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Spin-orbit splitting of valence and conduction bands in HgTe quantum wells near the Dirac point

G. M. Minkov,1 A. V. Germanenko,1 O. E. Rut,1 A. A. Sherstobitov,1,2 M. O. Nestoklon,3

S. A. Dvoretski,4 and N. N. Mikhailov4

1Institute of Natural Sciences, Ural Federal University, 620002 Ekaterinburg, Russia
2M. N. Miheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, 620137 Ekaterinburg, Russia

3Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
4Institute of Semiconductor Physics RAS, 630090 Novosibirsk, Russia

(Received 14 December 2015; revised manuscript received 20 February 2016; published 11 April 2016)

Energy spectra both of the conduction and valence bands of the HgTe quantum wells with a width close to the
Dirac point were studied experimentally. Simultaneous analysis of the Shubnikov–de Haas oscillations and the
Hall effect over a wide range of electron and hole densities yields surprising results: the top of the valence band
is strongly split by spin-orbit interaction while the splitting of the conduction band is absent, within experimental
accuracy. This holds true for the structures with normal and inverted band ordering. The results obtained are
inconsistent with the results of kP calculations, in which the smooth electric field across the quantum well is
only reckoned in. It is shown that taking into account the asymmetry of the quantum-well interfaces within a
tight-binding method gives reasonable agreement with the experimental data.
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I. INTRODUCTION

Heightened interest in two-dimensional (2D) structures
with quantum wells of gapless semiconductors is caused by
the fact that different types of carrier energy spectra could be
realized in these structures depending on the width (d) of the
quantum well. One of the most intensively studied systems
both theoretically and experimentally is the heterostructure
with a CdTe/HgTe/CdTe quantum well. The calculations of
the energy spectrum in the framework of the kP method
for symmetrical quantum wells show that there is a critical
width of the HgTe quantum well, d = dc � 6.3 nm, when the
Dirac-like energy spectrum that is linear in quasimomentum
should be realized at small quasimomentum (k) [1,2]. At
d < dc, the energy spectrum is normal. The valence band is
formed from heavy-hole states while the conduction band is
formed from electron states and light-hole states. At d > dc

these states change places, and such a spectrum is called an
inverted spectrum. Another approach, namely the calculation
in the framework of the tight-binding model, which takes
into account the bulk inversion asymmetry of the zinc-blende
lattice, yields a similar result regarding the E(k) dependence
except that the relatively large anticrossing at k = 0 and
the large spin-orbit (SO) splitting of the conduction and
valence band appear at d = dc [3].

Knowledge of the energy spectrum is necessary for an
understanding of all of the properties of 2D systems, including
optical, transport, and others. However, experimental study
of the energy spectrum has been rather superficial to date.
Comparatively, the energy spectrum of the conduction band
has been studied in greater detail [4–8]. It was shown that
the SO splitting of the conduction band in technologically
symmetric quantum wells does not reveal itself in most cases.
The conduction band is not parabolic: the effective mass
increases with increasing electron density. These data are in
satisfactory agreement with results of theoretical calculations
performed in the framework of the kP method.

The energy spectrum of the valence band has been
investigated somewhat less, and it should be noted that

the experimental data are inconsistent with the theoretical
results in many cases. For instance, in structures with d >

10 nm, which corresponds to the inverted energy spectrum,
the hole effective mass (mh) obtained experimentally within
the wide hole density range p = (1–4) × 1011 cm−2 occurs
substantially less than that calculated within the kP method:
mh � (0.15–0.3)m0 [9–11] instead of (0.5–0.6)m0 [12]. These
calculations predict also that the conduction band should
overlap with the valence band, the top of which is located
at k �= 0 when d � (12–15) nm. Although this prediction is
in qualitative agreement with the experimental data [11,13],
the quantitative difference between theory and experiment is
drastic. Experimentally, the top of the valence band is located
at k � 0.5 × 106 cm−1, while the theoretical prediction gives
a value of about k � 2.5 × 106 cm−1.

The valence-band spectrum in heterostructures with normal
band ordering was explored in only a few studies. The
experimental data published in Refs. [14] and [15] for
structures with d = (5–6) nm are very similar, however the
interpretation differs significantly. Analyzing the Hall density
and the Fourier spectra of the Shubnikov–de Haas (SdH)
oscillations, the authors of Ref. [14] were able to describe
the data taking into account the secondary maxima of the
dispersion law located at k �= 0. But this has been done only
for one hole density. Studying analogous heterostructures, the
authors of Ref. [15] showed that such an interpretation does
not describe the experimental data within a wide hole density
range. They showed that all the results are well described under
the assumption that the top of the valence band is very strongly
split by SO interaction. One possible reason for such splitting
is a strong electric field of the p-n junction of technological
origin in which the quantum well is embedded. The authors
were unable to investigate the splitting of the conduction band.
These data would make the interpretation more reliable.

