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Optical manipulation of a multilevel nuclear spin in ZnO: Master equation and experiment
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We demonstrate the dynamics and optical control of a large quantum mechanical solid state spin system
consisting of a donor electron spin strongly coupled to the 9/2 nuclear spin of 115In in the semiconductor
ZnO. Comparison of electron spin dynamics observed by time-resolved pump-probe spectroscopy with density
matrix theory reveals nuclear spin pumping via optically oriented electron spins, coherent spin-spin interaction,
and quantization effects of the ten nuclear spin levels. Modulation of the optical electron spin orientation at
frequencies above 1 MHz gives evidence for fast optical manipulation of the nuclear spin state.
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I. INTRODUCTION

The control of nuclear spins in solids is an extremely
attractive goal since nuclear coherence times can be six
orders of magnitudes longer than lifetimes of electron spins.
Applications such as a quantum spin memory or extremely
sensitive magnetometry are envisioned [1]. Ensembles of
nuclear spins and even single spins have been studied using
nuclear magnetic resonance (NMR), electron-nuclear double
resonance (ENDOR), and combinations of these methods
with optical detection schemes [2,3]. Pumping of nuclear
spin ensembles with optically oriented electron spins via
hyperfine interaction has been used in gases since the early
1960s to dramatically increase the sensitivity of NMR [4].
In semiconductors, optical pumping schemes have since then
led to the discovery and investigation of all-optical NMR,
nuclear spin diffusion, focusing of precession frequencies of
electron spins with different g factors, and many other effects
[5–8]. The theoretical treatment of many nuclear spins coupled
to an electron spin on the other side is notoriously difficult.
Semiclassical methods and semianalytical solutions have been
developed by several groups to deal with this so-called central
spin problem [9–11].

Here we investigate a system whose coupled electron-
nuclear spin dynamics is completely dominated by a single
indium I = 9/2 nuclear spin that is strongly coupled to
a single electron spin, with indium acting as a donor in
the semiconductor ZnO. Such a pairwise interaction is in
stark contrast to a localized electron spin in GaAs that is
coupled to tens of thousands of nuclear spins with coupling
constants being all on the same order [12]. Spin pairs with
the nuclear partner having a large angular momentum are
highly attractive for studying nonclassical quantum effects
of the nuclear spin such as squeezed states [13] or cat
states as realized recently in an atom-based system with
l = 25 angular momentum states [14]. In solids, the angular
momentum of the 13C nucleus in the spin-spin system at an
NV center in diamond or in the recently investigated SiC is
with I = 1/2 too small to exhibit such effects [15–17]. In
2010, a first solid state based approach in bismuth-doped
silicon (Si:Bi) with I = 9/2 was investigated by electron
spin resonance (ESR) and NMR techniques and shown to
be relevant for quantum information processing [18,19]. The

ZnO-based system discussed here has the additional advantage
of allowing for optical pumping and reading out the electron
spin [3,20]. In contrast to electromagnetic fields in ESR
and NMR, optical pumping can increase the coherence in
the system (lower its entropy)–an important prerequisite for
the increase in experimental sensitivity mentioned above and
eventually for the preparation of nonclassical states. The paper
presents a quantum mechanical framework for treating the
electron-indium system in ZnO and shows its validity by
comparison with experiment.

Figure 1 shows schematically the electron-nuclear spin
system investigated here. A donor electron with its spherical
s-like wave function (orange arrow on sphere indicates spin
orientation) is hyperfine-coupled to the nuclear 115In spin (gray
arrow inside sphere). Circularly polarized laser pump pulses
with modulated circular polarization (blue and red) create a
paired electron (blue arrow) and hole (not shown) at the donor,
a so-called D0X exciton with a high degree of electron spin
polarization along the z direction. The electron of the exciton
can transfer angular momentum to the donor electron before its
optical recombination within about 100 ps (determined from
time-resolved photoluminescence measurements, not shown).

