) − cos �

.

(18)

This is one of the central results of this paper. It describes the
DC Josephson current at arbitrary temperature and takes into
account contributions from the subgap 1D states.

At zero temperature the summation in j (�,φAB) is replaced
by an integration over x = 2πT n

ET
and the result reads

jT =0(�,φAB) = −2
e

�
ET

ln
(
1 − cos(φAB+4α)+cos �

2

)
cos(φAB + 4α) + cos �

sin �.

(19)

The C�R at zero temperature T is presented in Fig. 4 for the
value of the Aharonov-Bohm phase chosen as φAB = −4α. At
this value the first � derivative of the current is divergent as
∝ ln |�| at � → 0. This divergence illustrates the tendency of
the C�R to have spikes at even phases � = 2πn. In Sec. IV C
we discuss the limit of full Andreev reflection, where the C�R
has a sawtooth form, also with spikes at � = 2πn.

Two separated Dirac modes connecting the two supercon-
ductors form a SQUID loop. In view of the chirality of the
junction the Andreev pair belongs to both Dirac channels, since
a reflection into the same channel is forbidden. Considering
the junction as a SQUID loop controlled by a magnetic flux
applied to the −M light gray bar in Fig. 2, we observe
the fractional 2�0 = h/e-periodic pattern for the critical
current. In Fig. 5 we plot the critical current as a function of
the flux-induced Aharonov-Bohm phase φAB = πf/�0. The
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Superconducting phase, Φ

FIG. 4. T = 0 C�R of the transparent junction at φAB = π .
Divergent � derivatives at � → 2πn are observed.

curve is symmetric under the assumption that 4α = π . (We
recall that α is related to the geometry of the Y junctions.) The
critical current jc in this plot is normalized by its maximal
value jc,max. At arbitrary α the curve in Fig. 5 would be
horizontally shifted. The positions of the peaks of jc are given
by φAB,max = −4α + 2πn.

IV. TUNNELING REGIME

A. Scattering matrix of a tunnel contact

The realization of the tunneling regime of the Josephson
junction studied in this paper is presented in Fig. 6. The left
and the right tunnel contacts are implemented as constrictions
of the magnetic material (see Fig. 7). Similar to the previous
Sec. III, the Dirac channels a and b are colored as blue lines
and have equal lengths la = lb = L and geometries. In contrast
to the transparent regime, in the tunneling regime the Dirac
mode is not terminated but rather forms a closed loop. Hence
we introduce the total phase acquired over the loop a sum
of the Berry phase π and the Aharonov-Bohm phase, φext ≡
π + πf/�0. The constriction of the +M magnet plays the role
of an insulating barrier.

AB

Aharonov-Bohm phase in N-region, φAB + 4α − π

FIG. 5. Fractional h/e-periodic pattern of critical current jc(φAB )
at T = 0. The critical current jc(φAB ) is normalized to the maximal
value jc,max and plotted as a function of Aharonov-Bohm phase φAB =
πf/�0, where f is the magnetic flux.

FIG. 6. Scheme of the Josephson junction in the tunneling regime.

We employ the effective 1D Hamiltonians (6), (7) and add
a local tunneling term. The resulting Hamiltonian reads

H = iv

∫
ψ+∂xψ dx − iv

2

∫
χ∂xχ dx

+ tχ
(
ψ ei

�SC
2 − ψ+e−i

�SC
2

)
. (20)

This Hamiltonian describes counterpropagating Majorana and
Dirac modes which mix at x = 0. The microscopic structure
of the contact is accounted for by the small tunneling
amplitude t  v, which is an additional parameter of our
theory.

In Appendix A, using Hamiltonian (20), we derive the
scattering matrix St of the tunnel contact acting on fields
(ψin,ε, χin,ε, ψ+

in,−ε)T . The scattering matrix reads

St =

⎡
⎢⎢⎣

1
1+λ

i
√

2λ
1+λ

e−i
�SC

2
λ

1+λ
e−i�SC

i
√

2λ
1+λ

ei
�SC

2
1−λ
1+λ

−i
√

2λ
1+λ

e−i
�SC

2

λ
1+λ

ei�SC −i
√

2λ
1+λ

ei
�SC

2
1

1+λ

⎤
⎥⎥⎦. (21)

The formal solution (21) obtained in Appendix A is valid
for any value of t and the dimensionless parameter λ

characterizing the scattering is given by

λ(t) = tan2 t√
2v

. (22)

Yet, since the Hamiltonian (20) is physically justified only in
the weak tunneling limit t v, we obtain λ≈ (1/2) t2/v2  1.

