
PHYSICAL REVIEW B 93, 155305 (2016)

Spin dynamics in SiGe quantum dot lines and ring molecules
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Semiconductor quantum dot (QD) structures can be used as a model for understanding the effect of the
microscopic structure, symmetry of crystals, and molecules on their macroscopic properties. In this work,
the results of two theoretical approaches demonstrate that the spin dynamics in ordered QD structures depends on
the size, spatial configuration, and topology of the object built of QDs. It was shown that the spin dynamics in QD
structures with the hopping regime of conductivity significantly differs from the spin dynamics in two-dimensional
(2D) and three-dimensional (3D) structures being at the other side of the metal-insulator transition. The special
character of the effective magnetic field δH fluctuations appearing only during tunneling between quantum dots
is responsible for the insensitivity of spin relaxation times to the magnitude of the external magnetic field in
infinite QD structures (2D square lattice and 1D linear QD chain). In finite QD structures (QD rings and linear
chains), an external magnetic field H0 is directly involved in the spin relaxation process and spin is lost due
to interaction with a special combination of fields �H ∼ [H0 × δH]/δH that leads to an unusual orientation
dependence of ESR linewidth, recently observed for QD chains. It was shown that the ordering of QD structures
can be used for the conservation of spin orientation. For 1D finite quantum dot chains, the ordering can provide
the stabilization of all spin components Sx , Sy , and Sz, while for ringlike molecules only Sz polarization can be
stabilized. The results obtained in this work can be useful for development of novel semiconductor devices and
in quantum information processing.
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I. INTRODUCTION

Quantum dots (QDs) created during heteroepitaxy have
both properties making them similar to real atoms, and the
properties that are very different from those of ordinary atoms.
One of the nonordinary properties is related to the asymmetry
of the quantum dot shape (similar to pyramids), which is a
consequence of the growth process of quantum dots on a
semiconductor substrate. This asymmetry affects primarily
the spin degree of freedom of charge carriers localized in
quantum dots. The crystals built of such asymmetric atoms
have no inversion center, which immediately leads to spin-
orbit-induced modification of the band structure of these
crystals, such as spin splitting of the energy spectrum. The
Ge/Si heterosystem with Ge quantum dots is very suitable for
the study of the effects of asymmetry of “atoms,” since Ge and
Si are centrally symmetric materials and the emerging spin
splitting is related to the asymmetry of QDs, but not to the
asymmetry of the lattice of the constituent elements, like in
A3B5-based heterosystems. The present paper is devoted to
the effects in spin dynamics due to asymmetry of QDs in the
Ge/Si heterosystem with Ge quantum dots.

For an electron in a crystal with some velocity v the
spin splitting of the energy spectrum is associated with an
effective magnetic field in which the electron spin will precess
with a frequency �k , depending on the wave vector k. In
conventional natural crystals the existence of this magnetic
field leads to the spin relaxation of free carriers through
the Dyakonov-Perel (DP) mechanism [1]. Spin relaxation
can be described by the dephasing of spin precession in
this effective magnetic field at random collisions of charge
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carriers. Because of this mechanism, the spin orientation is
rather quickly lost in structures without an inversion center.
The same mechanism can work in the structures built of
artificial atoms, QDs, where electron transport is going through
the hopping between QDs. Shklovskii [2] has shown the
principal possibility of Dyakonov-Perel spin relaxation in the
systems with hopping transport. This is confirmed by ESR
experiments on Ge/Si structures with tunnel-coupled Ge QDs,
where the stochastic spin precession at hopping between QDs
was found to be the main mechanism of the spin relaxation.
Each hop is accompanied by spin turning through the small
angle and a sequence of these turnings can be considered as
spin precession in an effective magnetic field. Such precession
can not lead to spin relaxation if the direction of electron
motion does not change. Randomness of tunneling directions
during carrier movement across a nonordered QD array leads
to the dephasing of the spin precession and finally results in
the loss of spin orientation. Then the randomness of hopping
caused by the inhomogeneity of the nonordered QD array is a
key factor of efficiency of DP spin relaxation. It is natural to
assume that in ordered QD structures, the suppression of DP
spin relaxation should be observed and new interesting effects
in spin dynamics will appear.

The first sign of principal difference in the spin relaxation in
ordered QD structures (QD molecules) is an unusual narrowing
of the ESR line obtained recently for QD linear chains [3].
Usually, the ESR study of 2D electron gas structures with
structure-induced asymmetry demonstrates a broadening of
ESR line in the external magnetic field deviated from the
growth direction of the structure [4]. Such behavior of the ESR
linewidth �H is a direct consequence of the DP mechanism
domination and occurs due to a special in-plane arrangement
of effective magnetic fields (spin-orbit fields), leading to the
anisotropy of spin relaxation processes in the system. It is
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easy to show that the transverse spin relaxation time T2

should decrease in such type of 2D systems in tilted magnetic
fields [5]. Since �H ∼ 1/T2 for homogeneously broadened
ESR lines, a special orientation dependence of ESR linewidth,
namely ESR line broadening in tilted magnetic fields, should
be observed. A similar orientation dependence was observed
for a two-dimensional array of tunnel-coupled QDs [6],
suggesting that the mechanism of spin relaxation is the same
in both types of structure, with hopping and diffusive regime
of transport. However, the results obtained in the Ref. [3]
questioned this hypothesis. The authors demonstrated the
unusual orientation behavior of the transverse spin relaxation
time for finite QD linear chains experimentally, by means of
ESR measurements, and theoretically, by means of Monte-
Carlo simulations: in the external magnetic field applied along
the growth direction T2 is smaller than the one for the in-plane
magnetic field. At the same time for the infinite linear QD
chain, the behavior of T2 was qualitatively the same as for 2D
arrays of tunnel-coupled QDs and 2D electron gas structures.
To explain this result the authors introduce a new magnetic field
�H, being a special combination of external magnetic field H0

and effective magnetic field δH, �H ∼ [H0 × δH]/δH . The
orientation dependence of the ESR linewidth obtained for finite
QD lines confirmed that namely the field �H defines the spin
dynamics in this system. This result demonstrates that ordering
of QDs provides a significant change in the spin dynamics in
a QD system.