FIG. 1. The nuclear spin (gray arrow) and electron spin (orange
arrow) at the 115In donor form a coupled quantum mechanical system
in ZnO. The spin of the donor electron is indirectly pumped via the
optically excited donor-bound exciton (D0X). Thermally activated
hopping of the electron destroys entanglement between electron spin
and nuclear spin.
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Thermally activated electron hopping between donor sites
(orange arrow) destroys spin-entanglement within the coupled
spin system.

In the following, we will first theoretically treat this system
by a master equation for the full two-spin density matrix before
comparing the simulations to experimental results obtained
from time-resolved Kerr-rotation (TRKR) spectroscopy where
the electron spin dynamics is monitored by optical probe
pulses. Going beyond earlier theoretical approaches [21,22],
we will not only include electron spin relaxation in the theory
but also optical pumping and electron hopping among donor
sites.

II. MASTER EQUATION OF SPIN DYNAMICS

The dynamics of the interacting electron spin �s and the
nuclear spin �I in a magnetic field �B is given by the Hamiltonian
[3]

H = βg(e) �B · �s + A �I · �s + P‖I 2
z − βg(n) �B · �I , (1)

where the first and last term describe the electronic and
nuclear spin precession in the external magnetic field �B.
The hyperfine coupling is described by the second term.
The third term is due to a weak electric quadrupole crystal
field splitting that in principle can be exploited for spin
squeezing [13]. The following parameters are known from
ENDOR experiments (see Ref. [3]): βg(e)/h = 0.172 THz T−1

(g(e) = 1.96), βg(n)/h = 9.329 MHz T−1, A/h = 100.2 MHz,
and P‖/h = 1.27 MHz. The electron-nuclear system is fully
described by a density matrix ρ in the 20-dimensional
combined Hilbert space Hn ⊗ He for nuclear spin and electron
spin. The master equation

ρ̇ = i

�
[ρ,H ] + �relax + �hop (2)

describes both the coherent propagation (first term) and
dissipative coupling to the environment (last two terms).
The relaxation of the electron spin towards its equilibrium
orientation ρfinal ∝ exp(−βg(e) �B�s/kBT ) is in the most simple
form of isotropic relaxation given by (see Appendix A)

�relax = −γrelax[ρ − (Treρ) ⊗ ρfinal], (3)

with the spin relaxation rate γrelax. The symbol Tre denotes
the partial trace over the density matrix with respect to
the electronic subsystem. The nuclear state Treρ may be
interpreted as a spin state that has lost all entanglement with the
electronic state. In addition to spin relaxation, we also regard
the effect of a thermally activated electron exchanging its
site with some random neighboring donor electron (hopping).
While in this case the nuclear and electronic spin states will
be largely conserved, the entanglement between both is lost.
Consequently, the initial state will relax with the hopping rate
γhop towards such a state:

�hop = −γhop[ρ − (Treρ) ⊗ (Trnρ)]. (4)

A repetitive laser excitation creates partially spin polarized
electrons ρL that exchange spin with the donor-bound electrons
giving rise to a new spin-spin density matrix ρ ′ after each
excitation pulse

ρ ′ = p(Treρ) ⊗ ρL + (1 − p)ρ. (5)

A parameter value p = 0.5 corresponds to a balanced mix-
ing between the donor-bound electron spin and the laser-
generated spin. We are aware that an analytical treatment
of the Hamiltonian is possible for P‖ = 0 or �B along the
z direction [21], but decided to restrain ourselves to a
numerical treatment which allows for the treatment of P‖ �= 0,
inclusion of damping mechanisms, and arbitrary magnetic field
orientations.

