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Effects of spin-orbit coupling and spatial symmetries on the Josephson current in SNS junctions
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We present an analysis of the symmetries of the interference pattern of critical currents through a
two-dimensional superconductor-semiconductor-superconductor junction, taking into account Rashba and
Dresselhaus spin-orbit interaction, an arbitrarily oriented magnetic field, disorder, and structural asymmetries. We
relate the symmetries of the pattern to the absence or presence of symmetries in the Hamiltonian, which provides a
qualitative connection between easily measurable quantities and the spin-orbit coupling and other symmetries of
the junction. We support our analysis with numerical calculations of the Josephson current based on a perturbative
expansion up to eighth order in tunnel coupling between the normal region and the superconductors.
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Semiconductors with strong spin-orbit interaction (SOI)
have attracted a lot of attention in recent years. The prospect
of manipulating electron spin efficiently with electric fields
instead of magnetic fields makes SOI an attractive ingredient
for spintronic applications [1,2], as well as spin-based quantum
computing [3,4]. Furthermore, several concrete proposals were
put forward on how to create topological states of matter in
hybrid structures relying on semiconductors with strong SOI:
one- or two-dimensional semiconductors proximitized by an
s-wave superconductor can behave as a p-wave topological
superconductor [5–8]. Two-dimensional semiconductor het-
erostructures can acquire an “inverted band structure” and
enter a (topological) quantum spin Hall state [9,10]. The notion
that such topological systems can host non-Abelian quasiparti-
cles and the prospect of using these particles for topologically
protected quantum computing [11] sparked intense research
activity and fueled the interest in semiconductors with strong
SOI.

In most lower-dimensional semiconductor structures, the
electric fields contributing to SOI have two important contri-
butions: (i) a so-called Dresselhaus field resulting from the
lack of inversion symmetry of the crystal structure and (ii)
a Rashba field due to asymmetries in the applied confining
potential. Although the underlying mechanisms are thus well
understood, it still remains a challenge to determine the
absolute and relative strength of both contributions in a given
sample [12,13].

Investigating the dc Josephson current through a
superconductor-semiconductor-superconductor junction in the
presence of an applied magnetic field has been proposed as
a way to acquire information about SOI in the semicon-
ductor [14–16]. Indeed, SOI can make the current depend
anisotropically on the field [16] or produce an anomalous
supercurrent (a current at zero phase difference) [14,17–19].
These effects depend on the orientation and type (Rashba or
Dresselhaus) of the SOI, and as such could therefore be used
to determine or parametrize the SOI in a given sample [20].

Previous models produced (semi-)analytic results for the
Josephson current as a function of SOI parameters, e.g.,
for strictly one-dimensional wires [16,17], for quasi-one-
dimensional systems [21,22], as well as truly two-dimensional
junctions [23,24], including Rashba SOI, electron-electron
interactions, and a Zeeman field (i.e., no induced vector

potential). The appearance of an anomalous Josephson current
was shown to rely on the presence of both SOI and a finite
exchange field, its magnitude depending on the angle between
the two effective fields.

Realistic systems, however, are usually more complex: they
can be disordered, the two contacts to the superconductors can
have different transparencies, the vector potential due to the
applied magnetic field can have non-negligible effects, or both
Rashba and Dresselhaus SOI can be present. Including all
these ingredients makes it very challenging to obtain analytic
insights, and usually one has to revert to numerics in order to
produce quantitative or qualitative results. Numerical results
based on a Keldysh-Usadel approach were used to study the
charge and spin current in diffusive junctions [25–28]. There it
was found that an anomalous supercurrent can also be caused
by device asymmetries.