FIG. 7. Structure of the tunneling contact implemented as a
constriction of the magnetic material marked as dark gray. The area of
hybridization between the wave functions of the counterpropagating
neutral and charged chiral channels is indicated by a bar.

155411-5



SHAPIRO, SHNIRMAN, AND MIRLIN PHYSICAL REVIEW B 93, 155411 (2016)

The amplitude of the dominant process of normal reflection is given by 1/(1 + λ). The scattering to the Majorana channel
scales as ∼√

λ, whereas the Andreev reflection amplitude has the lowest amplitude ∼λ.

B. Current-phase relation in the tunneling regime

Using the scattering matrix St calculated above (21), we obtain the following results for the spectral current and the C�R (for
details see Appendix B):

Jε(�,φAB) = −4λ3 sin � sin ϕε

((1 + λ2) cos ϕε + cos φAB − λ2 cos �)2 + 4λ2 sin2 ϕε

, (23)

j (�,φAB) = 4π
ekBT

�
λ2 sin �

∞∑
n=0

1

(1 + λ2) cosh
(

πkBT (2n+1)
ET

) + 2λ sinh
(

πkBT (2n+1)
ET

) + cos φAB − λ2 cos �
. (24)

Here the Thouless energy is given by ET = �v/(2L). From the
C�R in (24) we see that at high temperatures, T � ET , only
n = 0 term contributes to the sum (24). In this limit we observe
a sinusoidal C�R and the critical current jc is exponentially
suppressed:

j (�) ≈ 4πekBT λ2

�(1 + λ)2
exp(−πkBT /ET ) sin �. (25)

The factor λ2

(1+λ)2 is proportional to the full transparency of
the junction being the product of the transparencies of the left
and the right contacts. This result is similar to the C�Rs for
a conventional S/N/S junction with the N region being a long
quantum wire [24–26].

In the low temperature regime, T  ET , the C�R is no
longer sinusoidal and the critical current jc ∼ ET decays as
1/L. Flux dependent oscillations of jc are sharper compared
to those in the transparent regime. The resonant shape of the
non-Fraunhofer h/e-periodic modulation is shown in Fig. 9
for weak tunneling λ = 0.1. The shift of the maximum of jc

by π results from the presence of the Berry phase.

C. Formal continuation of the tunneling solution
to the regime of finite transparency

The solution for the scattering matrix (21) follows formally
from the tunneling Hamiltonian (20) at any value of t (see
Appendix A). Yet, it is only physically justified for t/v  1,
or λ  1. We ask ourselves what happens if we extend (21),
formally, to an arbitrary value of t/v in the tunneling
Hamiltonian (20) and consider the scattering matrix (21) at any
value of λ = tan2(t/

√
2v). We observe that at λ = 1 the C�R

obtained for the transparent regime (18) is recovered (up to
the geometry dependent phase α). In other words, transparent
contacts formed by Y junctions correspond to the intermediate
strength λ = 1 of tunnel contacts, rather than to the regime
λ → ∞.

In this subsection we investigate the C�R and the density
of states in the N region at arbitrary λ. In particular, we analyze
the regime of full transparency, λ → ∞, where the scattering
matrix St reaches the unitary limit and corresponds to the full
Andreev reflection in the Dirac channel.

Note that the relation between λ and t/v, obtained in
Appendix A, assumes a certain microscopic structure of the

contacts and, thus, could also be different. We discuss this in
more details in Appendix A.

1. Critical current and C�Rs

As mentioned above, the formal result for C�R for the
tunneling regime (24) is identical to that for the transparent
regime (18) at λ = 1, up to geometry dependent phase α. In
Figs. 8 and 9 we illustrate the evolution of C�Rs and critical
currents jc upon increase of the transparency parameter λ.
We plot the results at small λ = 0.36, related to tunneling
approximation, and their continuation to higher λ = 4 and 25.