The density matrix ρ(t) is obtained by numerically in-
tegrating the equation of motion for a time span of 200
laser pulses with a fully random spin distribution ρ = 1

201 as
initial condition. Laser excitation and electron spin relaxation
drive the system into a dynamics ρ(t) which we find to be
independent from the initial state after less than 100 pulses. The
temporal traces are then obtained from averaging the z-spin
orientation Sz(t) = Tr[σzρ(t)] for the subsequent 100 temporal
intervals of length τrep, where σz is the Pauli spin matrix for the
z direction. We fix the spin relaxation rate to γrelax = 1/(20 ns)
which is close to reported values [20] and use a hopping
rate γhop = 1/(4 ns). The induced electron spin state ρL after
absorption of a laser pulse is given by the 2 × 2 matrix
ρL = 1

21 + αLsz where αL is the degree of spin polarization.
The value αL = 0.3 takes into account optical selection rules
and spin relaxation via exchange coupling with optically
created holes which rapidly decreases the spin polarization
during the exciton lifetime [23]. The mixing parameter is
assumed to be p = 0.5, estimated from the excitation density
in comparison with the donor density. In the case of laser
polarization modulated with frequency fm, the polarization of
a laser pulse at time tj is given by αL = α sin[ 1

2 cos(2πfmtj )]
with α = 0.3. The actual value of P‖ can vary slightly in
different samples due to strain [24]. The calculated electron
spin transients show, however, no visible dependence on P‖
as the dipolar hyperfine coupling completely dominates the
dynamics.

III. SIMULATIONS

Figure 2 shows the calculated electron spin dynamics for
pulsed optical excitation with fixed circular polarization and a
repetition interval of τrep = 12.5 ns between consecutive laser
pulses. The dynamics falls into two regimes with different
characteristics:

(i) In the regime of high in-plane magnetic fields B >

25 mT, the electron spin shows rapid spin precession with
an additional beating pattern of the amplitude. A pronounced
maximum in the beating pattern appears 10 ns after excitation.
This can be explained by considering the eigenstates

|ms ; mI 〉 (6)

with mI = −9/2, − 7/2, . . . ,9/2 for the nuclear spin and
ms = −1/2,1/2 for the electron spin with eigenenergies

EmI ,ms
= (βg(n)Bz + msA)mI . (7)

The eigenenergies give rise to ten different precession fre-
quencies of the electron spin with �ωmI

= EmI ,1/2 − EmI ,−1/2

that depend linearly on mI . Destructive interference of all ten
oscillations leads to 9 nodes in the amplitude of the electron
precession with a temporal distance of h/(10A) ≈ 1 ns.
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FIG. 2. Calculated spin dynamics of an electron coupled to a 9/2
indium nuclear spin in ZnO after pulsed optical excitation for different
magnetic fields. Curves are offset for clarity. An identical offset of
0.5 was used for all transients below with B < 60 mT (blue curves).

Constructive interference leads after a time h/A ≈ 10 ns to
a pronounced rephasing effect [20,22].

(ii) In the opposite regime of vanishing external magnetic
fields, the electron spin dynamics corresponds to two spins
precessing around each other, resulting in a single oscillation
frequency. In this case, the spin dynamics is governed by
the term �I · �s in the Hamiltonian which possesses only two
different eigenvalues: − 1

2 (I + 1) and 1
2I (see Ref. [25] and

Appendix B). Beating between these states consequently gives
rise to a single nonzero beating energy of (I + 1

2 )A matching
exactly the precession period of 2 ns seen in the simulations.

The electron spin transient shows a large offset at magnetic
fields close to zero. The offset originates from the polarization
of the indium nuclear spin along the z direction. The hyperfine
field of the nuclear spin stabilizes the electron spin in the
z direction resulting in the observed offset. Oscillations in
the hyperfine field are, however, always observed as even the
maximally aligned Iz = 9/2 nuclear spin state shows quantum
mechanical uncertainty in the x and y direction which induces
electron spin precession. The nuclear polarization is a known
consequence of repetitive pumping of the electron spin with
fixed polarization (fm = 0) which leads to the transfer of
angular momentum from the electron spin to the nuclear spin

FIG. 3. Calculated time-dependent electron spin orientation for
increasing pump polarization modulation frequencies fm. The tran-
sition from nuclear spin orientation to spin randomization causes a
decreasing offset of the oscillating transient.