In the present paper, we report the results of an exper-
imental study of both hole and electron transport in HgTe
quantum wells of different width near the critical point dc

with normal and inverted energy spectra. The measurements
were performed over a wide range of carrier density. It
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has been found experimentally that the valence band is
strongly split by SO interaction, while the conduction band
remains unsplit independent of energy-band ordering. We
believe that the natural interface inversion asymmetry of zinc-
blende heterostructures is responsible for these peculiarities.
Quantitatively, the experimental data are well described in the
framework of atomistic calculation [3].

II. EXPERIMENT

Our samples with HgTe quantum wells were realized on the
basis of HgTe/Hg1−xCdxTe (x = 0.55–0.65) heterostructures
grown by molecular beam epitaxy on GaAs substrate with
the (013) surface orientation [16]. A sketch of the structures
investigated is shown in the inset of Fig. 2(a). The samples
were mesa-etched into standard Hall bars of 0.5 mm width,
and the distance between the potential probes was 0.5 mm.
To change and control the carrier density in the quantum
well, the field-effect transistors were fabricated with parylene
as an insulator and aluminum as a gate electrode. For
each heterostructure, several samples were fabricated and
studied. The measurements were performed at temperatures of
1.3–20 K.

III. CHARACTERIZATION OF SAMPLES REGARDING
THE TYPE OF SPECTRUM

To interpret the experimental results, it is very important
to know whether the spectrum of the structure under study
is normal or inverted. The values of the quantum-well width
presented in Table I are nominal, therefore it is very desirable
to have independent data on the spectrum type.

The most reliable method to determine the type of spectra
can be based on the peculiarity of the spectrum quantization in
the external magnetic field. Theoretical calculations [6,12,17]
and experimental investigations [11,17] show that there are two
anomalous Landau levels, the behavior of which is radically
different for the normal and inverted spectra [Figs. 1(c)
and 1(f)].

As seen from Fig. 1(f), the Landau levels −2 and 0 for
the case of the inverted spectrum start at B = 0 from the
bottom of the conduction band and the top of the valence

TABLE I. The parameters of heterostructures under study.

No. d (nm) ps (cm−2) Bc (T) Q/e (cm−2)a p1/p2

1122 5.6 1.3 × 1011 2.5 × 1011 1.8–2.2
H724 5.8 1.5 × 1011 1.0 × 1011 2.0–2.2
1123 6.0 6.0 × 1010 1.5 × 1011 2.0–2.3
1121 6.3 8.0 × 1010 0.6 ± 0.2 7.6 × 1010 2.2–2.5
1023 6.5 3.6 × 1010 1.1 ± 0.2 1.0 × 1010 2.3–2.7

−7.0 × 1010 b

1022 6.7 1.4 × 1010 1.2 ± 0.2 1.5 × 1010 2.3–2.8
−1.5 × 1010 b

1124 7.1c 3.4 × 1010 ∼0 2.2 × 1011 2.2–2.8

aAt Vg = 0.
bAfter illumination.
cThe fact that Bc ∼ 0 indicates that the real QW width in this structure
is close to dc.

band, respectively, and moving toward each other they cross
in the magnetic field B = Bc. The Bc value depends on the
quantum-well width. It increases as d increases, achieves a
maximal value of about 9–10 T at d � (9–10) nm, and then
decreases with a further d increase. In the structures with
a normal spectrum, the energy positions of the anomalous
Landau levels at B → 0 are opposite: level −2 starts from the
valence-band top while level 0 goes from the conduction-band
bottom. Because they move in the same directions as for d >

dc, the crossing does not occur in this case [Fig. 1(c)]. Thus, if
the crossing of Landau levels is detected experimentally, the
real width of the HgTe quantum well is greater than the critical
value dc, and the sample under study is in the inverted regime.