In the limit λ → ∞ the scattering matrix St (21) reaches
the unitary limit

St (λ → ∞) =
⎡
⎣ 0 0 e−i�SC

0 −1 0
ei�SC 0 0

⎤
⎦.

This matrix describes the process of full Andreev reflection,
where an electron converts into a hole with a phase shift of
wave function equal to the phase of the SC electrode. At T = 0
and λ → ∞, where jc is independent on φAB , the C�R (24)

Superconducting phase, Φ

FIG. 8. Bold curve: C�R found in (24) for tunnel junction
at dimensionless tunneling strengths λ = 0.36. Dashed curves:
continuation of the results for C�R (24) to finite transparencies
λ = 4 and λ = 25. The current j (�) is measured in units of the
Thouless energy ET with Aharonov-Bohm phase φAB = π (φext = 0)
and at low temperature T = 0.01ET . The λ = 25 curve indicates the
tendency to the formation of spikes at unusual even phases 2πn.
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AB

Aharonov-Bohm phase in N-region, φAB

FIG. 9. Dimensionless critical current jc(φAB )/jc,max of the tunnel
(λ = 0.1) and transparent at (λ = 1 and 4α = π ) junctions as a
function of Aharonov-Bohm phase φAB = 2πf/(h/e). Maximum of
the critical current is shifted due to the presence of Berry phase.
Dashed curves correspond to results at finite λ = 0.5,2 found from
the tunneling approach. All figures are plotted at low temperature
T = 0.01ET .

shows a sawtooth shape with spikes at even phases

j (�) = 4
e

�
ET arctan cot

�

2

= 2
e

�
ET (π − �) for 0 < � < 2π. (26)

In conventional ballistic spinful 1D S/N/S junctions the
C�Rs are known to be sawtoothlike [27]. In contrast to our

result (26) the spikes are usually odd π + 2πn and the slope is
positive. This difference follows from an additional phase of π

acquired by a fermion in a spinful junction after two Andreev
reflections from the contacts. For spinful systems, full Andreev
reflection is associated with the time-reversal transformation
iσyK of the fermion wave function. Being reflected two times
from the left and right contacts, the spinful fermion gets a π

phase. In spinless junction under consideration this phase is
zero.

2. Density of states

We calculate density of states at arbitrary λ in a branch with
the use of ψa from (B8) derived in Appendix B. The density
of states in chiral Dirac modes are “halves” of the spectral
current, because Jε = ev(ρ(a)

ε − ρ(b)
ε ) if incoming Majorana

fermion modes χr,l are not correlated. We introduce the local
retarded Green function (calculated at an arbitrary coordinate
x in the a branch) as

G(a)(t,t ′)= − iθ (t−t ′)〈{ψa(x,t),ψ+
a (x,t ′)}〉.

The Fourier transform of this function,

G(a)
ε =

∫
〈{ψa,ω,ψ+

a,ω}〉 dω

ε − ω + io
,

gives for the density of states

ρ(a)
ε = − 1

π
ImGε = 〈{ψa,ε,ψ

+
a,ε}〉.

Assuming the density of states of χMM in the SC gap is
constant, i.e., 〈{χi,−ε,χi,ε}〉 = v−1, we obtain

ρ(a)
ε (�,φAB) = v−1 2λ(1 + λ2 + cos(φAB − ϕε) − λ2 cos(� + ϕε))

((1 + λ2) cos ϕε + cos φAB − λ2 cos �)2 + 4λ2 sin2 ϕε

. (27)

In Fig. 10 we plot the density of states ρ(a)
ε at three values of

dimensionless tunneling parameter λ. At weak tunneling, λ =
0.3 [see Fig. 10(a)], the maxima of ρ(a)

ε are slightly dependent
on �. Horizontal lines resemble smeared mesoscopic levels

FIG. 10. Spectral density of states (27) of the right movers,
ρ(a)

