
PHYSICAL REVIEW B 93, 155401 (2016)

Semi-infinite jellium: Step potential model
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The semi-infinite jellium using the step potential model of surface potential is studied. The barrier height
is found from the condition of the minimum of the surface energy. It is shown that this minimum is caused
by the Coulomb interaction between electrons. The surface energy is positive in the entire domain of the
Wigner-Seitz radius of metals, and it is in sufficiently good agreement with experimental data. The one-particle
distribution function of electrons and the distance from the surface potential to the dividing plane within this
model are calculated. Influence of the Coulomb interaction between electrons on these calculated characteristics is
studied.
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I. INTRODUCTION

In Ref. [1], using the method of functional integration,
the quantum-statistical theory of simple semibounded metal
within the framework of the semi-infinite jellium is built. The
advantage of this theory is taking into account of the Coulomb
interaction between electrons in the semibounded system.
In particular, using the infinite barrier model of the surface
potential, the one-particle distribution function of electrons
and the surface energy are calculated. This model potential is
the simplest, but it obtained an important result—the surface
energy of the semi-infinite jellium is positive in the entire
area of the Wigner-Seitz radius (rs) of metals. Conversely,
the usage of the density-functional theory, which today is the
most popular, leads to the well-known problem of the surface
energy negative values at high concentrations of electrons. An
overview of papers that focus on the study of the surface energy
is in Ref. [1].

This paper is a continuation of Ref. [1], the difference
is in the way of modeling the surface potential, namely, in
using the step potential model for the surface potential. This
model was used in Ref. [2] to calculate the surface energy of
a noninteracting electron system as a function of the height of
the potential barrier. The height of the potential barrier was
chosen arbitrarily. In contrast to Ref. [2] we take into account
the Coulomb interaction between electrons. This leads to the
appearance of the minimum of the surface energy from which
the height of the potential barrier is found. The calculated
values of the surface energy are somewhat lower than obtained
in Ref. [1] for the infinite barrier model. These values are in
sufficiently good agreement with experimental data for simple
metals.

A variational calculation of the surface energy without
taking the correlation energy into account was performed in
Ref. [3]. The minimization procedure yielded magnitudes of
the surface energy, which are very similar to those obtained
by Lang and Kohn [4], i.e., the surface energy continues to be
negative for large values of the electron concentration.

In Ref. [5], jellium-metal surface energies were obtained
by application of the Vannimenus-Budd theorem [6], which
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is derived from the density-functional formalism, by the
determination of the individual components of the energy
within the local exchange-correlation approximation, and by
variational calculation of the surface energy for the step model
within the local-density approximation. The obtained results
are close to results of Lang and Kohn [4] for medium and low
densities. For high densities, calculations via the Vannimenus-
Budd theorem gave positive but very small values of the surface
energy, calculations in the local-density approximation gave
slightly larger values than results of Lang and Kohn [4], but
negative near rs = 2aB.

Influence of the Coulomb interaction between electrons
on the one-particle distribution function of electrons and the
distance from the surface potential to the dividing plane is
studied. It is shown that the Coulomb interaction leads to
an increase of this distance and to its nonlinear behavior
with respect to the Wigner-Seitz radius (whereas one for
the noninteracting system is a linear function), and leads
to an increase of the period of damped oscillations of this
distribution function in the bulk. It is found out that the
one-particle distribution function of electrons more slowly
goes down to zero out of the positive charge in comparison
with the one-particle distribution function for the infinitely
high potential barrier. It is shown that if the potential barrier
height tends to infinity, the obtained results coincide with the
results of Ref. [1].

II. MODEL

As in Ref. [1], we consider a semibounded metal within
the framework of the semi-infinite jellium, i.e., a system of
N electrons is located in the volume V = SL (S,L → ∞) in
the field of the surface potential Vsurf(z), z ∈ [−L/2, + L/2].
The dividing plane is at z = 0. In this work, in contrast
to Ref. [1], the surface potential is modeled by the step

potential of the height W = �
2s2

2m
= W̃μ (where μ = �

2K2
F

2m
is

the chemical potential of the system taking into account the
Coulomb interaction between electrons, KF is the magnitude
of the Fermi wave vector, m is the electron mass), which is
placed at the point z = d, i.e.,

Vsurf(z) =
{
W, z > d,

0, z < d,
(1)
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and allows an analytical solution of the one-dimensional
stationary Schrödinger equation,[

− �
2

2m

d2

dz2
+ Vsurf(z)

]
ϕα(z) = εαϕα(z).