When Bc is large enough that the anomalous Landau
levels have a large density of states and are well separated,
the cross manifests itself as a nonmonotonic peculiarity
in the ρxx versus B and ρxy versus B dependences [11]. When
the quantum-well width is close to the critical value dc, the
cross of the Landau levels occurs at such a low magnetic field
that it may not reveal itself in magnetotransport measurements.
It is possible in this case to observe the cross by studying the
behavior of the quantum capacitance (Cq) in the magnetic field
at the gate voltages close to the charge-neutrality point (CNP).
Unlike the resistance components, which depend not only on
the density of states (ν) but also on the disorder strength, the
quantum capacitance depends on the density of states only,
Cq = e2dn/dμ = e2 ν(μ), where μ stands for the chemical
potential. Therefore, the value of Cq at Vg � V CNP

g should
increase with growing B, achieve the maximal value at B =
Bc, and then decrease with the further increase of the magnetic
field even when the Landau levels are rather broadened. When
the Fermi level is located in the conduction or valence band
at Vg �= V CNP

g , the maximum in the dependence Cq(B) should
also be observed, but in the higher magnetic fields as compared
with Bc.

In the structures with a normal energy spectrum, the
anomalous Landau levels are moving apart and the density of
states in the gap (which is nonzero due to smearing) decreases
with growing magnetic field. Thus, the capacitance should
decrease with B near the CNP.

Measurements of the quantum capacitance were taken for
all the structures investigated. In Fig. 2(a) we have presented,
as an example, the dependence Cq(Vg) measured at B = 0
on the structure 1023. The nonmonotonic volt-capacitance
characteristic is a consequence of the nonmonotonic energy
dependence of the density of states. The minimum in the
vicinity of CNP is observed when the Fermi level goes through
the energy gap where the density of states is much smaller
than that in the valence and conduction bands.1 Figure 2(b)
shows the magnetic-field dependences of Cq at different Vg

near the CNP. The maximum in these curves at B = Bmax,
which shifts to higher B values when Vg deviates from the
CNP, is clearly evident. As can be seen from Fig. 2(c), the
Bmax versus Vg plot has a minimum, and just the minimal
value of Bmax � 1.2 T corresponds to the magnetic field Bc

1The details of capacitance measurements for HgTe quantum wells
of different widths are beyond the scope of this paper and will be
published elsewhere.
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FIG. 1. The spatial quantization subband energies at k = 0 plotted against the HgTe quantum-well width (a). The band structure (b),(d),(e)
and Landau levels (c),(f) for a quantum well of different widths [12].
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FIG. 2. (a) The gate voltage dependence of the quantum capacitance Cq for the structure 1023 at T = 4.2 K and B = 0. The inset shows a
sketch of the structures under study. (b) The magnetic-field dependences of Cq at the gate voltages close to CNP. (c) The Bmax values plotted
against the gate voltage.
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T = 4.2 K. The lines are provided as a guide to the eye.

in which the anomalous Landau levels 0 and −2 cross each
other. The analogous maximum in the dependence Cq(B) at
Vg close to V CNP

g was also observed in the structures 1022 and
1121. The Bc values obtained in such a manner for these three
structures are listed in Table I.

As for the remaining four heterostructures, the quantum
capacitance in the vicinity of the CNP decreases as B increases
for the structures 1122, H724, and 1123, while for the structure
1124 it is practically independent of B.

Thus the results of capacitance measurements in the
presence of a magnetic field show unambiguously that the
energy spectrum is inverted in the structures 1022, 1023,
and 1121, the structures 1122, H724, and 1123 have normal
spectra, while the B independency of quantum capacitance for
the structure 1124 indicates that the real width of the quantum
well in this structure is close to the critical value, d � dc.

IV. THE VALENCE-BAND SPECTRUM

Let us now inspect the gate voltage dependences of the Hall
carrier density obtained at low magnetic field [where RH (B)
is constant] as follows: nH = −1/eRH (0.1 T) when RH < 0
for electron density and pH = 1/eRH (0.1 T) when RH > 0
for hole density. These dependences are plotted in Fig. 3(a)
for structures 1122 and 1023 with a normal and an inverted
spectrum, respectively. The corresponding Vg dependences
of the conductivity are shown in Fig. 3(b). These structures
are chosen as typical ones; the results for other structures
are analogous. In what follows, we will demonstrate all the
results for these structures excepting for the cases when the
simultaneous analysis of results for all the structures will be
useful. One can see that the electron density depends linearly
on Vg over the whole gate voltage range. Note that the slope
dnH/dVg coincides with the value C/eS (where C is the
capacitance between the 2D gas and the gate electrode, and S is
the gate area2), to within experimental error. The hole density