ε (�,ε), in the upper a arm of the junction. The energy ε is counted
in units of Thouless energy ET . Blue and white colors correspond
to low and high densities, respectively. (a) Weak tunneling regime,
λ = 0.3; the horizontal lines are reminiscent of the quantized levels of
the isolated N region; (b) intermediate transparency, λ = 1; the results
coincide with those for a transparent junction at α = π/4; (c) the case
λ = 5 illustrates the continuation to the high transparency limit (full
Andreev reflection), where bright narrow lines are half of full set of
smeared Andreev levels. Aharonov-Bohm phase φAB = −π/2 for all
three plots.

of an isolated 1D Dirac wire of length L. These maxima can
be shifted vertically by a flux induced Aharonov-Bohm phase
φAB , because their position is given by

εn = (2πn − π − φAB)ET .

The result for the intermediate transparency λ = 1, equivalent
to the transparent junction, is shown in Fig. 10(b). We see that
the density of states is strongly smeared in this case.

The continuation of ρ(a)
ε to high transparency (λ � 1)

shows that the spectral density is given by 2π -periodic narrow
lines of Andreev levels. Their structure can be found from the
singularities of (27) at λ → ∞ as

εA
n = ±ET (� + 2πn). (28)

In Fig. 10(c) we plot the density of states at λ = 5 which
consists of half of the full set of smeared Andreev levels (28).
Note that level positions are independent of the Aharonov-
Bohm phase. This follows from the fact that the electron and
the reflected hole get opposite Aharonov-Bohm phases, which
compensate each other in closed paths.

3. Persistent current at � = 0

Both Dirac channels carry large electric currents. The
difference of this currents leads to the net electric current
j (�,φAB) calculated above. If the superconducting phase
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difference vanishes, � = 0, the currents in the Dirac channels
are equal ja = jb ≡ jp and, thus, cancel each other. In this
case jp(φAB) is the persistent loop current which we calculate
in this subsection. We obtain

jp(φAB) =
∫

1

2

(
1 − tanh

ε

2T

)
ρ(a)

ε (� = 0,φAB)dε. (29)

The result of the integration consists of two parts:

jp(φAB) = jp,0 + δjp(φAB). (30)

The first part, jp,0, originates from the unity in the factor
(1 − tanh ε

2T
) in the integral (29). This part describes a large

equilibrium current carried by chiral Dirac modes around
a magnetic domain surrounded by the area of opposite
magnetization. This current is independent of φAB and is
estimated as jp,0 ∼ (e/�)M .

The second part δjp(φAB) in (30) is of our interest. This part
is sensitive to the presence of superconducting contacts and to
the interference due to Andreev reflections. It is thus periodic
in φAB but it is much smaller than jp,0. We find

δjp(φAB) = 2π sin φAB

kBe

�
T

∑
n=0

1

(1 + λ2) cosh
(

πT (2n+1)
ET

) + 2λ sinh
(

πT (2n+1)
ET

) + cos φAB − λ2
. (31)

At high temperatures, T � ET , the oscillating part
δjp(φAB) is sinusoidal. Its amplitude is exponentially sup-
pressed and, moreover, in the limit of fully transmitted contacts
λ � 1 it decays as λ−2:

δjp(φAB) = 4π
kBe

�(1 + λ)2
T exp(−πkBT /ET ) sin φAB. (32)

At low temperatures, T  ET , and in the weak tunneling
limit λ  1 we obtain a sawtoothlike shape:

δjp(φAB) = 2
e

�
ET arctan tan

φAB

2
. (33)

The result for the persistent current as the function of φAB

in this poorly transmitting regime looks like dual to the result
for sawtooth C�R in the fully transmitting limit (26). Values
of oscillations amplitudes of jc and δjp have maximum at
λ � 1 and λ  1, respectively. The difference between (33)
and (26) is in opposite signs of the slopes of these sawtooth
characteristics. Spikes in δjp(φAB) are related to crossings
between quantized resonant levels and Fermi energy. In the
expression (33) these spikes hold for odd Aharonov-Bohm
phases of (2n + 1)π but in general case the zero point of φAB

is ill defined due to the presence of magnets in setups.
The low-T result for δjp(φAB) (up to zero phase shift)

for the transparent interferometer (Fig. 3) is formally given
by (31) at λ = 1. We get δjp(φAB) dependence in this case,
dual to C�R (19), with opposite signs of the slopes and infinite
derivatives at odd Aharonov-Bohm phases