Such solution, which satisfies the boundary conditions,

ϕα(−L/2) = 0, ϕα(+L/2) = 0, L → ∞,

the conditions of continuity and smoothness,

ϕα(z < d)|z=d = ϕα(z > d)|z=d ,

ϕ′
α(z < d)|z=d = ϕ′

α(z > d)|z=d

is

εα = �
2α2

2m
,

ϕα(z) = C(α)

{
sin[α(d − z) + γ (α)], z � d,
α
s
e−�(α)(z−d), z > d,

(2)

where

γ (α) = arcsin
α

s
,

�(α) =
(

dγ (α)

dα

)−1

=
√

s2 − α2, α � s,

and quantum numbers α satisfy the algebraic transcendental
equation,

α

(
L

2
+ d

)
+ γ (α) = πn, n = 1,2,3, . . . .

From the normalization condition for the wave functions,∫ +∞

− L
2

|ϕα(z)|2dz = 1, (3)

it follows that

C(α) = 2√
L + 2

(
d + 1

�(α)

) = 2√
L + 2

(
d + dγ (α)

dα

) .

Note that the electron states εα > W are not written out,
because only the states εα � μ are really interesting for us,
and for physically interesting problems the chemical potential
of electrons is less than the barrier height, μ � W .

The step potential (1) has the parameter d, which determines
the position of the potential barrier, and is determined by the
condition of electroneutrality. It is necessary to calculate the
one-particle distribution function of electrons.

III. ONE-PARTICLE DISTRIBUTION FUNCTION
OF ELECTRONS

Let us calculate the one-particle distribution function of
electrons for the step potential model (1) in the case of low
temperatures

F 0
1 (z) = 1

n̄S

∑
k||,α

|ϕα(z)|2nα(k||)

= 1

n̄S

∑
k||,α

|ϕα(z)|2θ
(
K2

F − k2
|| − α2

)
, (4)

where nα(k||) is the Fermi-Dirac distribution, k|| is the two-
dimensional wave vector of the electron in the plane parallel
to the dividing plane, n̄ is the electron concentration, and θ(x)
is the Heaviside step function.

Transition from the sums to the integrals according to rules
[1],∑

k||

f (k||) = 2S

(2π )2

∫ +∞

−∞
dk|| f (k||) = S

π

∫ ∞

0
dk|| k|| f (k||),

(5)∑
α

f (α) =
∫ ∞

0
dα

{
L

2π

[
1 + 2

L

(
d + dγ (α)

dα

)]
− 1

2
δ(α)

}
f (α)

=
∫ ∞

0
dα

(
2

π |C(α)|2 − 1

2
δ(α)

)
f (α), (6)

(here δ(α) is the Dirac δ function) and integration with respect
to the variable k|| lead to

F 0
1 (z) = 3

K3
F

∫ KF

0
dα

(
K2

F − α2
)

×
{

sin2[α(d − z) + γ (α)], z � d,

α2

s2 e−2�(α)(z−d), z > d.
(7)

Integration with respect to the variable α must be performed
numerically.

If in Eq. (7) the barrier height tends to infinity, this equation
takes the well-known form [1]

F 0
1 (z) =

{
1 + 3 cos[2KF(d − z)]

[2KF(d − z)]2
− 3 sin[2KF(d − z)]

[2KF(d − z)]3

}
× θ(d − z),

which is the one-particle distribution function of electrons in
the case of infinite potential barrier model.