2The capacitance between the 2D gas and the gate electrode can be
considered as a constant value in this context because the contribution
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FIG. 4. The magnetic-field dependences of ρxx (a) and RH (b) for
two gate voltages for the structure 1023, T = 18 K. The solid curves
are measured experimentally, the dashed ones are the results of the
best fit with the parameters shown in Fig. 5.

changes with the same slope, dpH/dVg = −dnH/dVg , within
a restricted Vg range of only V s

g < Vg <CNP
g , where the hole

density is less than some critical value ps = p(V s
g ). For Vg <

V s
g , the slope |dpH/dVg| decreases significantly. An analogous

dependence p(Vg) was observed earlier in Refs. [18,19]. As
seen from Fig. 3(a), the ps values are significantly different for
these structures: ps � 1.3 × 1011 cm−2 for structure 1122 and
ps � 0.35 × 1011 cm−2 for structure 1023. The decrease of
|dpH/dVg| below V s

g can result from the appearance of a large
enough density of states at the Fermi level, which pins it. They
can be the states in the secondary maxima of the valence-band
spectrum at k �= 0 [see Figs. 1(b), 1(d), and 1(e)] or some states
in the barriers or at the interfaces between the layers forming
the quantum well.

To understand which of these reasons is the primary
one, we analyze the magnetic-field dependences of RH and
ρxx in classically strong magnetic fields at relatively high
temperature at which the SdH oscillations are suppressed.
As an example, in Fig. 4 we have presented the ρxx versus
B and RH versus B plots measured on the structure 1023
at T = 18 K for two gate voltages. These dependences are
typical for two-type carrier conductivity. The simultaneous
fitting of these plots by the standard handbook expression
[see, e.g., Ref. [20], Eqs. (8.66) and (8.67)] with use of hole
densities p(1) and p(2) and hole mobilities μ(1) and μ(2) as
the fitting parameters, gives reasonable agreement with the
data (see Fig. 4). The hole densities p(1) and p(2) found in
this way and the total density p(1) + p(2) together with the
hole Hall density pH = 1/eRH (0.1 T) for different Vg values
are plotted in Fig. 5(a). It is seen that p(1) is close to pH and
the p(1) + p(2) points fall on the straight line, which describes
the nH versus Vg data. The values of the mobility of the second
type of holes are about (2–3) × 103 cm2/V s [see Fig. 5(b)],
which correspond beyond doubt to free carriers.

of the quantum capacitance is less than 1–2 % in the structures under
investigation.
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g ).

Thus, one can argue that the decrease of |dpH/dVg| at
Vg < V s

g is a result of the occupation of the secondary maxima
of the valence band when the Fermi level approaches them with
decreasing gate voltage. For this case, the value of ps should
depend monotonically on the quantum-well width. To compare
the data obtained for the different structures with a different
carrier density at Vg = 0, a different insulator thickness, and
hence a different dn/dVg value, we have plotted in Fig. 6(a)
the values of the Hall carrier densities 1/eRH (0.1 T) against
the total charge in the quantum well Q = C(Vg − V CNP

g ) for
all the structures investigated. The ps values found from
Fig. 6(a) are plotted against the nominal quantum-well
width in Fig. 6(b). The corresponding theoretical dependence
calculated within the framework of the 8 × 8 Kane model in
Ref. [12] is presented also. Taking into account the uncertainty
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in the real quantum-well width and the error in the ps

determination, it can be concluded that the value of ps can
be used to estimate the quantum-well width. Note that the
experimental values of Bc are also in satisfactory agreement
with the calculation results, as is evident from Fig. 6(c).

Before closing this section, let us discuss the specific feature
in the behavior of the hole density evident at p > ps . As
seen from Fig. 6(a), the higher the ps value is, the larger is
the slope of the dependence pH(Q) at pH > ps . Since the
Hall coefficient RH (0.1 T) gives the density of holes only in
the central maximum, the slope of the dependence pH(Q) at
pH > ps is determined by the relation between the densities
of hole states in the central and secondary maxima ν1 and ν2,
respectively: edpH/dQ = 1/(1 + ν2/ν1). Thus, the increase
of dpH/dQ with growing ps is in qualitative agreement with
the fact that the density of states in the central maximum ν1

at the energy of the secondary maximum increases with the
energy increase due to the nonparabolicity of dispersion law
E(k).

V. SPIN-ORBIT SPLITTING OF VALENCE AND
CONDUCTION BANDS

Now let us turn to a more detailed study of the band spectra.
To do this, we have measured the SdH oscillations and their
angle dependence over a wide carrier density range.