(so-called dynamical nuclear polarization) [6]. The nuclear
polarization can be suppressed via fast modulation of the
optically pumped electron spin orientation which leads to a
reduction of the offset: Figure 3 shows transients for optical
excitation modulated between σ+ and σ− circular polarization
at zero magnetic field. In the case of large modulation
frequencies fm beyond about 1 MHz, the slow dynamics of
the nuclear spin, together with an electron spin polarization
being zero on average, leads to a complete randomization of
the nuclear spin. Nuclear spins oriented perpendicular to z

will then cause an electron spin precession with oscillations
between sz = 1/2 and nearly sz = −1/2. This leads to an
overall average dynamics with a much smaller polarization
offset compared to the unmodulated case. The offset level is
reduced to about 50% at fm = 0.25 MHz showing that the
nuclear spin is no longer able to fully follow a modulated
electron spin orientation within a time span of about 2 μs
corresponding to 160 laser pulses. This appears to be a sensible
number as at least five subsequently created electrons would be
required to flip their spin fully and transfer angular momentum
to the nuclear spin to obtain a reversal of the nuclear spin from
9/2 to −9/2. However, the electron spin flips will never be
complete as the spin is stabilized by the z-oriented nuclear
spin. We are aware that in the limit of short coherence times
between electron spin and nuclear spin and near thermal
equilibrium the reorientation time would be basically given
by the nuclear T1 time (see Chap. IX.C in Ref. [26]). In our
case of long coherence times a similarly simple relation is not
known to us. We therefore rely here on the full numerics to
obtain the offset in dependence on frequency. While a better
qualitative understanding is certainly desirable in the future,
we will show below that our calculations quantitatively agree
very well with experiment. We note that the recently observed
reduction of spin polarization in flourine-doped ZnSe with
increasing modulation frequency was caused by a different
effect independent from hyperfine fields. A very long electron
spin lifetime in ZnSe which is longer than the modulation
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FIG. 4. Calculated signal of RSA 3.5 ns and 3.8 ns after the laser
pump pulse for increasing polarization modulation frequencies fm.
The disappearance of the central peak follows the reduction of the
nuclear polarization in the z direction.

interval γ −1
s 
 f −1

m leads effectively to a temporal average of
the laser pulse polarization causing a reduction of the electron
spin polarization [27]. The large offset in our case relies on
a strong hyperfine field. A reduction of spin polarization is
found already for slow modulation with fm < γrelax which is
opposite to the ZnSe case.

In the following we discuss calculations of the magnetic-
field-dependent TRKR signal at fixed temporal delays �t

(Fig. 4). These so-called resonant spin amplification (RSA)
curves were experimentally pioneered by Kikkawa et al. [28]
and have been used by many groups for studying systems with
long spin lifetimes or an anisotropic spin relaxation tensor [29].
We find a strong central peak for low modulation frequencies
fm of the pump pulse polarization that disappears for high
modulation frequencies, which is a clear signature of nuclear
spin pumping and randomization as discussed before (Fig. 3).
The oscillatory behavior for increasing fields is a signature of
the increasing spin precession angle. Strong central peaks were
also observed in the case of anisotropic spin relaxation in, e.g.,
(110) GaAs quantum wells where the z-spin relaxation is very
weak [29]. The intrinsic electron spin relaxation in our model
is, however, fully isotropic and the central peak is solely a con-
sequence of nuclear spin pumping and hyperfine interaction.

Concluding the theoretical part, we emphasize that the fea-
tures of rephasing and nuclear spin pumping can be obtained
from theory also when the hopping term �hop is neglected.
We decided to keep the term as for higher temperatures (not
discussed in this paper) a large γhop will be able to describe a
complete vanishing of the rephasing effect together with even
increased spin lifetimes due to motional narrowing while this
is not possible with a single parameter γrelax. In the present
case of low temperatures the choice for γhop and γrelax has to
regard that both reduce the rephasing amplitude but only γrelax

reduces the nuclear spin pumping effect–which explains our
choice of the parameters.