In this work, we perform a most general analysis
by investigating symmetries of the full Hamiltonian de-
scribing a two-dimensional superconductor-normal metal-
superconductor (SNS) junction. We relate basic properties of
the Josephson current to the absence or presence of certain
symmetries in the Hamiltonian, and we identify the ingredients
that break these symmetries, including Rashba and Dressel-
haus SOI. Our main result is a clear overview that qualitatively
links easily observable properties of the supercurrent and the
critical current to the structure of the underlying Hamiltonian.
In contrast to similar analyses in the literature [14,18], we (i)
include disorder and a finite vector potential and (ii) do not
restrict our investigation to the anomalous current but also
conclude on the magnetic field dependence of the critical
current. We support our symmetry analysis with numerical
calculations of the Josephson current based on a perturbative
expansion in a weak tunnel coupling between the normal
region and the superconducting leads. Explicit calculations
that can be found in the literature—mainly concerning the
anomalous supercurrent [21–23,25]—agree with our results.

We consider a two-dimensional SNS junction, as shown
in Fig. 1. A normal metal region (N ) with dimensions
W×L is coupled to two superconducting leads (S1 and S2),
and we investigate the supercurrent through the junction
as a function of the phase difference ϕ between the
leads. We describe the electrons in the junction with a
Bogoliubov–de Gennes Hamiltonian H= 1

2

∫
dr �†H�, using
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FIG. 1. A two-dimensional SNS junction where a normal metal
region of size W × L is coupled to two two-dimensional supercon-
ductors with a phase difference of ϕ. We consider the properties of
the (critical) supercurrent through the junction in the presence of SOI,
arbitrarily oriented magnetic fields, and disorder.

� = [ψ↑(r),ψ↓(r),ψ†
↓(r),−ψ

†
↑(r)]T , where ψ↑(↓)(r) is the

electronic annihilation operator for an electron with spin-
up(down) at position r. In this framework, we write

H = H0 + HSOI + HZ + HS. (1)

The first term in H reads

H0 =
{

p2

2m
+ (eBzy)2

2m
− μ + V (x,y)

}
τz + e

m
Bzypx,

where p = −i�(∂x,∂y) is the electronic momentum operator
and the Pauli matrices τ act in particle-hole space. ThisH0 thus
describes the kinetic energy of the electrons, where we added
the effect of a vector potential corresponding to a uniform
magnetic field Bz penetrating N , using the gauge A = −Bzyx̂.
We also included a position-dependent potential V (x,y) to
model possible barriers at the SN interfaces or other effects
such as disorder or band bending. The second term describes
the spin-orbit interaction of the propagating electrons,

HSOI =
{

α

�
(−pyσx + pxσy) + β

�
(−pxσx + pyσy)

}
τz

+ eBzy

�
(ασy − βσx),

the terms proportional to α accounting for the Rashba
coupling, and those coming with β for the Dresselhaus
coupling [29]. HSOI contains only the linear Dresselhaus
terms, but in principle one could also include cubic terms
(usually ∝ p2

ypxσx,p
2
xpyσy), which become important when

the thickness of the junction in the z direction is non-negligible.
However, these cubic terms transform identically to the linear
Dresselhaus terms under all symmetry operations we consider
in this work [30], and we therefore do not write them explicitly
here. The Zeeman splitting of the electronic spin states is
described by

HZ = 1
2gμBB · σ ,

g being the effective g factor. Finally, the superconductivity in
S1 and S2 is modeled by the s-wave pairing term

HS = 
�

(
x − 1

2
L

)[
cos

ϕ

2
τx + sin

ϕ

2
τy

]

+ 
�

(
−x − 1

2
L

)[
cos

ϕ

2
τx − sin

ϕ

2
τy

]
,

where 
 is the magnitude of the pairing potential and �(x) is
the Heaviside step function. We note that, in this description,

the parameters m,μ,α,β, and g can be position dependent (i.e.,
can effectively vary from the normal to the superconducting
regions). In this case, a Hermitian Hamiltonian can be
obtained by symmetrization of terms containing momentum
operators and position-dependent parameters, e.g., α(x)∂x →
1
2 [α(x)∂x + ∂xα(x)]. Assuming all variations to be symmetric
under x → −x, this does not make a difference for the
arguments to follow.