A. Normal band ordering

1. Valence band

Qualitatively, the results obtained for structures 1122
and their interpretation are analogous to those published in
Ref. [15]. Nonetheless, we briefly describe the key results
that are important for the interpretation of results both for
valence and conduction bands for structures with normal
and inverted spectra. The gate voltage dependence of the
carrier density, the dependences ρxx(B) and dρxx(B)/dB taken
for the structure 1122 at Q/e = 1.3 × 1011 cm−2, and the
corresponding Fourier spectrum of the SdH oscillations are
presented in Fig. 7.

As can be seen from Fig. 7(c), two maxima with frequencies
f1 and f2 are easily detected in the Fourier spectrum. It is
noteworthy that the ratio of the frequencies is close to 2,
i.e., the Fourier spectrum is similar to the case when the
spin splitting of the Landau levels manifests itself with the
magnetic-field increase. In such a situation, the carrier density
should be determined as pSdH = f1 × 2e/h. Therefore, we
obtain pSdH = (0.88 ± 0.05) × 1011 cm−2 for this concrete
case. However, the Hall density at this Q value is significantly
larger, pH = 1.31 × 1011 cm−2, as seen from Fig. 7(a).

Such a difference between the hole density found from
the SdH oscillations within the proposed model and the hole
density found from the Hall effect takes place over the entire
hole density range in all the structures investigated. Thus the
interpretation described above is invalid for this case.

The only interpretation that adequately describes our results
is as follows. Each peak in the Fourier spectrum corresponds
to the subband H1, which is strongly split by SO interaction
into two subbands H1+ and H1−. In this case the “spin”
degeneracy is lifted, and hence the hole densities should be
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FIG. 7. (a) The carrier density plotted against the charge in the
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found as p1,2 = f1,2 × e/h, where indexes 1 and 2 correspond
to H1+ and H1− subbands. Therefore, the total hole density
is pSdH = p1 + p2 = (f1 + f2) e/h. The results of such a data
interpretation are represented by stars in Fig. 7(a) within the
entire hole density range. One can see that pSdH coincides
with pH within experimental error. Thus, we conclude that the
valence band is strongly split by SO interaction so that the
ratio of hole densities in the split subbands is about 2 over
the entire hole density range.

2. Conduction band

To obtain the information on the energy spectrum and
splitting of the conduction band, we have thoroughly studied
the electron SdH oscillations.3 In Fig. 8(a) we present the SdH
oscillations for some Hall densities, and in Fig. 8(b), as an
example, we present the Fourier spectrum for one of them.
As seen from Fig. 8(b) the Fourier spectrum consists of two
peaks whose characteristic frequencies differ by a factor of 2
analogously to the case of the hole conductivity [see Fig. 7(c)].
The main contribution to the peak with the frequency f1 comes
from the low-field SdH oscillations. Therewith, unlike the
oscillations in the hole domain, the electron density found
as nSdH = f1 × 2e/h is very close to the Hall density, as is
evident from Fig. 7(a), indicating that the Zeeman splitting
is not resolved. The peak f2 comes from the oscillations in
the high magnetic fields, and it originates from the spin-split
Landau levels. This corresponds to the case when the SO
splitting of the conduction band is small enough.

3Due to large noisiness at positive gate voltage, we could not do this
in our previous paper [15]. The possible reason for the noise may be
the large resistance of the p-n junctions, which are formed in the 2D
gas under the gate electrode edge, because these structures are of p

type at Vg = 0.
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FIG. 8. The SdH oscillations of electron conductivity measured
for structure 1122 at different electron densities (a) and the re-
sults of Fourier transformation of SdH oscillations for n = 3.6 ×
1011 cm−2 (b).

Thus, the analysis of SdH oscillations carried out over
the whole carrier density range gives a surprising result: the
valence band is strongly split by SO interaction, while the
splitting of the conduction band in the same structure does not
reveal itself.

3. The Shubnikov–de Haas effect in a tilted magnetic field

To ensure that our interpretation is correct, one can explore
the SdH oscillations in a tilted magnetic field. Really, when the
SO splitting is significantly smaller than the Zeeman energy
(�SO � gμBB), the energy of orbital quantization depends
on the normal component of the magnetic field B⊥ = B cos θ ,
where θ is the angle between the magnetic-field direction and
the normal to the 2D gas plane, while the energy of spin
splitting depends on total B. At low magnetic field, where the
SdH oscillations are unsplit, this should manifest itself as a
strong angle dependence of the oscillation amplitude. In the
opposite case of a strong spin-orbit SO interaction (�SO �
gμBB), the spin is rigidly coupled with the orbital motion,
and the SdH oscillations should be determined by the normal
component of the magnetic field only.