IV. SAMPLE AND EXPERIMENT

Finally, we compare the predictions from above with data
from TRKR on ZnO. The investigated ZnO sample was grown
by plasma-assisted molecular beam epitaxy according to the
growth procedure described in Ref. [30]. A 250-nm-thick

ZnO layer was grown at a substrate temperature of 500 ◦C
on a MgO/ZnO double buffer layer on a (0001) sapphire
substrate. Unintentional doping with In and Al impurities leads
to an n-type carrier density of about nD = 1×1018 cm−3. The
ZnO layer was capped with 50 nm ZnMg0.19O0.81 to suppress
surface effects [31]. The sample was mounted in a cold-finger
cryostat allowing for temperatures down to T = 10 K. An
external magnetic field B up to 1 T was applied in the sample
plane. For measurements in zero magnetic field, the cryostat
was shielded by an additional mu-metal shield to suppress
residual static magnetic fields.

TRKR was measured with the setup described in Ref. [32].
Laser pulses were additionally shaped by a grating pulse shaper
to a spectral width of approximately 5.5 meV centered at
3.356 eV to resonantly excite the In-donor-bound exciton.
The pump beam polarization was modulated between right
and left circularly polarized by an electro-optic modulator
at a modulation frequency fm between 50 kHz and 8 MHz.
The average pump and probe power was 10 mW and 1 mW,
respectively, corresponding to a density of photoexcited
carriers of approximately 1017 cm−3.

Figure 5 shows TRKR measurements for increasing mag-
netic fields between 0 and 1 T. All data were taken at a sample
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FIG. 5. Measured transients of the electron spin signal in z direc-
tion for different magnetic fields at T = 10 K (compare theoretical
curves in Fig. 2). The signal originates from a superposition of
electron spin dynamics at the indium donor and an exponentially
decaying signal from electrons at the aluminum donors. The blue
curves share the same offset. The inset shows vertically shifted
magnified transients for the three lowest fields showing a 2 ns periodic
behavior as predicted.
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FIG. 6. Measured resonant spin amplification for increasing
pump polarization modulation frequencies fm at T = 10 K (compare
Fig. 4). The height of the central peak reveals frequency-dependent
nuclear spin pumping.

temperature of 10 K. The rephasing effect at t = 10 ns is
clearly visible for fields above 100 mT (compare Fig. 2).
The amplitude of the oscillations in the interval between 8
to 12 ns after laser excitation shows also good agreement with
the calculated behavior. At early times a much less pronounced
beating pattern is observed caused by a superimposed signal
from electrons residing at additional aluminum donors present
in the sample [20]. These electrons are subject to a much
weaker nuclear field and exhibit therefore the precessional
behavior of a free electron in an external magnetic field [33].
At later times the signal from the electrons at the aluminum
donor has almost disappeared. The precession of the electron
spin with a period of 2 ns in the hyperfine field is clearly visible
for magnetic fields below 1 mT (see inset). The decrease of the
positive offset is, however, much stronger in the experimental
data as the spins of the electrons at Al donors start precessing
in the external field which leads to a strong reduction of the
offset.

The strong influence of nuclear spin pumping on the dynam-
ics of the electron spin is demonstrated by the experimental
RSA scans at �t = 3.5 ns shown in Fig. 6 for varying
modulation frequencies. The strong central peak which is
due to the nuclear spin stabilizing the electron spin in the
excitation direction decreases with increasing frequency as
predicted by our calculations shown in Fig. 4. The oscillations
around the central peak are mainly due to signal from the
Al-donor electron and do not exactly match the corresponding
calculation for a time delay �t = 3.5 ns. A better agreement
is found for �t = 3.8 ns when the calculated dynamics
coincidentally matches that of the common signal from the
Al and In donor. Lee et al. also discovered a strong central
peak in their RSA experiments on ZnO but ascribed it to
a strongly anisotropic electron spin relaxation mechanism
with long spin lifetimes for z-oriented spins [34]. Our own
experiments, however, exhibit a decrease of the central peak

with increasing fm in agreement with nuclear spin pumping
and in contradiction to Lee’s relaxation mechanism that should
not depend on fm. We note that a recent theory of spin
relaxation in ZnO also disregards nuclear effects [35].