In Fig. 1, the one-particle distribution function of electrons
(7) as a function of the electron coordinate normal is presented
for the following values of Wigner-Seitz radius: rs = 2aB and
rs = 6aB, and different values of the barrier height parameter.
The solid line represents the one-particle distribution function
of electrons, which depends on the chemical potential of
interacting electrons. The dashed line represents the one-
particle distribution function of electrons without the Coulomb
interaction. The positive charge is located in the domain z � 0.
It can be concluded: (i) taking into account the Coulomb
interaction leads to an increase of the period of damping
oscillations of the one-particle distribution function around its
value in the bulk of the metal, which equals to unity; and (ii)
increasing of the barrier height leads to more rapid damping of
the one-particle distribution function near the dividing plane.

The parameter d is determined by the condition of elec-
troneutrality, which for the one-particle function has the form

lim
L→∞

∫ +∞

− L
2

[
F 0

1 (z) − θ(−z)
]
dz = 0.

Substituting Eq. (4) into this condition, we get

lim
L→∞

⎡⎣ 1

n̄S

∑
k||,α

|ϕα(z)|2θ
(
K2

F − k2
|| − α2) − L

2

⎤⎦ = 0.
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FIG. 1. The one-particle distribution function of electrons as a
function of the electron coordinate normal to the dividing plane at
rs = 2aB (top) and rs = 6aB (bottom) for different values of the barrier
height parameter (the solid line is for interacting electrons whereas
the dashed line is for noninteracting electrons).

By using the normalization condition (3), the rules of transition
from the sums to integrals (5), (6), and n̄ = K3

F/(3π2), we
obtain the equation for the parameter d,

lim
L→∞

[
L

2
+ d + 3

2K3
F

∫ KF

0
dα

(
K2

F − α2
)dγ (α)

dα
− 3π

8KF
− L

2

]
= 0.

From this equation we find the parameter d,

d = 3π

8KF
− 3

2K3
F

∫ KF

0
dα

(
K2

F − α2
)dγ (α)

dα
.

Integrating this equation by parts, we get

d = 3π

8KF
− 3

K3
F

∫ KF

0
dα α γ (α). (8)

Taking into account that γ (α) = arcsin α
s
, we get

d = 3π

8KF
− 3

4KF

(√
W̃ − 1 + (2 − W̃ ) arcsin

1√
W̃

)
. (9)

Note that, in Eq. (9), if we put the magnitude of the Fermi
wave vector K0

F of noninteracting electrons,

K0
F =

(
9π

4

)1/3 1

rs
, (10)

instead of the magnitude of the Fermi wave vector KF of
interacting electrons, we get the well-known equation for
noninteracting electrons [7–9].

It should be noted that increase of the barrier height leads
to an increase of the distance d, and

lim
W→∞

d = dIBM = 3π

8KF
,

that is the distance from the dividing plane to the infinite barrier
model [1].

In Fig. 2, the parameter d (9) as a function of the Wigner-
Seitz radius rs is given for different values of the barrier
height parameter of the step potential. The solid line represents
the parameter d for interacting system, the dashed line, for
noninteracting system. This parameter is the distance from the
surface potential to the dividing plane. We see that taking into
account the Coulomb interaction between electrons leads to
an increase of this distance and its nonlinear dependence on
rs, whereas the parameter d for the noninteracting system is a
linear function of rs. In the case of noninteracting electrons,
this distance increases linearly with increasing of Wigner-Seitz
radius, because the average distance between the electrons
increases, and electrons can travel farther into the region
z � 0. The Coulomb repulsion between the electrons leads
to an additional increase in the average distance between the
electrons. Therefore, electrons can travel even farther into the
region z � 0, this distance as a function of Wigner-Seitz radius
increases faster than linearly.

In Fig. 3, the difference between locations of the infinite
potential barrier and the step potential, dIBM − d, as a function
of the barrier height parameter W is given for different values
of the Wigner-Seitz radius rs. For the barrier height W , which

FIG. 2. The parameter d as a function of the Wigner-Seitz radius
at different values of the barrier height parameter (the solid line is
for interacting electrons whereas the dashed line is for noninteracting
electrons).
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FIG. 3. The difference between locations of the infinite potential
barrier and the step potential as a function of the barrier height
parameter W is given for different values of the Wigner-Seitz radius
rs (the solid line is for interacting electrons whereas the dashed line
is for noninteracting electrons).

is equal to the chemical potential μ, this difference is equal to
dIBM. The conclusion from the curves is that a decrease of the
barrier height W leads to an increase of the effective linear size
of the semibounded metal. It is similar to one of the results of
Ref. [10], where it was shown that the main influence of the
soft-wall boundary condition consists in the increase of the
effective radius of the wire relative to the hard-wall condition.
Moreover, Fig. 3 shows that taking into account the Coulomb
interaction between electrons leads to intensification of this
effect.