In the present work, we try to reveal the cause of this
change by the example of linear chains and circular molecules
of quantum dots. The hopping spin relaxation in ordered
QD structures is not studied theoretically until today, though
the importance of spatially close configurations of localized
centers, similar to molecules, was emphasized in the studies
of spin dynamics in the regime of hopping conductivity in n-
type semiconductors with spin-split spectrum [7–9]. The spin
behavior in closely spaced donor pairs was noted to be unusual:
the longitudinal magnetic field accelerates the spin relaxation,
while for conduction electrons in A3B5 semiconductors, the
opposite effect of suppression of spin relaxation should be
observed [10]. Unfortunately, the closely spaced donor groups
were studied only as a part of a large inhomogeneous system,
like n-type impurity-doped GaAs, and many interesting effects
were lost in light of the peculiarities of the hopping transport
in disordered systems.

To make the present work more comprehensive, we study
the angular dependencies of spin relaxation times, because
these dependencies are most strongly related to the mechanism
of spin relaxation in the system and can assist in experiments
to determine the dominating mechanism in the system [4,6].
The second essential feature being very helpful in the under-
standing of spin dynamics is the relation of the spin relaxation
time to the external magnetic field magnitude. For example,
the spin relaxation in the systems with domination of the DP
mechanism is very sensitive to the magnitude of the external
magnetic field [10]. So, the study of these characteristics
can help us understand how the ordering can change the
mechanism of spin relaxation in this system and to find
the distinctive features of the spin dynamics in QD structures.
The study is carried out on the example of the Ge/Si
heterosystem. To describe the spin dynamics, we use two

methods: (i) solving the eigenmodes problem and (ii) finding
the spin relaxation times by means of Fourier transforms of
perturbing fields.

II. THEORETICAL RESULTS AND DISCUSSION

A. Eigenmodes problem: model

The first part of our theoretical research consists in finding
the eigenmodes of the spin polarization decay in a system of
QD chains (linear or circular). The model and its parameters
were chosen to be close to the experimental system with
GeSi quantum dots. This system principally differs from the
previously studied system with hopping between donor states
in n-type GaAs [11]. In the last case, it was shown that
the stochastic spin precession during random hopping does
not dominate in this system, and other mechanisms of spin
relaxation, due to anisotropic exchange interaction [12] and
hyperfine interaction [13], define the spin lifetime. In the
case of the Ge/Si system with quantum dots, the hyperfine
interaction can be neglected due to the low concentration of
29Si isotopes (<5%). As concerning the anisotropic exchange
interaction, its contribution depends on the filling factor of QDs
ν. If ν � 1, this interaction also can not be considered as a main
source of spin relaxation. We will concentrate namely on this
case, which corresponds to the real experimental structures,
where not all QDs are filled by electrons and the spin relaxation
occurs mainly at the hopping between QDs [6]. Thus we
neglect the electron-electron interaction and treat our model
for one electron.

The Hamiltonian of the system is

Ĥ =
∑

a

εa(na↑ + na↓) +
∑

a,b,σ,σ ′
taσ,bσ ′ â†

aσ âbσ ′

+
∑

a,σ,σ ′
â†

aσ (�Lσ̂ )σσ ′ âaσ ′ + Ĥph + V̂e-ph,

where εa is the energy of electron localized in QD, taσbσ ′ =
tab exp(iαehσ̂/2), tab is the tunneling coupling of electrons in
neighboring QDs, eh is the unit vector along the axis of the
effective magnetic field fluctuations, σ̂ = (σ̂x,σ̂y,σ̂z) denotes
the Pauli matrices, α is the rotation angle, Ĥph is the phonon
Hamiltonian, and V̂e-ph is the Hamiltonian of electron-phonon
interaction. It is clearly seen that the spin-orbit interaction is
hidden in the second term of the Hamiltonian that describes
the spin rotation at the tunneling between QDs.

We shall not concretize the terms related to phonons,
because this is not the principal question of our work, and these
terms were well described in many previous works related to
hopping [14–16]. The main point is that the phonons assist the
hopping between QDs with some average time of hopping τh. It
should be noted that the time τh plays the same part in the spin
dynamics in a QD system as the time of momentum scattering
τk in the systems with conduction electrons, because after these
times, the spin-orbit field randomly changes its direction. The
time τh can be taken from the experimental results of the ESR
study of two-dimensional GeSi QD arrays. The authors of
Ref. [6] estimated the characteristic time of hopping between
QDs using the data of angular dependence of ESR linewidth.
For a typical QD array with density �1011 cm−2, the time of
hopping is about τh � 3 × 10−11 s.
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FIG. 1. The distribution of the angular momentum for the ground
state of the hole localized in a Ge QD (obtained from tight-
binding calculations in our previous work, Ref. [17]). The arrows
schematically show the direction and magnitude of the vector 〈ψ |Ĵ|ψ〉
along the line passing through the center of the QD base. For a better
representation, we multiply the deviation angle by 5. The inset shows
schematically the distribution of the effective magnetic field arising
due to the absence of inversion symmetry. The shape of the QD is
shown by dashed lines.