In conclusion, we demonstrated the control and readout of a
large solid state quantum system via optical laser spectroscopy.
The TRKR and RSA experiments are extremely well described
by density matrix theory including optical electron spin orien-
tation, spin relaxation, and hopping mechanisms. This opens
a way for investigating approaches for creating nonclassical
nuclear quantum states in the ZnO or similar system. The
theoretical treatment of finite-temperature effects (hopping)
and imperfect optical spin selection rules will allow for a
realistic assessment of such systems. In the future, an interplay
of multipulse optical pumping and the inherent non-nonlinear
I 2
z part of the Hamiltonian are envisioned to eventually create

nonclassical angular momentum quantum states of the 9/2
indium nuclear spin.
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APPENDIX A: MASTER EQUATION APPROACH
TO ELECTRON SPIN RELAXATION

In the following we show that Eq. (3)

�relax = −γrelax[ρ − (Treρ) ⊗ ρfinal] (A1)

correctly describes isotropic spin relaxation towards the equi-
librium spin state ρfinal. The derivation follows the standard
quantum mechanical theory of damping [36]. The usual
equation of motion of a quantum mechanical system

ρ̇ = i

�
[ρ,H ] (A2)

describes its coherent evolution but does not include damping.
Therefore, damping needs to be included by coupling the sys-
tem ρ to an external reservoir (bath) ρb. In the context of spin
relaxation of conduction band electrons, spin orbit coupling of
the electron spin to a bath of orbital degrees of freedom leads to
the celebrated Dyakonov-Perel (DP) spin relaxation [37]. The
relaxation term of Dyakonov and Perel, however, always leads
to a fully randomized spin orientation which is not correct for
spins in finite magnetic fields. Therefore, we chose instead of
the orbital degree of freedom another spin 1/2 particle that
is supposed to be in the relaxed state ρb and interacts for a
short time with the donor spin system. Relaxation towards
the correct final state will be recovered as shown below. The
temporary interaction is modeled by a gate function g(t). The
Hamiltonian of the full system

H̃ (t) = H + λg(t)
∑

i,j=x,y,z

Ci,j sis
b
j︸ ︷︷ ︸

Vspin

(A3)

now propagates the combined initial density matrix ρ̃0 = ρ ⊗
ρb of system and bath. The tensor Ci,j describes the spin-spin
interaction in a general form that in principle allows for the
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description of anisotropic spin relaxation. After the interaction,
the system’s density matrix ρ is recovered from ρ̃ by taking the
trace ρ = Trbρ̃ over the reservoir [see Eq. (A7)]. The dynamics
is calculated by using the method of successive approxi-
mation. With the ansatz ρ̃(t) = ρ̃0 + λρ̃1(t) + λ2ρ̃2(t) and
the Schrödinger equation ˙̃ρ(t) = i

�
[ρ̃(t),H̃ (t)] we obtain by

comparison of orders in λ and formal integration the solution

ρ̃1(t) = i

�
G(t)[ρ̃0,Vspin], (A4)

ρ̃2(t) = −G(t)2

2�2
[[ρ̃0,Vspin],Vspin], (A5)

where G(t) = ∫ t

−∞ g(t ′) dt ′ is the integral of the gate function,
with G(−∞) = 0 and G getting constant after interaction.

Here we neglected H as we assume a much faster dynamics
induced by Vspin compared with the slow dynamics driven by
H . The double commutator in Eq. (A5) is found in all damping
theories based on the master equation [36–38]. This first term
depends on the overall sign of Ci,j while the second-order term
is independent. Assuming a second bath with an interaction
tensor −Ci,j would give the same second-order relaxation
term but at the same time cancel the first-order term. We will
therefore neglect the first-order term (A4).