With kB = 1, the free energy of the junction follows as

F = −T ln Tr{e−H/T }, (2)

up to a phase-independent constant. The supercurrent through
the junction is then calculated from the thermodynamic
relation

Is(ϕ) = 2e

�

∂F

∂ϕ
. (3)

The critical current Ic± in both directions follows as

Ic+ = max
ϕ

Is(ϕ) and Ic− = min
ϕ

Is(ϕ), (4)

and the anomalous Josephson current is Ian = Is(ϕ = 0).
We now proceed with a general investigation of the

symmetry properties of H and their implications for the
supercurrent through the junction. Our investigation is based
on the fact that any two Hamiltonians H and H ′ have identical
spectra if and only if there exists a unitary or antiunitary
transformation U such that H = UH ′U †. In that case, it
follows straightforwardly from (2) that the transformation does
not affect the free energy F ′ = F , which implies a relation
between I ′

s and Is . Investigating transformations between
specific pairs of H and H ′ thus allows us to find symmetries
that the supercurrent has to possess, as well as the necessary
requirements for asymmetries to be present in the supercurrent.

We first focus on the symmetries related to the anomalous
Josephson current. In order to have a finite supercurrent at
zero phase difference, Is(ϕ = 0) �= 0, it is required that the
free energy is not symmetric under the transformation ϕ →
−ϕ. Indeed, if F (ϕ) = F (−ϕ) then it follows that Is(ϕ) =
−Is(−ϕ), which in turn implies that the anomalous Josephson
current vanishes. Thus, investigating in which cases there exist
U such that UH (ϕ)U † = H (−ϕ) allows us to determine the
necessary conditions for an anomalous supercurrent to occur.

Swapping the sign of ϕ in the Hamiltonian can be achieved
by (i) the x-parity operationPx , which effectively interchanges
the two superconductors S1 and S2, and (ii) time reversal T =
iσyK . For a minimal Fraunhofer interference model (for now
without SOI, an in-plane magnetic field, and disorder) we use

Hmin =
{

p2

2m
+ (eBzy)2

2m
− μ

}
τz + e

m
Bzypx

+ 1

2
gμBBzσz + HS.

The parity operation Px changes the sign of the third term
in Hmin, and time reversal changes the sign of both terms
proportional to Bz. Therefore, we can construct four symmetry
operators that effect UH (ϕ)U † = H (−ϕ) in this minimal
setup: (i) PxPy , (ii) σzPxPy , (iii) σxPyT , and (iv) σyPyT . As
long as at least one of these symmetries is retained, one has
Is(ϕ) = −Is(−ϕ), which implies Ian = 0.

155406-2



EFFECTS OF SPIN-ORBIT COUPLING AND SPATIAL . . . PHYSICAL REVIEW B 93, 155406 (2016)

TABLE I. Operators U that effect UH (ϕ)U † = H (−ϕ) (in the
presence of a perpendicular magnetic field Bz) and possible extra
ingredients in the Hamiltonian that would break these symmetries.
Vx(y) indicates the presence of a potential V (x,y) that is asymmetric
under Px(y).

UH (ϕ)U † = H (−ϕ)

U Broken by

PyPx α, β, Vx , Vy

σzPyPx Bx , By , Vx , Vy

σxPyT Bx , α, Vy

σyPyT By , β, Vy

Going now to the full model Hamiltonian, where SOI, a
finite in-plane magnetic field, and an asymmetric potential
can be present, these symmetries can be broken, allowing for
a finite anomalous Josephson current. In Table I we list the
four symmetry transformations and the extra ingredients in
the Hamiltonian that break them. Here Vx(y) signals that the
potential V (x,y) is asymmetric under Px(y). The presence of
Rashba (Dresselhaus) SOI is indicated by α(β), and a finite
in-plane magnetic field along x̂(ŷ) by Bx(y) [31]. We can now
straightforwardly identify combinations of ingredients that
allow for a finite anomalous supercurrent. For instance, (i)
Rashba SOI and a finite By , or (ii) Dresselhaus SOI and a
finite Bx , or (iii) the mere presence of Vy . In a clean sample,
measuring Ian while rotating the in-plane magnetic field thus
reveals information about the presence or absence of Rashba
and Dresselhaus coupling separately.