δjp(φAB) = e

�
ET

sin(φAB) ln
(

cos2
(

φAB

2

))
cos(φAB) − 1

. (34)

We recall that chiral Dirac edge modes are spatially
separated in our devices and Andreev pairs are nonlocal.
External magnetic flux f enclosed by the perimeter of the
interferometer induce single-electron Aharonov-Bohm phase
2πf/(h/e) in the Dirac channels. This results in fractional 2�0

periodicity of the critical and persistent currents.

V. SCATTERING IN TERMS OF MAJORANA MODES

One can describe the scattering between the Dirac and
Majorana chiral modes by representing the ψ operators in
the N channel with the help of two auxiliary charged-neutral
Majorana operators γ1 and γ2. These modes do not carry charge

separately but their superpositions do. The different SC phases
of the opposite contacts result in a fusion of the auxiliary γ1

and γ2 modes, which is responsible for a Cooper pair transfer
from one lead to the other.

In this section we discuss the scattering in the Majorana
basis for the tunneling and transparent contacts. We analyze in
detail the regime λ = 1 (keeping α as a free parameter), since
it corresponds to the case of the transparent junction (18) up
to geometry dependent α and the Berry phases.

The Majorana basis is defined through the following
transformation for both the left and the right contacts:

ψi = 1√
2

(γ1,i + iγ2,i)e
−i�SC/2, (35)

where the index i here stands for in and out channels. The St

matrix (21) under this transformation at arbitrary λ reads⎡
⎣γ1,out

χout

γ2,out

⎤
⎦ =

⎡
⎢⎣

1 0 0

0 1−λ
1+λ

− 2
√

λ
1+λ

0 2
√

λ
1+λ

1−λ
1+λ

⎤
⎥⎦

⎡
⎣γ1,in

χin

γ2,in

⎤
⎦. (36)

According to (36) γ1 mode is always fully decoupled, consis-
tent with the scattering theory of Li, Fleury, and Büttiker [17].
In the weak tunneling limit λ  1 the modes χ and γ2 scatter
into each other with the amplitude ∼√

λ. In the opposite
unitary limit λ → ∞ all modes are decoupled from each other
but both χ and γ2 invert signs meaning that the corresponding
Dirac fermions experience the full Andreev reflection. In the
intermediate case λ = 1 (Fig. 11, left) the modes χ and γ2

fully convert into each other: γ2,out = χin and χout = −γ2,in.
The presence of the scattering phase α in the scatter-

ing matrix (12) of the transparent Dirac-Majorana contacts
changes the situations considerably. We apply again the
transformation (35) to ψ operators and obtain the following S

matrix in the Majorana basis (setting d = 0)⎡
⎣γ1,out

χout

γ2,out

⎤
⎦ =

⎡
⎢⎣

cos2 α − sin α − sin 2α
2

− sin α 0 − cos α

sin 2α
2 cos α − sin2 α

⎤
⎥⎦

⎡
⎣γ1,in

χin

γ2,in

⎤
⎦. (37)

This matrix coincides with that of (36) in the limit λ = 1 only
if α = 0. For the other values of α all the modes are mixing
with each other. At arbitrary α there is mixing between all of
the modes except for χin and χout. Mixing between χin and
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FIG. 11. Scattering in normal Dirac ψ,ψ+ and neutral-charge
channels χ written in terms of auxiliary Majorana modes γ1,γ2. Left:
tunnel contact described by St matrix (21) at λ = 1. Right: transparent
contact described by S matrix (12) at α = ±π/2.

χout is possible if we a add second contact with a different
SC phase. We illustrate the scattering in the particular case
of α = ±π/2 in Fig. 11 (right), where the incoming χ mode
converts into γ1 mode and vice versa. Note that, in this case,
γ2 mode is not converted to the others but gets an inversion of
the sign, γ2,out = −γ2,in.