The density matrix ρ̃0 is an element of a Hilbert space that
is a direct product of the Hilbert spaces of the nuclear spin,
the donor electron spin, and the bath spin. A matrix element
(ρ̃0)μ,i,j ;μ′,i ′,j ′ therefore exhibits indices of all three subspaces.
In the following we use matrix notation for the donor electron
spin and bath spin subspace and index notation (μ,μ′ indices)
for the nuclear spin subspace. We now can calculate the double
commutator for

(ρ̃0)μ,μ′ = aμ,μ′

(
ρ11(μ,μ′) ρ12(μ,μ′)

ρ21(μ,μ′) ρ22(μ,μ′)

)
⊗

(
ρb

11 ρb
12

ρb
21 ρb

22

)
(A6)

and find for isotropic spin-spin interaction with Ci,j = ±ε for i = j and Ci,j = 0 otherwise the second-order term with the help
of an algebra system

Trb[ρ2(t)]μ,μ′ = aμ,μ′ε2G(t)

4�2

(
ρ22ρ

b
11 − ρ11ρ

b
22 −ρ12

(
ρb

11 + ρb
22

) + ρb
12(ρ11 + ρ22)

−ρ21
(
ρb

11 + ρb
22

) + ρb
21(ρ11 + ρ22) −ρ22ρ

b
11 + ρ11ρ

b
22

)
, (A7)

where we suppressed the notation of the (μ,μ′) dependence of ρi,i ′ on the right-hand side.
The right-hand side simplifies with ρ11 + ρ22 = 1 and ρb

11 + ρb
22 = 1 to

Trb[ρ̃2(t)]μ,μ′ = aμ,μ′ε2G(t)2

4�2

(−(
ρ11 − ρb

11

) −(
ρ12 − ρb

12

)
−(

ρ21 − ρb
21

) −(
ρ22 − ρb

22

)
)

(A8)

= −aμ,μ′ε2G(t)2

4�2

(
ρe

μ,μ′ − ρfinal
)
, (A9)

where ρfinal is a state of the donor electron that is identical to
the spin state of the bath. Using pure matrix notation the last
line becomes

Trb[ρ̃2(t)] = −ε2G(t)2

4�2
[ρ − (Treρ) ⊗ ρfinal], (A10)

where we used the property (Treρ)μ,μ′ = aμ,μ′ with Tre being
the partial trace over the electron spin degrees of freedom.
Assuming a steady supply of external thermal spins with rate
γbath we are able to incorporate the effect of the external spins
ρb into the master equation for the system. The scattering
contribution is eventually given by a term of the form

�relax = γbathTrb[ρ̃2(∞)]

= −γrelax[ρ − (Treρ) ⊗ ρfinal], (A11)

as used in our paper.

APPENDIX B: THE EIGENVALUES OF �I · �s
The most direct way of showing that 1

2I and − 1
2 (I + 1) are

the only eigenvalues of �I · �s is to show that the polynomial

p(x) = (x − 1
2I )[x + 1

2 (I + 1)] is zero for x = �I · �s (Cayley-
Hamilton theorem). We make use of the relations s2

j = 1/4 for

j = x,y,z and the relations sxsy = i 1
2 sz and IxIy − IyIx = iIz

that hold for all cyclic permutations of x,y,z:

p( �I �s) = ( �I · �s)( �I · �s) + 1
2
�I · �s − 1

4I (I + 1) (B1)

= (
I 2
x s2

x + I 2
y s2

y + I 2
z s2

z

)
+IxIysxsy + IyIxsysx + cycl. perm.

+ 1
2
�I · �s − 1

4I (I + 1) (B2)

= 1
4I (I + 1)

+IxIy
1
2 isz − IyIx

1
2 isz + cycl. perm.

+ 1
2
�I · �s − 1

4I (I + 1) (B3)

= − 1
2Izsz + cycl. perm.

+ 1
2
�I · �s (B4)

= 0. (B5)
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