Similarly, we can investigate symmetries related to the
magnetic field dependence of the critical currents Ic±(Bz).
The existence of operations U yielding UH (Bz,ϕ)U † =
H (−Bz,ϕ) implies that Is(Bz,ϕ) = Is(−Bz,ϕ) so that the criti-
cal current must be symmetric in Bz, i.e., Ic±(Bz) = Ic±(−Bz).
For the minimal setup, we can identify four such operations,
which are listed in the left part of Table II together with the ex-
tra terms that would break the corresponding symmetries. We
see that in the absence of disorder this symmetry will always
be present. However, with a finite Vx (e.g., due to asymmetric
barriers at the SN interfaces) an asymmetry will develop for (i)
Rashba SOI and a finite Bx or (ii) Dresselhaus SOI and a finite
By . (Note that the combinations are opposite from those giving
rise to an anomalous current.) This symmetry thus presents

TABLE II. Left: Operators U that yield UH (Bz,ϕ)U † =
H (−Bz,ϕ) and possible extra ingredients in the Hamiltonian that
would break these symmetries. Right: The same, but for the
transformation UH (Bz,ϕ)U † = H (−Bz, − ϕ).

UH (Bz,ϕ)U † = H (−Bz,ϕ) UH (Bz,ϕ)U † = H (−Bz, − ϕ)

U Broken by U Broken by

σxPy By , α, Vy T Bx , By

σyPy Bx , β, Vy σzT α, β

PxPyT Bx , By , α, β, σxPx By , β, Vx

Vx , Vy σyPx Bx , α, Vx

σzPxPyT Vx , Vy

a second independent way to obtain information about the
presence or absence of Rashba and Dresselhaus coupling.

Another symmetry that can be present in the pattern of
critical currents is reflection symmetry with respect to the
axis Ic = 0, i.e., the maximum and minimum Josephson
current are equal, Ic−(Bz) = −Ic+(Bz). This symmetry is
guaranteed to be present if there exists a U such that
UH (Bz,ϕ)U † = H (Bz,−ϕ). This is the same transformation
as the one connected to the vanishing of the anomalous
Josephson current, and the results presented in Table I apply
again.

Finally, we investigate operations that yield UH (Bz,ϕ)U †=
H (−Bz, − ϕ). The existence of such a symmetry would imply
Is(Bz,ϕ) = −Is(−Bz, − ϕ) and thus Ic+(Bz) = −Ic−(−Bz),
meaning that the interference pattern of critical currents would
be inversion symmetric through the point (Bz = 0, Ic = 0). We
list the four relevant symmetry operations in the right part of
Table II, again indicating which extra terms in the Hamiltonian
would break the corresponding symmetries.

This concludes our overview of the main symmetry prop-
erties of Ic±(Bz,ϕ) and Ian(ϕ). With the help of the tables
presented here, easily observable quantities (the anomalous
supercurrent and the basic symmetries of the pattern of critical
currents) can be directly related to the direction of the magnetic
field, the presence or absence of different types of spin-orbit
coupling, and asymmetries in the potential.