The oscillations of dρxx/dB⊥ at B⊥ < 1.2 T for the electron
density 2.5 × 1011 cm−2 for several tilt angles are presented in
Fig. 9(a). The oscillations within this magnetic-field range
are caused by unsplit Landau levels. It is seen that the
oscillations decrease in amplitude when B deviates from
the normal orientation, practically disappearing at B⊥/B �
0.6, and then they change phase and increase in amplitude
upon a further decrease of the B⊥-to-B ratio. This behavior
results from the change of the ratio between the spin and
cyclotron energies X = gμBB/�ωc with a tilt angle. If gμBB

and hωc are proportional to the total magnetic field and
the normal component of B, respectively, one can obtain
the following expression for the angle dependence of the
oscillation amplitude:

A(B⊥/B)

A(1)
= cos

(
πX

B

B⊥

)/
cos (πX). (1)
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This dependence together with experimental data are shown in
Fig. 9(b). One can see that good agreement is observed when
X = 0.32.

Let us now inspect the behavior of the SdH oscillations with
the changing tilt angle measured on the same heterostructure
in the hole domain (Fig. 10). One can see that, unlike the case
of electron conductivity, the SdH oscillations plotted against
the normal component of the magnetic field remain practically
unchanged with the changing tilt angle. This means that they
are determined by the normal components of the magnetic field
only. As discussed above, such a behavior should be observed
when SO interaction is relatively strong: the SO splitting is
much greater than the Zeeman energy. Or, alternatively, the
independence of the oscillation picture on the tilt angle may
be caused as well by a strong anisotropy of the effective g-
factor when the in-plane g-factor is much smaller than the
perpendicular one, g‖ � g⊥. However, the estimation made
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FIG. 10. The SdH oscillations of the hole conductivity plotted
against the normal component of magnetic field for structure H1122
at different angles, p = 1.35 × 1011 cm−2.

-0.4 -0.2 0.0 0.2
-0.4

-0.3

-0.2

-0.1

0.0

0.1

p
1
=f

1
×e/h

p
2
=f

2
×e/h

p
1
+p

2

f
1
×e/h

f
1
×2e/h

n
H
, p

H

holes

-n
, p

 (
10

12
 c

m
-2
)

Q/e (1012 cm-2)

(a)

electrons

0.0 0.2 0.4 0.6

d ρ
/d

B
 (

ar
b.

 u
ni

ts
)

B (T)

(b)

0.0 0.5 1.0 1.5
0

2

4

6

f

F
ou

rie
r 

po
w

er
 (

ar
b.

un
its

)

f  (T)

(c)
f

0.00 0.01 0.02 0.03 0.04

p (10  cm )

FIG. 11. Results analogous to those presented in Fig. 7, but for
structure 1023 with the inverted spectrum.

with the use of Eq. (35) from Ref. [21] shows that this is not
the case. The Zeeman splitting differs in the perpendicular and
longitudinal orientations of the magnetic field only slightly for
the actual quantum-well widths and actual Fermi energies.

Thus, the analysis of the angle dependences of SdH oscil-
lations also shows that the valence-band spectrum is strongly
split due to spin-orbit interaction, while the conduction band
remains unsplit.

B. Inverted band ordering

The dependence of carrier densities found from the Hall
and Shubnikov–de Haas effects on the charge of 2D gas for
structure 1023 with an inverted spectrum, d = 6.5 nm, is
plotted in Fig. 11(a). In general, it is similar to that for the
structure with a normal spectrum except that the ps value
is significantly less in structures with d > dc: namely, ps �
3.0 × 1010 cm−2 for structure 1023 instead of �1 × 1011 cm−2

for structure 1122 with a normal spectrum. As discussed in
Sec. IV, this results from the smaller energy distance between
the top of the valence band at k = 0 and the secondary maxima
at k �= 0.

The SdH oscillations in the hole conductivity regime and
their Fourier spectrum are shown in Figs. 11(b) and 11(c),
respectively. As in the structures with a normal spectrum, the
only way to reconcile the Hall density and data obtained from
the SdH oscillations is to assume that each maximum in the
Fourier spectrum is associated with the split subband.