Hopping between any neighboring QDs is permitted with an
equal probability for the back and forth motion. Each tunneling
transition is accompanied by a spin rotation by a small fixed
angle α. Before the determination of its magnitude, the nature
of spin rotation in a Ge/Si QD system should be discussed. The
first question is how the spin rotation occurs in this system.
Hopping transport can be considered as a sequence of fast
tunnel hops from one localized state to another alternating
with exponentially long waiting periods in each localized
state. While waiting in the localized state, an electron has
velocity v = 0 and, therefore, the average effective magnetic
field is zero. However, this is an incomplete picture of the
effective magnetic field for a localized state. The quantum
confinement leading to uncertainty of the wave vector k
provides the uncertainty of the effective magnetic field. For
a better understanding, one can look at Fig. 1, where some
results of our previous study in the tight-binding (TB) approach
of spin relaxation during the tunneling between Ge/Si QDs are
presented [17]. Here the distribution of the spin polarization
vector across the Ge nanocluster for a localized hole state is
shown. Here, the x profile of this distribution is shown, but this
distribution is similar for all profiles, passing perpendicularly
to Z axis (the growth direction of QDs). One can see that
the asymmetry of the QD shape leads to the deviation of the
hole angular momentum from the Z direction. The special
distribution of the angular momentum can be explained by the
distribution in the xy plane of the effective magnetic fields,
as shown in the inset of Fig. 1. Obviously, the average value
of the effective magnetic field is 〈δH〉 = 0 for the localized
QD state. During tunneling of carriers between two QDs,
the preferential direction of tunneling n defines the direction
of the effective magnetic field as δH ∼ [n × ez]. The vector
n, like the vector k in a two-dimensional (2D) electron gas,
controls the direction of δH. However, the consideration of
the spin behavior during tunneling between dots as the spin
rotation around this field is not quite correct. The spin deviation
at the exponential tails of the wave function is transferred

during tunneling to the neighboring quantum dot. A similar
situation arises for hopping between donor states in GaAs. The
nature of spin rotation is clearly reflected in the expression for
the donor electron wave function proposed by Kavokin [8].
This expression contains a multiplier that has the form of
an operator of finite spin rotation in an effective magnetic
field that arises due to the absence of inversion symmetry of
GaAs. However, for the Ge/Si QD system, this expression can
not be applied because the effective magnetic field in a QD
system is local, it arises only in the vicinity of QDs, which
are sources of symmetry breaking in a SiGe heterostructure
with Ge QDs. Then the correct estimation of spin deviation in
a Ge/Si QD system is possible only on the basis of atomistic
calculations. According to TB calculations, the angle of spin
turning (deviation) during one tunneling event α is defined by
the aspect ratio h/l, where h and l is the height and lateral
size of QD [17]. Usually, all QDs in an array formed by
self-assembling have the same aspect ratio [18], hence, there
is one characteristic turning angle α for all tunneling events
in the QD array. If an electron continues in the direction of
tunneling (for example, along a one-dimensional QD chain),
the sequence of small turns that follow can be considered
as a precession in the effective magnetic field. It should be
noted that the resulting angle of the spin rotation depends
on the number of QDs which were visited by the electron
during hopping. The larger the density of QDs, the larger
the resulting rotation angle. This is the principal difference
of spin relaxation in a QD system from the case of hopping
spin relaxation in an impurity band of n-type GaAs. In the
last case, the angle is defined by the length of the path that
the electron has gone [8], because the effective magnetic field
arises due to the absence of inversion symmetry in GaAs and is
global within the studied sample. Thus the value of α is taken
based on the results of tight-binding calculations performed
for the holes localized in Ge/Si QDs [17], giving α = 0.1 for
hut-cluster shaped QDs (h/l = 0.1). Since the experimental
study of spin relaxation was performed in this system only for
electrons, which are localized in the Si vicinity of Ge QDs,
we have scaled the value of α for electrons taking into account
the weakness of spin-orbit interaction in Si. Then we take
α = 0.01.

We include in the model the Larmor precession caused by
the external magnetic field. The main feature of a QD system is
that the Larmor precession in an external magnetic field during
the short time of tunneling results in a very small rotation angle
and can be neglected. Then the precession in the effective
magnetic field and the precession in the external magnetic field
with a frequency �L can be considered as separated in time
and acting independently from each other, the spin-orbit field
being nonzero during a tunneling event, the external magnetic
field acts during the time between tunneling events. To study
the angular dependence of spin relaxation times, the direction
of the external magnetic field is changed between ez and ex .
We consider the following configurations of QD structures:
(i) a 2D square lattice of QDs in xy plane; (ii) an infinite linear
QD chain oriented along the y direction; (iii) linear QD chains
with different number of QDs oriented along the y direction;
(iv) a circular QD chain (a QD ring) in the xy plane; and (v) a
QD ring with one broken bond, crossing the x axis, the center
of the ring coincides with the origin of the coordinates.
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Let N be the number of QDs in the structure. For one QD
(N = 1), the spin dynamics is described by the simple equation

dP
dt

= �L × P,

where P is a spin-polarization vector P = (px,py,pz). In a
system of two coupled QDs (N = 2), this equation is modified
to

d

dt

(
P1

P2

)
=

(
�L × P1 0

0 �L × P2

)

+
(−τ−1

12 Î τ−1
21 R̂21

τ−1
12 R̂12 −τ−1

21 Î

)(
P1

P2

)
.

Here, Pi is the polarization vector on the ith QD; τ12 and
τ21 are the characteristic times of the tunneling from the first
to the second quantum dot and backwards; R̂12 and R̂21 are
the matrices of rotation during tunneling from the first to the
second quantum dot and backwards. These equations for spin
dynamics can be easily generalized to an arbitrary number of
QDs.

The spin relaxation times T1 and T2 were found by solving
the eigenvalue problem

dP/dt = −λP

and selecting the eigenmodes P = P0 exp(−λt) with the
slowest decay. All eigenmodes can be divided into two groups,
corresponding to longitudinal and transverse spin polarization.
The longitudinal spin does not rotate in an external magnetic
field, hence, in the first group Im λ 	 �L. The eigenmodes
with Im λ = ±�L correspond to transverse spin components
rotating in an external magnetic field. The longitudinal spin
relaxation time T1 is defined by the smallest value of Re λ

in the first group, (T1)−1 = min(Re λ). The transverse spin
relaxation time is defined similarly (T2)−1 = min(Re λ), where
the minimum is the smallest value of Re λ in the second group.
To compare the spin dynamics in QD structures and in 3D and
2D structures with absence of inversion symmetry, we study
the spin behavior depending on the magnitude and orientation
of the external magnetic field.