IV. INTERNAL ENERGY

The internal energy of the system can be obtained from the
thermodynamic potential 	 and the Gibbs-Helmholtz equation
generalized for the case of variable number of particles,

U = 	 − θ
∂	

∂θ
− μ

∂	

∂μ
.

In the case of low temperatures (θ → 0), the second term of
the right-hand side of this equation vanishes and we get

U = 	 + μ〈N〉, (11)

where we have used the relation

〈N〉 = −∂	

∂μ

is the average number operator of electrons.
The general expressions for 	 and 〈N〉 are obtained by us in

Ref. [1]. Substituting this expressions in Eq. (11), the internal
energy U can be represented as

U = U0 + �U1 + �U2, (12)

where

U0 = 	0 + μ
∑
k||,α

nα(k||)

is the internal energy of the noninteracting system (the
calculations of 	0 and U0 are done in Appendix A) though it
indirectly takes into account the Coulomb interaction between
electrons via the chemical potential μ of interacting electrons.

�U1 = 1

2S

∑
q �=0

∑
k||,α

∫ +∞

− L
2

dz |ϕα(z)|2
{
nα(k||)

∫ 1

0
dλ [g(q,z,z,λ)

− ν(q,0)] − μ
∂nα(k||)

∂μ
[g(q,z,z,1) − ν(q,0)]

}
,

�U2 = 1

2S

∑
q �=0

∑
k||,α1,α2

∫ +∞

− L
2

dz1

∫ +∞

− L
2

dz2 ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)

×ϕα1
(z2)

[
μ

∂(nα1 (k||) nα2 (k|| − q))

∂μ
g(q,z1,z2,1)

− nα1 (k||) nα2 (k|| − q)
∫ 1

0
dλ g(q,z1,z2,λ)

]
,

where ν(q,z) = 2πe2

q
e−q|z| is the two-dimensional Fourier

transform of the Coulomb interaction, g(q,ν,z1,z2,λ) is the
effective interelectron interaction potential in (q,z) represen-
tation, which depends on the parameter λ and is a solution of
the integral equation [1].

The calculation of the sums of the Fermi-Dirac distribution
over the wave vector in a plane parallel to the dividing plane
k|| at low temperature yields∑

k||

nα(k||) = S

2π

(
K2

F − α2
)

θ(KF − α),

∑
k||

∂nα(k||)
∂μ

= S

2π

2m

�2
θ(KF − α),

∑
k||

nα1 (k||)nα2 (k|| − q) = 2S

(2π )2
J̃ (q,α1,α2),

∑
k||

∂
(
nα1 (k||) nα2 (k|| − q)

)
∂μ

= 2S

(2π )2

4m

�2
I (q,α1,α2),

where expressions for the functions J̃ (q,α1,α2) and I (q,α1,α2)
are given in Ref. [1].

The calculated results for the integrals of products of
the wave functions and the effective potential are given in
Appendix B.

V. SURFACE ENERGY

Since the main aim of this work is to calculate of the
free surface energy σ , then it is necessary to single out the
surface contribution Usurf (it is proportional to the area of
the dividing plane S) from the internal energy (12). Then the
surface contribution to the internal energy per unit area of the
dividing plane will be a required free surface energy, i.e.,

σ = Usurf

S
= U0,surf + �U1,surf + �U2,surf

S

= σ0 + �σ1 + �σ2, (13)
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where U0,surf is the surface contribution to the internal energy
of the noninteracting system [the calculation of U0,surf is done
in Appendix A, see Eq. (A3)],

σ0 = U0,surf

S
= �

2K4
F

160πm

{
1 + 1

2π

[
(15W̃ − 14)