In the electron conductivity regime, the SdH oscillations
measured at different tilt angles are presented in Fig. 12(a) for
the Hall density nH = 1.7 × 1011 cm−2. The Fourier spectrum
of the oscillations at normal B orientation is shown in the inset
of Fig. 12(a).

The charge dependences of the electron densities found
as f1 × 2e/h and f1 × e/h are shown in Fig. 11(a). It is
seen that nSdH = f1 × 2e/h coincides with nH . This means
that each peak of the SdH oscillations corresponds to the
twofold-degenerate Landau level. As Fig. 11(a) shows, such a
coincidence is observed over the whole range of the electron
density. Thus, the spin-orbit splitting of the conduction band in
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the structures with the inverted spectrum does not reveal itself
as well as it does in the structures with the normal spectrum.

The conclusion about strong splitting of the valence band
and weak splitting of the conduction band is consistent with
the behavior of the oscillations in a tilted magnetic field. The
behavior of the oscillations of the electron conductivity with
the tilt angle shown in Fig. 12(a) is analogous to that presented
in Fig. 9(a) for the structure with a normal spectrum. The
angle dependence of the oscillation amplitude in Fig. 12(b)
demonstrates that the Zeeman splitting becomes equal to
half the orbital one at B⊥/B close to 0.35. The dependence
calculated from Eq. (1) with X = 0.18 well describes the data.4

The SdH oscillations of the hole conductivity measured at a
different tilt angle are presented in Fig. 13. As for the structures

4A detailed analysis of the electron-density dependence of the g-
factor in structures with quantum wells of different width is beyond
the scope of this study and will be discussed in another paper.
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calculations described in the text, and the solid lines are the results
obtained by the sp3 tight-binding method [3].

with the normal spectrum (see Fig. 10), neither positions nor
amplitudes depend on the tilt angle that corresponds to strong
SO splitting of the valence band (see the discussion above).

Summing up all the data given above, we can formulate
the main outcome. The analysis of the Shubnikov–de Haas
and Hall effects over the whole carrier density range in the
structures with d < dc and d > dc gives a surprising result:
the valence band is strongly split by SO interaction in the
structures both with a normal and an inverted spectrum, while
the splitting of the conduction band in the same structures
does not reveal itself. To illustrate this, we have plotted the
ratio between the carrier densities in the split subbands in the
valence and conduction bands as a function of carrier density
in Fig. 14.5 This figure is the key result of the paper.

VI. COMPARISON WITH THE RESULTS OF k P AND
TIGHT-BINDING CALCULATIONS

The strong SO splitting of the valence band at d < dc was
observed in our previous paper [15]. The experimental results
are interpreted under the assumption that the quantum well
is located in the strong electric field of a p-n junction, which
in turn results in a strong Bychkov-Rashba effect. It has been
shown that the kP model describes the valence-band spectrum
quantitatively. As noted above, we were unable in that paper to
study the conduction band with the accuracy needed to obtain
the SO splitting reliably, for heterostructures studied in the
present paper it was possible.

Let us first compare the experimental results obtained in
the present paper both for the valence and conduction bands
with the results calculated within the framework of the kP
model used in Ref. [15]. As before, we use here the six-band

5We have plotted the ratio p2/p1 but not the value of SO splitting,
�SO, because to calculate �SO from p2/p1, one needs the carrier
effective mass, which is known with some error.
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Kane Hamiltonian. The direct integration technique is applied
to solve the Shrödinger equation as described in Ref. [22].
The other parameters were the same as in Refs. [23,24]. As in
the previous paper [15], the value of the electric field serves
as the fitting parameter, which provides the ratio between
the hole densities in the split subbands, which is observed
experimentally (see Fig. 14). It is approximately equal to
80 mV/d for all the structures under study.

Let us now inspect the SO splitting of the conduction band.
The calculated energy spectrum for the heterostructures with
d < dc and d > dc is shown in Fig. 15. The energy splitting
�SO as a function of the quasimomentum value is shown in
the insets. It is seen that the splitting of the conduction band
at low k values, k < 0.1 × 106 cm−1, is much larger than that
of the valence band for d < dc. For d > dc, the situation is
opposite; the valence band is split much stronger than the
conduction band. Such relationships between splittings agree
with the known result of symmetry analysis according to which
�SO ∝ k for the s1 band and �SO ∝ k3 for the H1 band near
k = 0. It should be emphasized that such low quasimomentum
values correspond to very low carrier densities (∼109 cm−2

and less), which are inaccessible experimentally. At larger
quasimomentum values, these relationships are violated. The
splitting values of s1 and H1 bands become close to each
other. As seen from Fig. 15, the difference in the spin-orbit
splitting for the valence and conduction bands does not exceed
30% for both heterostructures for kF > 0.5 × 106 cm−1,
which corresponds to the actual carrier density range n,p >