B. Eigenmodes problem: results

The results of solving the eigenmodes problem demonstrate
that the spin relaxation in QD structures essentially differs from
the spin relaxation of delocalized charge carriers in 3D and 2D
structures with absence of inversion symmetry. In the last case,
the Dyakonov-Perel mechanism controls the spin relaxation
and the increase of external magnetic field provides the longer
spin relaxation time T1. For infinite QD structures (2D square
lattice and 1D infinite chain), both spin relaxation times, T1 and
T2, turned out to be independent from the external magnetic
field magnitude (Fig. 2, the calculations were done for H0‖Z).
The times are of the order of τh/α

2 for all magnitudes of
the magnetic field. For a 2D lattice, the times are two times
smaller (not shown in Fig. 2) than for a 1D infinite chain.
Thus our results show twofold increase of spin relaxation
times at transition from 2D QD lattice to 1D infinite chain,
that is, in a good agreement with existing results of nanowire
investigations demonstrating an increase of spin lifetimes in
1D structures [19].

FIG. 2. Longitudinal (T1) and transverse (T2) spin relaxation time
dependencies on the Larmor frequency of the external magnetic
field for linear chains with a different number of quantum dots. The
external magnetic field is applied along the Z direction (the growth
direction). For finite QD structures, a quadratic dependence on the
Larmor frequency �L is observed in the limit �Lτh 	 1.

In the case of finite linear QD chains for small enough
magnetic fields, the spin relaxation times decrease when
the external magnetic field magnitude increases following
the quadratic dependence T1,2 ∼ 1/�2

L. After some critical
point (�Lτh � 1), the times become independent from the
magnitude of the external field. They reach the characteristic
values �τh/α

2, and remain constant at larger magnetic fields.
The critical point position depends on the number of dots in
the linear chain. The larger the number of QDs in the chain,
the earlier (at smaller Larmor frequencies) the transition to the
constant rate of spin relaxation occurs.

In the case of circular QD chains, the dependence on the
magnitude of the external magnetic field is changed depending
on the topology of an object (Fig. 3). For the unclosed ring, the
frequency dependence of both spin components is similar to
the one for finite line chains. For the closed ring, the behavior
of T1 remains the same, while the T2 frequency dependence
is changed. At small frequencies, �L 	 1/τh, the transverse
spin relaxation rate becomes independent from �L and tends
to a constant: 1/τs � α4N2/τh.

The dependence on the external magnetic field orientation
is presented in Fig. 4. For the infinite 2D QD array with square
lattice packing, the angular behavior of T2 and T1 is very similar
to the spin behavior observed for 2D electron gas structures
with inversion asymmetry of the confining potential. For an
external magnetic field applied along the growth direction of
the structure, the time T2 is two times larger than T1, while
for the in-plane magnetic field, the relation between T1 and T2

changes, T2 becomes smaller than T1.
For the infinite QD linear chain, the T2 angular dependence

remains the same as for the 2D QD array, while the time T1

increases drastically for the in-plane magnetic field.
The results obtained for finite QD lines are rather different.

The angular dependencies of T1 and T2 are not typical of
systems with dominant Dyakonov-Perel mechanism. The
behavior of transverse spin relaxation time T2 is in a good
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FIG. 3. Longitudinal (T1) and transverse (T2) spin relaxation time
dependencies on the Larmor frequency of the external magnetic field
for the closed (top panel) and the unclosed QD ring (bottom panel).
The external magnetic field is applied along the Z direction (growth
direction). The number of QDs N = 10.

agreement with the one recently reported in Ref. [3], where
an ESR study of the samples with QD line chains was
performed. T2 increases for an in-plane orientation of the
external magnetic field. The present simulations show that the
behavior of T1 is similar to T2 one, T1 increases following the
same functional dependence by keeping the ratio T1/T2 = 0.5.

The results of the angular dependence study for circular
QD chains directly demonstrates the connection between the
topology of the object and the spin behavior (see Fig. 5). The
orientation dependence of T2 and T1 for the unclosed ring
demonstrates an increase of these times with the deviation
of the magnetic field from Z that is similar to the case of
finite QD linear chains. However, this increase is not so large
as for QD lines. For the closed ring, the behavior of T2

remains the same as in the case of the unclosed ring, while
the T1 behavior is changed. For an external magnetic field
applied along the growth direction, the time T1 increases, i.e.,
the Sz component of the spin tends to stabilize. However,
such difference between spin behavior in the closed and
unclosed ring is observed only in the frequency range of �L <

109 s−1. Figure 5 demonstrates the spin behavior at frequency
�L = 108 s−1. At larger frequencies, the spin behavior in both
cases of closed and unclosed rings is qualitatively the same.

FIG. 4. Longitudinal (T1) and transverse (T2) spin relaxation
times dependencies on the magnetic field direction for different
configurations of quantum dot structures. θ is the angle between the
z axis and magnetic field direction, which is varied in the xz-plane.
The Larmor frequency is �L = 1011 s−1.

C. Eigenmodes problem: discussions

Let us discuss the results of T1 and T2 angular dependence
study (Figs. 4 and 5). To understand the obtained results,
it is necessary to describe the nature of perturbing field
responsible for spin relaxation. In the 2D QD array case,
the angular dependence of T1 and T2 can be explained by
an in-plane distribution of fluctuating spin-orbit fields arising
during tunneling between dots. When an electron randomly
hops between QDs, only in-plane components δHx and δHy
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FIG. 5. Longitudinal (T1) and transverse (T2) spin relaxation
times dependencies on the magnetic field direction for circular
configurations of quantum dot structures, for unclosed and closed QD
rings. θ is the angle between the z axis and magnetic field direction,
which is varied in the xz-plane. The Larmor frequency is chosen to
be �L = 108 s−1, because, for �L > 108 s−1 the spin behavior is the
same for all circular configurations.

appear, δHz = 0. For the external magnetic field applied along
the z axis, the spin relaxation times can be written as [20]

1/T1 ∝ δH 2
x + δH 2

y ,

1/T2 ∝ 1

2

(
δH 2

x + δH 2
y

) + δH 2
z ,

where δHz = 0. For the tilted magnetic field, part of the
in-plane spin-orbit field contributes to δHz (with the z direction
defined by H0). Thus T2 should decrease, while T1 should
increase for θ �= 0. Thus the spin behavior is the same as
for conduction electrons in 2D structures with spin-split
spectrum [4].