√
W̃ − 1

− (15W̃ 2 − 24W̃ + 8) arcsin
1√
W̃

]}
(14)

is the surface energy of noninteracting system,

�σ1 = �U1,surf

S
= 1

2π2
a3

B

∫ ∞

0
dq q

∫ KF

0
dα

×
[(
K2

F − α2
)∫ 1

0
dλ �G(q,α,λ) − K2

F�G(q,α,1)

]
e2

a3
B

,

�σ2 = �U2,surf

S

= 2

π4
a3

B

∫ ∞

0
dq q

∫ KF

0
dα1

∫ KF

0
dα2

[
K2

FI (q,α1,α2)G(q,α,1)

− 1

2
J̃ (q,α1,α2)

∫ 1

0
dλ G(q,α,λ)

]
e2

a3
B

,

where the transitions from the sums to the integrals are
performed according to Eq. (6). Expressions for functions
�G(q,α,λ) and G(q,α,λ) are given in Appendix B [see
Eqs. (B3) and (B4) respectively].

Note that, if in Eq. (14) we put the magnitude of the Fermi
wave vector K0

F of noninteracting electrons Eq. (10), instead
of the magnitude of the Fermi wave vector KF of interacting
electrons, we get the well-known equation (14) for the surface
energy of noninteracting system [7–9].

In Fig. 4, the dependence of the surface energy σ on the
barrier height parameter W is presented for different values
of the Wigner-Seitz radius. The solid line is for interacting
electrons [see Eq. (13)] whereas the dashed line is for
noninteracting electrons [see Eq. (14)]. It can be concluded
that if the barrier height of the step potential increases, the
surface energy tends to the value, which is obtained for the
infinite barrier model [1]. If the barrier height narrows down
to the chemical potential, the surface energy of noninteracting
system increases. It is clear, because in this case the average
distance between the electrons increases, electrons can travel
even farther into the region z � 0, and therefore the surface
energy increases. Taking into account the Coulomb interaction
between electrons leads to a significant increase in the surface
energy, its dependence on the barrier height parameter W is
no longer monotonic, and the surface energy as a function of
the parameter W has a minimum. Since a system always tends
to the lowest-energy state, the minimum of the surface energy
can be seen as self-consistent condition for the barrier height of
the step potential (the values of the parameter W are presented
in Table I for different values of the Wigner-Seitz radius). The
received values of the parameter W/μ are significantly greater
than those obtained by Mahan without taking the correlation
energy into account [3], namely for rs = 5aB the minimum of
the surface energy occurs at 1.3, for rs � 3aB minimization
occurs just exactly 1, and the corresponding values of the

FIG. 4. The surface energy as a function of the barrier height
parameter W at rs = 2aB (top) and rs = 6aB (bottom) (the solid line is
for interacting electrons whereas the dashed line is for noninteracting
electrons).

surface energy are negative for large values of the electron
concentration.

In Fig. 5, the dependence of the surface energy σ on the
Wigner-Seitz radius rs is presented. The solid line is the surface
energy calculated for the values of the barrier height parameter
W fulfilled the condition for minimum of the surface energy.
The dashed line is the surface energy for the infinite barrier
model [1], the dash-dotted line is the well-known result of
Lang and Kohn [4], and the dots are experimental data for
some metals according to Ref. [11].

The results given in this figure show that the calculated
values of the surface energy for the step potential model is
positive in the entire domain of the Wigner-Seitz rs, these
values are lower than the values of the surface energy for the

TABLE I. The values of the surface energy minimum and its
coordinates.

rs, aB 2 3 4 5 6

W/μ 2.96 2.76 2.69 2.66 2.62
σ, erg/cm2 5246 1067 322 123 55
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FIG. 5. The surface energy as a function of the Wigner-Seitz
radius (the solid line is for the height of the potential barrier, which
fulfills the condition for minimum of the surface energy; the dashed
line is for the infinite barrier model [1]; the dash-dotted line is the
result of Lang and Kohn [4], whereas the dots are experimental
data [11]).

infinite barrier model, and in the domain rs > 5aB, the values
of the surface energy for finite and infinite barrier model are in
good agreement with the well-known result of Lang and Kohn
[4]. In addition, for such a simple model of semibounded
metal, which is the semi-infinite jellium, the calculated values
of the surface energy are in sufficiently good agreement with
experimental data for simple metals (Li, Na, K, Rb, Cs, Sr,
Ba), which are satisfactorily described by the semi-infinite
jellium. The reason of this is domination of the electronic
structure of simple metal, and the ionic cores are of secondary
importance (see, e.g., Ref. [12]). Obviously, incorporation of
the discreteness of the ionic subsystem is necessary for better
agreement with experimental data for other metals.