5 × 1010 cm−2 (see Fig. 14).
To compare the results of the kP calculations with the

experimental data, we have calculated the carrier density in
the split subbands as k2/(4π ), and we plotted the n2-to-n1

and p2-to-p1 ratios against the total carrier density in Fig. 14
by the dashed lines. It is evident that this model perfectly
describes the data relating to the hole split subband and gives
no agreement with the experimental results concerning the
conduction-band splitting. One of the reasons why the used

kP model fails when compared with the experiment is the fact
that it ignores the asymmetry caused by the difference in the
quantum-well interfaces.

The role of the bulk inversion asymmetry of host crystals
and interface inversion asymmetry in the SO splitting of
the energy spectrum of 2D carriers was recently studied in
Ref. [3]. Using symmetry analysis and atomistic calcula-
tions, the authors obtained a surprising result. The asym-
metry of CdTe/HgTe and HgTe/CdTe interfaces forming the
CdTe/HgTe/CdTe quantum well results in the giant splitting
of the energy spectrum; in the quantum wells of critical and
close-to-critical width, d � dc, the splitting reaches a value of
about 15 meV.

Analogous calculations have been performed for our
concrete case of (013) HgTe quantum wells.6 The quantum
well was supposed symmetric in the sense that no electric
field was applied across the well. The microscopic strain
has been calculated in the atomistic valence force field
model [25] and then incorporated in tight binding using
the standard procedure [26]. The tight-binding parameters
used in the calculations were obtained using a procedure
similar to that described in detail in the supplemental material
to Ref. [3] with the following modification. In Ref. [3]
it was assumed that the change of the ionicity across the
interface may be extracted from the atomic levels obtained in
ab initio calculations. Instead, one may introduce more physi-
cal parameter, the change of the electrostatic potential on anion
across the interface, and fit this parameter to reproduce the
expected properties of the interface. Tight-binding parameters
in Ref. [3] correspond to the change of electrostatic potential
on Te between the quantum well and barrier equal to 1 eV,
which is in accordance with ab initio calculations of the
HgTe/CdTe heteropair. For the interface between HgTe and
the Hg1−xCdxTe (x � 0.5) alloy, this parameter should be
reduced to 500 meV, which leads to a proportional reduction
of the interface-induced spin splitting. The carrier densities
in the subbands were calculated as Sk/(2π )2, where Sk is the
area inside the Fermi contour, which is not a circle due to
the absence of axial symmetry. The results of calculations
are depicted in Fig. 14 by solid lines. One can see that the
atomistic calculations describe the experimental SO splitting
of the spectrum reasonably not only for the valence band but
for the conduction band also. It is necessary to stress that no
fitting parameters have been used in the calculations.

VII. CONCLUSION

We have studied the energy spectrum of the conduction and
valence bands of 2D states in HgTe quantum wells by means of
magnetotransport measurements. The structures investigated
have the width of the quantum wells close to the critical
value d � dc, where the spectrum changes from normal (at
d < dc) to inverted (at d > dc). Simultaneous analysis of the
SdH oscillations and the Hall effect over the wide range of the
electron and hole densities yields a surprising result: the top
of the valence band is strongly split by spin-orbit interaction

6Detailed theoretical analysis in the framework of the tight-binding
method is a topic of another paper that is currently in progress.
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while the splitting of the conduction band is absent, within
experimental accuracy. This conclusion is supported by the
results obtained in the tilted magnetic fields. The behavior
of the SdH oscillations of electron conductivity with the
changing tilt angle corresponds to the case when the orbital
quantization is determined by the normal component of the
magnetic field, while the spin splitting is determined by
the total field. The oscillations of the hole conductivity are
totally determined by the normal component of the magnetic
field, indicating the SO interaction wins the Zeeman effect
in the actual magnetic-field range. Surprisingly, such a ratio
of the splittings is observed for structures with a normal
spectrum (d < dc) as well as for structures with an inverted one
(d > dc). These data are inconsistent with the kP calculations,
which take into account the Bychkov-Rashba effect caused
by an electric field directed across the quantum well. It

is shown that the experimental results can be reasonably
described within the framework of the tight-binding method,
which properly takes into consideration the interface inversion
asymmetry.
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