If we consider an infinite 1D QD chain, an electron motion
occurs only in one dimension. Then one of the components
of fluctuating field disappears, in our geometry this is the
δHy component (QD line is directed along the y axis). If the
magnetic field is applied along the x direction (θ = 90◦ in our
notation), the directions of spin-orbit field and external mag-
netic field coincide and the perturbing field can not provoke

the relaxation of the longitudinal spin component. Then T1

increases for the in-plane external magnetic field. Generally,
such spin behavior should be observed also in the case of 1D
structures, like nanowires lacking inversion symmetry, with
domination of the DP spin relaxation mechanism. Indeed,
a similar orientation dependence of the spin relaxation rate
was obtained in the work of Pramanik et al. [21] where
spin transport in nanowires was studied using a semiclassical
approach. The depolarization rate is found to depend strongly
on the initial spin polarization. If the initial polarization is
along the axis of the wire, the spin depolarizes ∼100 times
slower compared to the case when the initial polarization is
transverse to the wire axis. If one takes into account that the
spin orientation along the nanowire axis (y axis) is physically
the same as the orientation along z axis (in both cases the spin
is perpendicular to the spin-orbit field), one can see the good
agreement between the results of the work of Pramanik et al.
and the T1 orientation behavior obtained by us for the 1D case
(see central panel in Fig. 4).

Our results can be helpful in understanding the two works,
where qualitatively similar results were obtained, but the
quantitative difference between them was very large. In the
work of Kiselev and Kim [22], an increase of the spin
relaxation time by orders of magnitude was obtained for a
narrow two-dimensional strip with decreasing channel width.
The authors investigated the relaxation of the spin component
directed along the channel width, i.e., perpendicular to the
strip. This corresponds to the T1 behavior at θ = 90◦ in our
notation. If one compares the 2D and 1D cases at this angle in
Fig. 2, one will see that T1 increases by orders of magnitude
at the transition from the 2D case to the 1D case, as in the
work of Kiselev and Kim. As concerning the point θ = 0◦,
it corresponds to the experimental conditions in the work
of Holleitner et al. [23], where the Sz component relaxation
in submicrometer InGaAs wires was studied by pump and
probe spectroscopy. For structures with nanowires, Holleitner
obtained that the spin relaxation time increased approximately
two times as compared to 2D quantum well structures. The
same result can be obtained from comparison of T1 values in
the 2D and 1D cases at θ = 0◦ in Fig. 2.

In the case of finite QD lines for an in-plane magnetic
field, there is not only an increase of T1 but also that of
T2. To understand this, one should take into account two
factors. The first is coincidence of the in-plane magnetic
field direction with the axis along which the spin-orbit field
fluctuates. The second is the independence of spin rotations
around the external magnetic field and around the spin-orbit
field, they are separated in time and go consecutively. It must
also be remembered that the angle of rotation in the spin-orbit
field is always the same, i.e., it is the same for all tunneling
events (see Ref. [14]). In these conditions in the reference
frame rotating with the Larmor frequency around the external
magnetic field, the angle of transverse spin rotation during the
electron motion along the QD chain in the forward direction
(+α) compensates the rotation angle during the motion in the
backward direction (−α). In other words, due to finiteness
of the object, the number of turns during the forward motion
is equal to the number of turns during the backward motion.
As result, the spin polarization at each dot in the chain does
not change. An alternative explanation can be applied if one
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uses the concept proposed in the recent work devoted to ESR
in QD chains [3]. The authors proposed to describe the spin
behavior in finite QD structures in terms of an interaction
with a transverse effective magnetic field. This field is the
vector product �H ∼ [H0 × δH]/δH and it decreases with
a deviation of the external magnetic field from the growth
direction according to the law ∼ sin ϕ, where ϕ is the angle
between δH and H0. Namely, this dependence defines the T1

and T2 orientation behavior, obtained by us independently.
For the unclosed ring, the orientation dependence can be

explained in the same way. The increase of T1 and T2 for the
in-plane magnetic field is provided by the finiteness of the
object and the coincidence of the directions of the external and
spin-orbit fields. The diminished rise, as compared with linear
QD chains, can be explained by the curvature of the object,
which leads to a nonzero �H even in the case of the in-plane
external magnetic field.

The difference in the angular dependencies of the spin
relaxation times for unclosed and closed rings, namely the
increasing T1 with decreasing θ in the case of the closed
ring, can be explained in the following way. The sequence
of small rotations of spin at the circular electron movement
leads to an effective rotation of spin around the Z axis. One
can interpret this as an appearance of a secondary effective
magnetic field along the z-direction H̃z, which leads to an
additional stabilization of Sz (see Fig. 6).

The appearance of H̃z also changes the frequency depen-
dence of T2 for closed rings, as compared with the case
of unclosed rings and linear chains (see Fig. 3). For small
frequencies, the rate of transverse spin relaxation becomes
independent from �L and tends to the constant 1/T2 �
α4N2/τh. To understand this limitation, let us consider the
simpler case of the infinite 1D linear chain or a 2D QD array.

In the case of infinite 1D or 2D structures, the spin
relaxation rate is independent from the Larmor frequency of
an external magnetic field applied along the growth direction.
The simulations give that T1 and T2 are defined only by the
magnitude of spin-orbit field, T1,2 � τh/α

2 with α = γ δHτt ,
where γ = gμB/� is the gyromagnetic ratio, τt is the time of
tunneling between QDs. This limitation can be obtained from
a simple consideration. In the reference frame rotating with the
Larmor frequency, the interaction with H0 can be omitted; the
direction of spin-orbit field is randomized in-plane, because
it is determined by the random direction of hopping along
the QD chain (forward or backward) and by the random

FIG. 6. The spin behavior at electron movement along a circular
chain of QDs. The appearance of secondary effective magnetic field
H̃z is shown.

angle accumulated during time τh due to the rotation of the
QD chain with the Larmor frequency. So, the spin behavior
can be described in terms of an interaction with a randomly
distributed in-plane spin-orbit field δH . Let the spin orientation
be lost during N hopping events, τs � Nτh. The turning angle
accumulated over N random hops is ϕ � α

√
N � 1, where

α = γ δHqτt with τt being the time of tunneling between dots.
Then N can be expressed through α, N � 1/α2. Substituting
this N in the expression for τs , one can obtain τs � τh/α

2.
For finite linear QD chains, the rate of spin relaxation

becomes sensitive to the external magnetic field magnitude
(see Fig. 2) and the field dependence is described as 1/T1,2 ∝
�2

L. A qualitatively similar result was obtained by Lyubinskii
for donor pairs in GaAs [9]. There, the spin relaxation during
hopping in pairs was accelerated by external magnetic field and
saturated at large Larmor frequencies �L. However, Lyubin-
skii obtained not the quadratic dependence of relaxation rate
but the linear dependence 1/τs ∝ �L, because he considered
the donor pairs as part of a large inhomogeneous system and
took only the optimal pairs with τh ≈ 1/�L that make the
main contribution to the spin relaxation in the system.