VI. CONCLUSIONS

By using the step potential model for the surface potential,
the one-particle distribution function of electrons, the distance
from the surface potential to the dividing plane, and the surface
energy of the semibounded metal within the framework of
the semi-infinite jellium are calculated and studied at low
temperatures.

It is found that taking into account the Coulomb interaction
between electrons leads to an increase in the period of damped
oscillations around its average value in the bulk of the metal,
and increasing of the barrier height of the step potential leads
to more rapid damping of the one-particle distribution function
near the dividing plane.

The Coulomb interaction also leads to an increase in the
distance between the dividing plane and the surface potential,
and its nonlinear dependence on the Wigner-Seitz radius,
whereas this distance for the noninteracting system is a linear
function. The Coulomb repulsion between the electrons leads
to an additional increase of the average distance between the
electrons. Therefore, electrons can travel even farther into the

region z � 0, this distance as a function of Wigner-Seitz radius
increases faster than linearly.

The Coulomb interaction causes a significant increase in the
surface energy, its dependence on the barrier height of the step
potential is no longer monotonic; whereas, the surface energy
of the noninteracting system is a monotonically decreasing
function. There is the minimum of the surface energy at some
value of the barrier height. The condition of this minimum
is used as a self-consistent condition for the barrier height
at different values of the Wigner-Seitz radius. The obtained
values of the barrier height of the step potential decrease with
increasing of the Wigner-Seitz radius. Using these values, the
surface energy is calculated as a function of the Wigner-Seitz
radius, and it is lower than the surface energy for the infinite
barrier model of the surface potential Ref. [1].

In contrast to the surface energy calculated by Lang and
Kohn, the surface energy of semibounded metal within the
framework of the semi-infinite jellium calculated by us is
positive in the entire area of the Wigner-Seitz radius, and it
is in sufficiently good agreement with experimental data for
s-electron-type metals (Li, Na, K, Rb, Cs, Sr, Ba), and for
some transition metals (Ag, Cu). Experimental data for other
transition metals disagree with the values of the surface energy
calculated by us. This is not surprising because jellium is one
of the simplest models of metal, which satisfactorily describes
simple metals (see, e.g., Ref. [12]).

APPENDIX A: THERMODYNAMICAL POTENTIAL AND
INTERNAL ENERGY OF NONINTERACTING SYSTEM

Let us calculate the thermodynamical potential of noninter-
acting system,

	0 = − 1

β

∑
k||,α

ln[1 + eβ(μ−Eα (k||))],

where Eα(k||) is the energy of the electron in the state (k||,α).
Since here μ is the chemical potential of interacting electron
system, the Coulomb interaction in this expression is taken
into account indirectly via chemical potential.

To perform summation with respect to k|| and α, we use

ρ(E) = SL

2

√
2m3/2

π2�3

√
E

+ S

[√
2m3/2d

π2�3

√
E + m

π2�2
γ

(√
2mE

�

)
− m

4π�2

]
,

which coincides with the density of states for the infinite barrier
model Ref. [1] if the barrier height W tends to infinity.