VI. SUMMARY

To conclude, we analyzed two limits of 1D long ballistic
Josephson junctions where the leads are formed by gapless 1D
chiral Majorana channels. These junctions can be realized as
hybrid structures involving 3D topological insulator surface
in proximity with s-wave superconducting electrodes and
magnetic materials. More generally, our model describes trans-
port of Cooper pairs between 2D topological superconductors
supporting neutral edge modes. The normal region of these
setups is formed by two chiral Dirac modes spaced by a
magnetic material. Such a normal part is effectively spinless
because the spin textures are locked to profiles of magnetic
domain walls.

In the first part of the work we have calculated the C�R
in the regime of high transparency. In this limit the left
and the right contacts of the junction consist each of two
Dirac-Majorana converters built by magnet/superconductor
interfaces. We find that this system has a continuous spectral
current, a 2π -periodic nonsinusoidal C�R at low tempera-
tures, and an h/e-periodic dependence of the critical current
on the magnetic flux. The critical current amplitude at zero
temperature is given by Thouless energy which is proportional
to inverse dwell time of the normal region. The junction can
act as a SQUID because the two Dirac channels are spatially
separated. An Andreev pair in this case appears to be spatially
nonlocal, which offers a possibility of inducing an internal
Aharonov-Bohm phase. This leads to one of our central results:
the critical current and the persistent current in the normal
region show fractional h/e-periodic patterns.

In the second part of the work we have studied another
realization of the junction where Dirac and Majorana channels
are coupled through a tunnel barrier. The C�R of such a tunnel
junction was found in terms of the tunneling Hamiltonian
approach and corresponding scattering matrix. The resulting
critical current patterns show sharper resonant peaks as

compared to those for the transparent junction. We have
also studied the formal extension of the tunneling solution
to the high transparency regime and compared it with the one
obtained in the first part of the work.

Alternative Josephson junctions with spatially separated
Andreev channels were proposed in Refs. [22,23]. In these
systems the normal part between the superconductors is a
quantum Hall bar and the current is carried by the chiral edge
states. We compare our system with those based on quantum
Hall junctions. (i) In our system the low-T critical current
scales as 1/L, where L is the perimeter of the normal part
of the junction. In contrast in the closest counterpart of our
system, i.e., in the spinless quantum Hall setup, the low-T
critical current scales as 1/L3. In the spinful quantum Hall
junction the critical current also scales as 1/L. (ii) In our
system the C�R is strongly nonsinusoidal and may have
infinite derivatives or discontinuities at even values of the
phase. This feature may be associated with the presence of
a gapless sector of excitations in 1D Majorana channels. In
contrast, in the spinless quantum Hall junction C�R is exactly
sinusoidal. The C�Rs of the spinful quantum Hall junction
are nonsinusoidal as well; however, only odd discontinuities
are possible.

Interferometers involving chiral Majorana modes [14–18]
could find their applications as measuring devices of
topological qubits [15]. In this paper we have explored a dual
setup, in which the equilibrium Josephson current is carried
by interfering chiral Dirac electrons between chiral Majorana
leads. Embedded into schemes with vortices and/or magnetic
or SC islands supporting zero-energy Majorana pairs, a Joseph-
son based quantum interferometer might be of advantage,
e.g., for performing quantum readout of topological qubits.
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APPENDIX A: DERIVATION OF THE SCATTERING
MATRIX OF A TUNNEL CONTACT

The local form of tunneling Hamiltonians (20) is an
approximation, because, microscopically, such contacts are
formed by constrictions of finite size as depicted in Fig. 7. If
the constriction is wide and the hybridization is negligible, the
parallel chiral channels along SC/+M and +M/−M junctions
have opposite (orthogonal) spin textures. In the tunneling area,
shown as the constriction of the magnetic material in the black
bar, the eigenfunctions can be approximated by superpositions
of the eigenfunctions of the isolated Dirac and Majorana
channels, ξ (e), ξ (h), and ξ (M). This means that an electron
coming into the tunneling area starts to oscillate between
hole- and Majorana-like states with a rate, proportional to
a hybridization of the channels, estimated as M e−Mdy , where
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dy is a transversal constriction length. Finally, the incoming
electron scatters into a superposition of outgoing electron,
hole, and neutral excitation in the Majorana channel. From
this qualitative picture one can conclude that the scattering
matrix should be periodic with respect to the phase of these
oscillations, given as a product of hybridization energy and the
constriction dwell time M e−Mdy/vdx/v.