For finite QD structures, the external magnetic field is di-
rectly involved in the spin relaxation process. The external field
disturbs the balance of spin deviations when the rotation angle
+α, caused by hopping from one end of QD chain to another,
is compensated by the rotation angle −α, caused by hopping in
the opposite direction. In the presence of an external magnetic
field, the Larmor precession is added to the precession in
spin-orbit fields appearing only during tunneling between dots.
Since these precessions go independently around different
axes and are separated in time, the consideration becomes
rather complicated (except the case of in-plane magnetic field,
discussed above). To simplify the situation, one can remove
the spin-orbit field by a simple trick. In the reference frame
rotating with spin around the spin-orbit field, the latter can be
considered as absent, because the spin does not deviate. But
the external magnetic field swings in this reference frame (see
Fig. 7), and this swinging can be described as an appearance
of some additional transverse field, changing its direction at
the opposite sides of a molecule. Now the spin relaxation will
be induced by interaction with this field �H. The magnitude
of this field depends on the external magnetic field and on the
length of the chain, �H ≈ α(N − 1)[H0 × δH]/(2δH ). The
longer the chain, the larger the spin deviation at the ends of
the molecule and correspondingly the larger the effective field
introduced to describe this deviation. For finite QD chains,
namely this field is the main source of spin relaxation at
�Lτh < 1. At larger frequencies, the spin deviation caused
by the tunneling between dots is averaged by the Larmor
precession in the external magnetic field, and, consequently,
the additional field �H = 0, which means switching off the
main mechanism of spin relaxation described in Ref. [3]. The
position of switching off point depends on the number of
dots in the linear chain. The larger the number of QDs in
the chain, the earlier (at smaller frequencies) the transition
to the constant rate occurs. After the transition point, there
is no correlations of spin-orbit field at the time scale τh and
the spin dynamics is defined by stochastic spin precession in
random spin-orbit fields δH . Therefore there is no dependence
on the magnitude of the external field like in the case of infinite
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FIG. 7. Demonstration of the spin rotation around the effective
magnetic field during tunneling between dots in the case of three QDs
chain (top). The change of the external magnetic field orientation (big
arrows) in the reference frame rotating together with the spin around
the effective magnetic field at each hopping event (bottom). In this
reference frame, the external magnetic field deviates at a small angle
from the original direction at each hopping event, and this provides the
spin relaxation. The magnetic field H′ in the new reference frame is
H′ = H0 + �H, where H0 is the magnetic field in the fixed reference
frame, �H = 0 at the central QD and �H ≈ ±α[H0 × eh] at the
ends of the QD chain. Here, eh is a unit vector along the axis of the
effective magnetic field fluctuations.

QD chain. The change of mechanism occurs when �Lτc � 1,
where τc is the characteristic time of traversing the QD chain.
Due to randomness of electron motion, this time is defined
as τc = N2τh. Then the tenfold increase of the length of QD
chain leads to a two orders smaller critical frequency of the
mechanism change. The frequency dependence for unclosed
rings is qualitatively the same as for finite QD linear chains.

Now, having in mind the results for infinite chains and
infinite QD structures, let us return to the case of the closed
ring. The fluctuations of H̃z in the case of the closed ring
will be the same as for the infinite chain: +H̃z for clockwise
motion, and −H̃z for counterclockwise motion. For small �L,
only H̃z will provoke the transverse spin relaxation, since the
effect of δHx and δHy will be the same as in the case of
finite size QD structures (their action can be replaced by the
action of the field �H ∼ [H0 × δH]/δH , which is decreasing
when �L → 0). The magnitude of H̃z can be estimated in the
following manner. At circular movement, the spin rotates by
the angle ϕ � N2α2/4π around the Z axis at a full electron
turn along the ring. On the other hand, the same angle can be
written as ϕ = �̃τtN = γ H̃zτtN . Equating these magnitudes
one can obtain

H̃z = Nα2/(4πγ τt ). (1)

The turning angle produced by precession in this field is
αz ∼ H̃zτt . Using the expression 1/τs � α2

z /τh for the spin
relaxation time, one can obtain the required limitation 1/τs �
α4N2/τh in the small � range.

In general, the frequency dependence of T1 and T2 for
the closed ring reflects the change of three spin relaxation
mechanisms. The first prevails in the small frequency range
�L > 109 s−1 and consists of the interaction with field H̃z.
The second is dominant in the frequency range 109 < �L <

1011 s−1 and induces the spin relaxation by means of the

interaction with field �H. The third mechanism works in the
range �L > 1011 s−1 and defines the spin dynamics by the
stochastic spin precession in a random magnetic field. It should
be noted that in all cases of QD structures considered here,
the main reason of the peculiarities of T1 and T2 frequency
dependencies is the independence of spin rotations in the
spin-orbit and external magnetic fields.

D. Method of Fourier transforms of the perturbing fields

The dependence of spin relaxation times on the magnitude
of the external magnetic field can be obtained using the
traditional approach that allows to find the spin relaxation
rate through Fourier transforms (FT’s) of the time-dependent
components of the perturbing fields or, strictly speaking,
through FTs fqq(ω) of the correlation function of these
fields [5]:

1

T1
= γ 2[fxx(�L) + fyy(�L)],

(2)
1

T2
= γ 2[fzz(0) + fyy(�L)],

where �L is the Larmor frequency of the external magnetic
field.