At low temperatures (β → ∞), the thermodynamical po-
tential of noninteracting system has the form

	0 = 	0,bulk + 	0,surf, (A1)

where

	0,bulk = − SL

2

4
√

2m3/2

15π2�3
μ5/2

= − SL

2

�
2

15mπ2
K5

F
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is the extensive contribution to the thermodynamical potential
of noninteracting system (it is proportional to the volume of
the system SL), which is dependent on the magnitude of the
Fermi wave vector KF of interacting system of electrons,

	0,surf = −S

[
4
√

2m3/2d

15π2�3
μ5/2

+ m

π2�2

∫ μ

0
dE (μ − E) γ

(√
2mE

�

)
− m

8π�2
μ2

]

= S
�

2K4
F

mπ2

[
π

32
− d KF

15

− 1

2K4
F

∫ KF

0
dα α

(
K2

F − α2
)
γ (α)

]
(A2)

is the surface contribution (it is proportional to the area of the
dividing plane S). Taking into account Eq. (8) for the parameter
d, we get that

	0,surf = S
�

2K4
F

160πm

[
1 + 80

πK4
F

∫ KF

0
dα α

(
α2 − 3

5
K2

F

)
γ (α)

]
.

Using Eqs. (A1)–(A2), the average of the number operator
of electrons without taking into account the Coulomb interac-
tion between electrons can be represented as

〈N〉0 = −∂	0

∂μ
= N0,bulk + N0,surf,

where

N0,bulk = −∂	0,bulk

∂μ
= SL

2

K3
F

3π2
,

N0,surf = −∂	0,surf

∂μ
= S

[
2
√

2m3/2d

3π2�3
μ3/2 + m

π2�2

∫ μ

0
dE γ

(√
2mE

�

)
− m

4π�2
μ

]
= S

K2
F

π2

[KFd

3
− π

8
+ 1

K2
F

∫ KF

0
dα α γ (α)

]
.

Taking into account Eq. (8) for the parameter d, we get that

N0,surf = 0.

At low temperatures, the internal energy of noninteracting
system can be represented as

U0 = 	0 + μ〈N〉0 = U0,bulk + U0,surf,

where

U0,bulk = 	0,bulk + μN0,bulk = SL

2

�
2K2

F

10π2m
,

U0,surf = 	0,surf + μN0,surf = 	0,surf

= S
�

2K4
F

160πm

[
1 + 80

πK4
F

∫ KF

0
dα α

(
α2 − 3

5
K2

F

)
γ (α)

]
.

Taking into account that γ (α) = arcsin α
s
, we get

U0,surf = S
�

2K4
F

160πm

{
1 + 1

2π

[
(15W̃ − 14)

√
W̃ − 1

− (15W̃ 2 − 24W̃ + 8) arcsin
1√
W̃

]}
. (A3)

APPENDIX B: CALCULATION OF INTEGRALS WITH
EFFECTIVE INTERELECTRON INTERACTION

In this Appendix the results of calculation of the integrals

∫ +∞

− L
2

dz |ϕα(z)|2[g(q,z,z,λ) − ν(q,0)], (B1)

and

∫ +∞

− L
2

dz1

∫ +∞

− L
2

dz2 ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2)g(q,z1,z2,λ)

(B2)

are given. Here ϕα(z) are the wave function (2) of electrons
in the field of the step potential, which is located at the point
z = d; g(q,z1,z2,λ) is the effective interelectron interaction,
which is obtained using the technique of Ref. [13]. This
potential depends on the module of the vector q:

g(q,z1 � d,z2 � d,λ) = 2πe2

Q1(λ)

[
e−Q1(λ)|z1−z2| + Q1(λ) − Q2(λ)

Q1(λ) + Q2(λ)
eQ1(λ)(z1+z2−2d)

]
,

g(q,z1 � d,z2 � d,λ) = 2πe2

Q2(λ)

[
e−Q2(λ)|z1−z2| − Q1(λ) − Q2(λ)

Q1(λ) + Q2(λ)
e−Q2(λ)(z1+z2−2d)

]
,

g(q,z1 � d,z2 � d,λ) = 4πe2

Q1(λ) + Q2(λ)
eQ1(λ)(z2−d)−Q2(λ)(z1−d),

g(q,z1 � d,z2 � d,λ) = 4πe2

Q1(λ) + Q2(λ)
eQ1(λ)(z1−d)−Q2(λ)(z2−d),

155401-7
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where

Q1(λ) =
√

q2 + λ �2
TF

[
L

(
q

2KF

)
− �

(
q

2KF

)]
, Q2(λ) =

√
q2 + λ �2

TF�

(
q

2KF

)
, L(x) = 1

2
+ 1 − x2

4x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣,
�(x) = 2

s̃ 2

∫ 1

0
dξ ξ

√̃
s 2 − ξ 2

[
1 −

√
1 − 1 − ξ 2

x2
θ
(

1 − 1 − ξ 2

x2

)]
, s̃ = s

KF
.