To support the above results, we present numerical calcula-
tions of the supercurrent in the SNS geometry. Our calculations
are based on a perturbative expansion of the free energy of the
normal region, assuming weak coupling between the normal
region and the superconductors [32]. After integrating out the
superconductors, we find to leading order in the coupling [30]

Is(ϕ) = −Im

⎡
⎣e−iϕ 4eT

�

∑
n,α,β

∫ W
2

− W
2

dy1dy2
(κW
)2


2 + ω2
n

×αβ GRL
βα (y2,y1; iωn)GRL

β̄ᾱ
(y2,y1; −iωn)

⎤
⎦, (5)

where κ parametrizes the coupling, α,β = ±1 denote the
two spin directions, ωn = (2nπ + 1)T/� are the fermionic
Matsubara frequencies, and νsc is the normal-state density of
states of the superconductors. The Green functions GRL are
related to the amplitudes for propagation of an electron in the
normal region from the left contact to the right contact,

GRL
βα (y2,y1; iω)

= −1

�

∫
�/T

0
dτ eiωτ

〈
Tτψ

†
β

(
L
2 ,y2; τ

)
ψα

(−L
2 ,y1; 0

)〉
. (6)

We emphasize that Eq. (5) evaluates only the lowest Fourier
component of the supercurrent and therefore always results
in Is(ϕ) = Ic sin(ϕ − ϕ0) and Ic+ = Ic−. Asymmetries in Ic±
appear only in higher-order corrections to Is(ϕ), as we will
show below.

For our numerical calculations, we assume a normal region
with width W = 99 nm and length L = 300 nm [33], and
we discretize the Hamiltonian HN on a lattice with lattice
constant a = 3 nm, resulting in a hopping matrix element
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FIG. 2. Asymmetries in the pattern of critical currents. (a) Left:
Ic+(Bz) and Ic+(−Bz) for Bx = 200 mT and By = 0, without (upper
plot) and with (lower plot) the symmetry-breaking potential V (x)
shown in (b). Current is plotted in units of I0 = 
e/h and Bz is
normalized to the field for which one superconducting flux quantum
penetrates the normal area B0 = h/2eA. Right: Dependence of the
asymmetry in Ic+(±Bz) on the direction θ of the in-plane magnetic
field, at Bz = 80 mT, indicated by the dotted line in the left plot. (c)
Left: Ic±(Bz) for θ = 1

2 π (to fourth order in κ), with V (x) = 0. Right:
Dependence of the asymmetry in Ic±(Bz) on θ at Bz = 80 mT.

t = �
2/2ma2 = 163 meV (assuming an effective mass of

m = 0.026 me). We set the Fermi wavelength to λF = 20 nm,
which corresponds to μN = 0.89 t , and use a g factor of
g = −10, yielding a “Zeeman length” lZ = 2π�vF/|g|μBB ≈
10 μm for B = 1 T. The superconducting pairing potential
in the leads is set to 
 = 0.1 meV, so that the coherence
length ξ = �vF/π
 ≈ 3 μm and we are in the short-junction
limit. Further, we use a temperature T = 100 mK and a
NS coupling parameter κ = 3 meV. The required Green
functions GRL can be found from solving for elements of
[i�ω − HN ]−1, and the supercurrent through the junction then
follows straightforwardly from (5), where the integrals over
y1,2 are replaced by sums over lattice sites.

The results are presented in Figs. 2 and 3. In Fig. 2(a)
we first investigate the symmetry Ic+(Bz) = Ic+(−Bz). In the
left panel we plot Ic+(Bz) (solid blue) and Ic+(−Bz) (dashed
red) for Bx = 200 mT and By = 0. We use the spin-orbit
parameters α = 0.921 eV Å and β = 0, which corresponds

FIG. 3. Asymmetries in the anomalous supercurrent. Left: Ian as
a function of the orientation of the in-plane field, for different values
of α and β and with V (x,y) = 0. Right: Ian as a function of small α

with θ = 1
2 π , for four different values of β.