In a 2D system with dominant Dyakonov-Perel mechanism,
the autocorrelation function of perturbing fields represents a
simple exponential decay, δHq(t)δHq(t + τ ) ∼ exp(−|τ |/τk),
resulting from momentum scattering (see Fig. 8). Then the

FIG. 8. Sketch of the autocorrelation function δH (t)δH (t + τ )
for different types of structures lacking inversion symmetry: 2D
electron gas (top), 2D lattice of QDs (central), molecule consisting
of two QDs (bottom).
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FIG. 9. The top panel demonstrates the random telegraph noise
used for obtaining the fluctuations of the effective magnetic field for
a QD molecule consisting of two QDs (bottom) by derivation and
following convolution with a rectangle. The amplitude of this noise
is chosen so that the amplitude of the effective magnetic field for a
QD molecule would be δH .

spin relaxation rates correspond to expressions

1

T1
= γ 2

(
δH 2

x + δH 2
y cos2 θH

) τk

1 + �2
Lτ 2

k

,

(3)
1

T2
= γ 2δH 2

y sin2 θH τk + 1

2T1
,

where τk is the characteristic correlation time, θH is the angle
between the external magnetic field and the growth axis Z,
δHx , δHy are the components of the fluctuating effective
magnetic field.

In the QD case, the effective magnetic field appears only
during tunneling events and it is not zero only during the
short time of tunneling between QDs τt . And such bursts are
randomly repeated with characteristic time τh, an average
time between tunneling events (for example, see Fig. 9,
where the fluctuations of the effective magnetic field for a
QD molecule, consisting of two QDs, are presented in the
bottom panel). Despite the fact that in both cases (2D electron
gas structures and QD structures) the random processes
(momentum scattering or random tunneling between QDs)
cause a change of the effective magnetic field direction,
providing spin dephasing, the spin dynamics in QD structures
is rather different.

To clarify this, let us consider the correlation function of a
perturbing field δH for the infinite QD structures (2D lattice
or 1D line of QDs, see Fig. 8):

δHq(t)δHq(t + τ ) =
{

(τt − |τ |) · δH 2
q /τh, if |τ | � τt ,

0, if |τ | � τt ,

where τt is the time of tunneling between quantum dots, τh is
the characteristic time between tunneling events, q takes on
values corresponding to the components x, y in 2D case and
x in 1D case (for QD line along y direction).

The FT of this function is

fqq(ω) = δH 2
q τ 2

t

τh

sin2(ωτt/2)

(ωτt/2)2
. (4)

During tunneling, the spin rotation angle due to the Larmor
precession, �Lτt , is negligibly small, then the dependence
on the �L disappears [sin(x)/x ≈ 1 at small x]. This result
was obtained independently by finding the eigenmodes in the
framework of the model described above.

So, the independence from the external magnetic field
magnitude results from the smallness of time interval τt . When
τt → τh, Eq. (4) has to transform to fqq(ω) similar to the one
for the DP mechanism (FT of correlation function of random
telegraph noise):

fqq(ω) = δH 2
q

τh

1 + ω2τ 2
h

. (5)

To verify this, it is enough to show that at τt = τh, Eqs. (4)
and (5) in the limit cases ω → 0 and ω → ∞ give the same
results (the same functional dependence on �):

sin2(ωτt/2)

(ωτt/2)2
−−→τt=τh

{
1, if ω → 0,

∼ 1/(ω2τh), if ω → ∞.

Let us consider the finite QD structure, for example, the
simple case of QD molecule consisting of two QDs. The main
difference from the previous case is the change of δH direction
to the opposite one at each tunneling event. In other words,
the anticorrelations of the effective magnetic field appear on
the time scale compared with τh (see Fig. 8, bottom panel). The
time dependence δHx(t) represents the sequence of rectangular
peaks with amplitudes ±δH and width τt (see Fig. 9, bottom
panel). This functional dependence can be obtained from a
random telegraph noise by deriving and following convolution
with a rectangular peak. To satisfy the condition that the
amplitude of the effective magnetic field is ±δH , one has
to take a telegraph noise with amplitude δHτt (see Fig. 9, top
panel). Then the FT of autocorrelation function in the case of
a two QD molecule can be easily obtained from the FT of the
well-known correlation function of the random telegraph noise
[Eq. (5)] by differentiation and following convolution with a
rectangle.

As result, we have a FT for the case of a two QD molecule:

fqq(ω) = δH 2
q τ 2

t

ω2τh(
1 + ω2τ 2

h

) sin2(ωτt/2)

(ωτt/2)2
. (6)

In the limit �L � 1/τh, the frequency dependence disap-
pears and fqq(�L) → H 2

q τ 2
t /τh ∼ α2/τh. In the opposite

case, �L 	 1/τh, fqq(�L) → δH 2
q τ 2

t �2
Lτh. This is in good

correspondence with the frequency dependence of T1 and T2

obtained by derivation of the eigenmodes problem for a two
QD molecule (see Fig. 3).

For structures with N quantum dots, correlations appear
as an electron traverses the full length of the QD chain
N · l, where l is the distance between the neighboring
dots. The characteristic time of fluctuations is increased N2

times, since, for traversing the QD chain, N2 random jumps
between dots are needed, τc → N2τh. Also the rotation angle
increased effectively, because when an electron passes from the
beginning to the end of a QD chain, spin rotations accumulate:
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α → N α. In general, this case can be reduced to the case of
two QDs with the modification of τc and α :

fqq(ω) = N2δH 2
q τ 2

t

ω2N2τh

(1 + ω2(N2τh)2)
. (7)

Here, for simplicity, we omit the part of Eq. (6) related to
sin(x)/x. In the limit �L � 1/τh, the frequency dependence
disappears and fqq(�L) → N2H 2

q τ 2
t /N2τh = α2/τh. In the

opposite case, �L 	 1/τh, fqq(�L) → N2δH 2
q τ 2

t �2
LN2τh =

N4α2�2
Lτh.