Note that the integrals (B1) and (B2) are equal to zero for α = 0, because in this case the wave functions (2) are equal to zero.
After integration, Eq. (B1) for α �= 0 has the form∫ +∞

− L
2

dz |ϕα(z)|2[g(q,z,z,λ) − ν(q,0)] = 2πe2|C(α)|2 L

4

(
1

Q1(λ)
− 1

q

)
+ 2πe2|C(α)|2�G(q,α,λ),

where

�G(q,α,λ) =
(

d

2
+ sin[2γ (α)]

4α

)(
1

Q1(λ)
− 1

q

)
+ 1

2�(α)

(
α

s

)2( 1

Q2(λ)
− 1

q

)

+ 1

4Q1(λ)

Q1(λ) − Q2(λ)

Q1(λ) + Q2(λ)

(
1

Q1(λ)
− Q1(λ) cos[2γ (α)] − α sin[2γ (α)]

Q2
1(λ) + α2

)

− 1

2Q2(λ)

(
α

s

)2
Q1(λ) − Q2(λ)

Q1(λ) + Q2(λ)

1

Q2(λ) + �(α)
. (B3)

After integration, Eq. (B2) for α1 �= 0 and α2 �= 0 has the form∫ +∞

− L
2

dz1

∫ +∞

− L
2

dz2 ϕ∗
α1

(z1)ϕα2
(z1)ϕ∗

α2
(z2)ϕα1

(z2)g(q,z1,z2,λ)

= 2πe2|C(α1)|2|C(α2)|2 L

4

Q2
1(λ) + α2

1 + α2
2(

Q2
1(λ) + α2

1 + α2
2

)2 − 4α2
1α

2
2

+ 2πe2|C(α1)|2|C(α2)|2G(q,α1,α2,λ),

where

G(q,α1,α2,λ) = 1

4
[f1(α1,α2,λ) + f1(α1, − α2,λ)] + 1

4Q1(λ)

Q1(λ) − Q2(λ)

Q1(λ) + Q2(λ)
[f2(α1,α2,λ) − f2(α1, − α2,λ)]2

+ (α1α2)2

s4

1

Q2(λ)

(
1

(�(α1) + �(α2))(Q2(λ) + �(α1) + �(α2))
− Q1(λ) − Q2(λ)

Q1(λ) + Q2(λ)

1

(Q2(λ) + �(α1) + �(α2))2

)
+ α1α2

s2

2

Q1(λ) + Q2(λ)

1

Q2(λ) + �(α1) + �(α2)
[f2(α1,α2,λ) − f2(α1, − α2,λ)],

f1(α1,α2,λ) = 1

Q2
1(λ) + (α1 − α2)2

[
d − sin[2(γ (α1) − γ (α2))]

2(α1 − α2)
+ sin[2γ (α1)]

2α1
+ sin[2γ (α2)]

2α2
+ Q1(λ)

Q2
1(λ) + (α1 + α2)2

− Q2
1(λ)[1 + cos2[γ (α1) − γ (α2)]] − (α1 − α2)2 sin2[γ (α1) − γ (α2)]

Q1(λ)
(
Q2

1(λ) + (α1 − α2)2
)

+ Q1(λ) cos[γ (α1) − γ (α2)] + (α1 − α2) sin[γ (α1) − γ (α2)]

Q1(λ)
(
Q2

1(λ) + (α1 + α2)2
)

× (Q1(λ) cos[γ (α1) + γ (α2)] − (α1 + α2) sin[γ (α1) + γ (α2)])

]
,

f2(α1,α2,λ) = Q1(λ) cos[γ (α1) − γ (α2)] − (α1 − α2) sin[γ (α1) − γ (α2)]

Q2
1(λ) + (α1 − α2)2

. (B4)
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