Here, we derive this periodic behavior of the St matrix
from the local tunneling Hamiltonian (20). We employ the
Heisenberg equations of motion⎡

⎢⎣
(v∂x − ∂t )ψ(x)

(v∂x − ∂t )χ (−x)

(v∂x − ∂t )ψ+(x)

⎤
⎥⎦ = itδ(x)T

⎡
⎣ ψ(x)

χ (x)
ψ+(x)

⎤
⎦, (A1)

where the tunnel matrix is given by

T =

⎡
⎢⎣ 0 e−i

�SC
2 0

ei
�SC

2 0 −e−i
�SC

2

0 −ei
�SC

2 0

⎤
⎥⎦. (A2)

We write χ (−x) in these equations in order to make the
chirality of the Majorana mode the same as that of the charged
channel. In this representation we can consider incoming and
outgoing states as those at x < 0 and at x > 0, respectively.

It follows from the x integration of (A1), (A2) around the
point of contact x = 0 that the relation between the tunneling
matrix T and the scattering matrix St reads

St = exp [i(t/v)T ]. (A3)

Calculating the exponent we obtain

St =

⎡
⎢⎢⎣

1
1+λ

i
√

2λ
1+λ

e−i
�SC

2
λ

1+λ
e−i�SC

i
√

2λ
1+λ

ei
�SC

2
1−λ
1+λ

−i
√

2λ
1+λ

e−i
�SC

2

λ
1+λ

ei�SC −i
√

2λ
1+λ

ei
�SC

2
1

1+λ

⎤
⎥⎥⎦, (A4)

where the dimensionless tunneling strength λ(t) is given by

λ(t) = tan2 t√
2v

. (A5)

This tunneling St matrix is unitary and obeys the particle-hole
symmetry St (ε) = ZS∗

t (−ε)Z like S. The eigenvalues of (A4)

are given by ei
√

2t/v; e−i
√

2t/v; 1.
The solution method leading to (A4) and (A5) is not univer-

sally accepted. Rather, a different ansatz was used in various
problems on transport in 1D systems such as tunneling between
edge states of QHE [28], impurity scattering in Luttinger
liquid at g = 1/2 [29], or resonant Andreev reflection from
zero-mode Majorana bound state [30]. Following these works
we should have taken the local ψ and χ operators at point
x = 0 as

ψ = ψ(−0) + ψ(+0)

2
, χ = χ (−0) + χ (+0)

2
. (A6)

Relations (A6) produce then the same solution for the
scattering matrix as in (A4). However, the parameter λ is now
different and is given by

λ̃(t) = t2

2v2
. (A7)

The two solutions coincide in the weak coupling limit t/v  1.
For larger values of t the difference is substantial. For instance,
the unitary limit λ̃ → ∞ is achieved with (A6) and (A7) at t →
∞. In contrast, with (A3) it is reached at tn = √

2(π/2 + πn)v.
We conjecture that the solution method, leading to (A3),

applies if the constriction is smooth enough, so that the validity
of the low energy description provided by (1) and (20) is
not violated in any point of the constriction. Then, Eq. (A1)
is solved as a regular differential equation. On the other
hand, the ansatz (A6) is probably applicable for sharp enough
constrictions. This ambiguity should be resolved by solving
2D BdG equations for the constriction geometry.

APPENDIX B: DERIVATION OF C�R
IN THE TUNNELING REGIME

In this appendix we present technical details of the
calculation of the Josephson current. We find the C�R as
the difference between the chiral currents in a and b arms by
using the tunnel junction scattering matrix St , given by (A4).
We take the first and the third lines of (A4), disregarding the
outgoing Majorana field χout (line 2), and obtain[

ψout,ε

ψ+
out,−ε

]
=

[
1

1+λ
λe−i�SC

1+λ

λei�SC

1+λ
1

1+λ

][
ψin,ε

ψ+
in,−ε

]

+ i
√

2λ

1 + λ
χin,ε

[
e−i

�SC
2

−ei
�SC

2

]
. (B1)

The matrix in the right hand side of Eq. (B1) contains
amplitudes of normal and Andreev reflection, while the last
term describes coupling with the equilibrium Majorana in

channel. This term is responsible for the spectral current (23)
being continuous, due to the gapless spectrum of the incoming
lead Majorana mode.