The QD rings are a more complicated case of finite QD
structures due to the appearance of the secondary effective
magnetic field originating from the circular movement of
carriers. As we mentioned above, the sequence of small turns
of spin at the circular electron movement leads to an effective
rotation of the spin around the z axis that is equivalent to
an appearance of the z component of an effective magnetic
field. The estimations of the magnitude of this field made in
the previous section [see Eq. (1)]. The fluctuations of H̃z will
be the same as for the infinite chain, for clockwise motion
+H̃z, for counterclockwise motion −H̃z. As concerning Hx ,
Hy components, their correlation function will be the same
as for the finite chain up to a factor defining a transformation
from the linear chain to the circular one. Using fzz(0) obtained
for the infinite chain [Eq. (4)] and fyy(�L) obtained for the
finite chain [Eq. (7)], one can write the following expression
for T2 at θ = 0:

1/T2 = γ 2

[
δH̃ 2

z τ 2
t

τh

+ N2δH 2
y τ 2

t

�2
LN2τh(

1 + �2
L(N2τh)2

)
]
.

Here, for simplicity, we omit the part of Eq. (4) related to
sin(x)/x. One can see that in the limit �L 	 1/τh, T2 →
τh/(N2α4), in good accordance with the results obtained by
derivation of the eigenmodes problem. So, the examination
of our results by a well known method of Fourier transforms
of the perturbing fields proves the correctness of the results
obtained by derivation of the eigenmodes problem.

III. COMPARISON WITH EXPERIMENTAL DATA

The theoretical results are in a good agreement with the
experimental results of ESR studies of ordered QD structures.
For homogeneously broadened ESR lines, the ESR line width
can be used as a parameter that characterizes the behavior
of transverse spin relaxation time T2. Our previous results
obtained for two-dimensional nonordered QD arrays with
a high density of QDs demonstrate that the ESR line is
broadened when an external magnetic field deviates from
the growth direction of the structures [6]. The widest ESR
lines were observed for the in-plane magnetic field, which
corresponds well to the calculated orientation dependence
of T2 (see Fig. 4). Recently, for one-dimensional QD chains
with finite sizes, the inverse orientation dependence of ESR
linewidth has been observed [3], which confirms the modeling
performed in the present work. Concerning the ringlike QD
molecules, the fourfold increase of T1, as compared with
dense 2D QD arrays, was obtained experimentally in the
recent work by spin echo measurements [24]. The orientation
dependence of the ESR linewidth obtained in the same work

does not allow to obtain a confirmation of the increasing T2

at the tilted magnetic field because of the weakness of the
electron localization potential induced in Si by mixed GeSi
QDs. Quantum dots were grown at relatively high temperatures
and have a large lateral size and a low Ge content. Then, the
localization radius of electron is about 50 nm and it becomes
sensitive to the external magnetic field magnitude. The external
magnetic field applied perpendicularly to the plane of a QD
array makes the electron localization on QDs stronger due to
the wave function shrinking effect [25]. At the deviation of
the magnetic field from the growth direction, the localization
becomes weaker. The probability of hopping between dots
increases, and, up to some critical angle (θ = 30◦), the hopping
between QDs is going inside QD ringlike groups. In this
interval of θ , the narrowing of ESR line is observed. At larger
θ , the localization radius overcomes some critical value and the
random hopping between QD ringlike groups becomes very
intensive. This leads to the broadening of a ESR line like in 2D
QD arrays. So, when electrons move inside QD finite groups,
the narrowing of ESR line is observed, that can be considered
as a confirmation of the modeling results. However, the same
narrowing can occur due to averaging of local magnetic fields
(for example, induced by 29Si isotopes) at an increase of the
electron localization radius. To separate these mechanisms
of narrowing, it needs to create QD rings with a stronger
localization of electrons, where the localization radius has no
sensitivity to the external magnetic field. An ESR experiment
on QD structures with a strong localization of electrons within
QD rings can give an additional confirmation of the theoretical
results obtained in the present work.

IV. CONCLUSIONS

In summary, our results demonstrate that there is a principal
difference between the spin relaxation of delocalized electrons
in semiconductor structures with the absence of inversion
symmetry and localized electrons providing the hopping
conductivity in QD structures. This difference leads to an
insensitivity of spin relaxation rate to the external magnetic
field magnitude in infinite QD structures and an unusual
field dependence obtained for finite QD structures. These
effects originate from the nature of the effective magnetic field
(spin-orbit field) δH . In QD system, this field represents short
bursts appearing only during tunneling of carriers between
QDs, δH �= 0 in the time interval τt . For delocalized electrons
with k �= 0, the effective magnetic field is nonzero all the
time, and in presence of the external magnetic field the spin
dynamics is controlled by precession with sum frequency
�L + �k , that leads to a well-known suppression of DP
spin relaxation in a longitudinal magnetic field [10]. In QD
structures, these fields do not act in a simple additive way,
because they are essentially separated in time, and this results
in an unusual field dependence of the spin relaxation rates.

The external magnetic field itself can not affect the spin
relaxation, but in presence of autocorrelations of the effective
magnetic field, it is involved in spin relaxation process. For
delocalized electrons, the autocorrelations of spin-orbit field
are present on a time scale compared with the momentum
scattering time τk . In infinite QD structures, there are no auto-
correlations of spin-orbit field on the time scale compared with
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the characteristic time between hopping events τh, which plays
an equivalent part in the spin dynamics as τk . Therefore there
is no dependence on the external magnetic field H0 for infinite
QD structures if the dependence of τh on H0 is neglected.

In QD structures with finite sizes, the autocorrelation
function of the spin-orbit field significantly changes, the
autocorrelations of this field appear on a time scale comparable
with the time interval between hopping events, thus causing
a dependence of spin relaxation rate on the external magnetic
field. The spin relaxation is provided by the vector product
of the spin-orbit field and the external magnetic field and

this leads to unusual angular dependencies of spin relaxation
times. The reported results show that the ordering of QDs and
an appropriate choice of the external magnetic field direction
enables switching the main spin relaxation mechanism off
and a sufficient increase of the spin relaxation times in QD
structures.
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