to a spin-orbit length comparable to the junction size, lso =
π�

2/αm ≈ 100 nm. The current is plotted in units of 
e/h

and the field Bz is normalized by the field corresponding to
one (superconducting) flux quantum penetrating the normal
region B0 = h/2eA, where A = WL. From Table II we see
that the critical current is expected to be symmetric as long as
V (x,y) = V (−x, − y). Indeed, with V (x,y) = 0 (upper part)
the critical current is equal for ±Bz and the two curves fall on
top of each other. In the lower panel we show the critical current
when the symmetry of V (x,y) is broken by including the x-
dependent potential V (x) shown in Fig. 2(b). As expected, the
two critical currents Ic+(Bz) and Ic−(Bz) are now different. The
peculiar shape of the interference patterns shown here, strongly
diverging from the “classic” Fraunhofer pattern, is mainly due
to our choice of having a rather small and elongated junction.
In the right panel of Fig. 2(a) we illustrate the dependence
of this asymmetry on the orientation of the in-plane magnetic
field. For this plot we fix Bz = 80 mT ≈ 1.15 B0, and we
plot as a measure for the asymmetry |AI | ≡ |[Ic+(Bz) −
Ic+(−Bz)]/[Ic+(Bz) + Ic+(−Bz)]| as a function of the angle θ

between the in-plane magnetic field B‖ and the x axis (using
B‖ = 200 mT). The disorder potential V (x) is again the one
shown in Fig. 2(b), and we find that the asymmetry is maximal
for B‖ ‖ x̂ and vanishes for B‖ ‖ ŷ, as expected from Table II.

In Fig. 2(c) we focus on the symmetry Ic+(Bz) = −Ic−(Bz).
As explained before, Eq. (5) produces only the lowest Fourier
component of Is(ϕ), so its minimum and maximum values
have to have equal magnitudes. To make asymmetries in Ic±
visible, we thus add the next-order correction (fourth order in
κ) to Is(ϕ); see [30] for the details. The left panel shows
the resulting Ic+(Bz) and −Ic−(Bz) using the same set of
parameters as above, with V (x,y) = 0 and B‖ ‖ ŷ. We see
that (i) the pattern of critical currents looks very similar
to the second-order result shown in the upper-left panel of
Fig. 2(a) and (ii) any asymmetry between Ic+ and Ic−, if
present at all, is small. Both these observations are consistent
with the fact that all deviations from the results presented in
the top-left plot of Fig. 2(a) are due to small higher-order
corrections. To investigate the symmetries as predicted by
Table I in more detail, we show in the right panel AI =
[Ic+ − |Ic−|]/[Ic+ + |Ic−|] (a measure for the asymmetry)
as a function of the in-plane angle of the magnetic field.
As expected, the critical current is symmetric Ic+ = −Ic−
when By = 0 (i.e., θ = 0,π ) and asymmetric for all other
orientations of the in-plane field.
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Finally, in Fig. 3 we investigate the anomalous Josephson
current. In the left panel we plot Ian as a function of θ , where we
have set Bz/B0 = 1.80,B‖ = 200 mT, and V (x,y) = 0. The
three curves correspond to α = 0.921 eV Å, β = 0 (blue), α =
0,β = 0.921 eV Å (green), and α = β = 0 (red). The current
indeed vanishes at all points predicted by Table I and is nonzero
everywhere else. In the right panel we investigate the symmetry
breaking for small α in more detail. We plot Ian with θ = 1

2π

for α ranging from zero to 0.15 eV Å, which corresponds to
π�

2/αm � 600 nm. Using four different values of β, being
β = 0 (blue curve), β = 0.05 eV Å (green), β = 0.1 eV Å
(red), and β = 0.15 eV Å (black), we see that the qualitative
behavior of Ian(α) at small α can vary strongly with the choice
of other parameters [34].

To summarize, we presented a general symmetry analysis
of a model Hamiltonian describing a two-dimensional SNS
junction, including an arbitrarily oriented magnetic field, both

Rashba and Dresselhaus spin-orbit interaction, and disorder
and other structural asymmetries. We related basic properties
of the anomalous current and the critical currents to the
absence or presence of specific ingredients in the Hamiltonian,
thereby providing a qualitative connection between easily
measurable quantities and the relative strength of the different
underlying mechanisms. We supported our analysis with
numerical calculations of the Josephson current, agreeing with
the qualitative predictions we made.
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