To proceed we rewrite Eq. (B1) as follows:[
ψout,ε

ψ+
in,−ε

]
= M�SC

[
ψ+

out,−ε

ψin,ε

]
+ i

√
2λχin,ε

[
ei

�SC
2

e−i
�SC

2

]
. (B2)

The matrix M�SC in (B2) is given by

M�SC =
[
λei�SC 1 − λ

1 + λ −λe−i�SC

]
.

Using (B2) we formulate the boundary conditions for
the left and right contacts. We introduce the field �ε,x =
[ψa,ε,ψ

+
b,−ε,ψ

+
a,−ε,ψb,ε]Tx , which depends on ε and on the

coordinate x along the Dirac channels. Indices a and b stand
for the upper and lower Dirac modes (see Fig. 6). We start from
the left contact where �SC = �/2 and x = −L/2. Using (B2)
and its Hermitian conjugate at ε → −ε as well as the property
of the real Majorana field, χ+

l,−ε = χl,ε, we derive[
γ0 −M�/2

−M∗
�/2 γ0

]
�ε,−L/2 = i

√
2λη�/2χl,ε. (B3)

Here γ0 is the 2×2 identity matrix in the left upper block
and η�/2 = [ei �

4 ,e−i �
4 , − e−i �

4 , − ei �
4 ]T . Note that for the

left contact b components of �ε,−L/2 are in fields, while a

components are out fields: ψa,−L/2 = ψout and ψb,−L/2 = ψin.
The rank of the 4×4 matrix in (B3) equals 2 and the eigenvalues
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are equal to 0,0,2,2 regardless of the values of λ and �. The
condition for the right contact is obtained from (B3) by the
replacements

� → −�, χl → χr, �ε,−L/2 → sxγx�ε,L/2. (B4)

The Pauli matrix sx , introduced in (B4), mixes the 2×2 blocks
in (B3) acting as a particle-hole transformation, while γx acts
inside of the blocks. The product sxγx interchanges a and b

indices in �ε,x . We find that the fields in the middle of N
region, �ε,0 ≡ �ε,x=0, can be expressed via the operators at
the ends of the Dirac channels, �ε,−L/2 and �ε,L/2, using the
dynamical and geometrical phases:

�ε,−L/2 = DεF�ε,0, (B5)

�ε,L/2 = sxγxDεFsxγx�ε,0. (B6)

Here Dε = diag[e−iϕε/4,eiϕε/4,e−iϕε/4,eiϕε/4] and F = diag
[e−iφext/4,e−iφext/4,eiφext/4,eiφext/4]. The external phase φext is
equal to the sum of Aharonov-Bohm and Berry phases and
the dynamical phase ϕε accumulated an electron of energy ε

or a hole of energy −ε, enclosing the interference loop of the
length 2L. Here

ϕε = ε

ET

, ET = �v

2L
. (B7)

The relations (B3), (B4) together with (B5), (B6) make the
problem of finding the four components of �ε(0) algebraically
close. The result for the first component reads

ψa,ε =
√

2λ e−i
�+ϕε+φext

4
ei

ϕε
2
(
ei

φext+�

2 sin φext−ϕε

2 − λ sin �+ϕε

2

)
χl,ε + (

sin φext−ϕε

2 + λ ei
φext+�

2 sin �+ϕε

2

)
χr,ε

(1 + λ2) cos ϕε − cos φext − λ2 cos � + 2iλ sin ϕε

. (B8)

The Dirac field in the b channel is obtained using the
geometrical symmetry of the setup and is given by

ψb,ε(�,χr,χl)=ψa,ε(−�,χl,χr ). (B9)

The operator relations (B8) and (B9) are used to calculate

j = ja − jb = −ev

∫
(〈ψ+

a,εψa,ε〉 − 〈ψ+
b,εψb,ε〉)dε,

which results in the C�R presented in (24).
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