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Native point defects and doping in ZnGeN2
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A computational study within the framework of density functional theory in the local density approximation
(LDA) is presented for native defects and doping in ZnGeN2. Gap corrections are taken into account using an
LDA+U approach and finite size corrections for charged defects are evaluated in terms of an effective charge
model, introduced in this paper. The donor or acceptor characteristics of each of the cation and N vacancies and the
two cation antisite defects are determined as well as their energies of formation under different chemical potential
conditions. These are then used to determine defect concentrations and Fermi level pinning self-consistently.
The cation antisite defects are found to have significantly lower formation energy than the cation vacancies. At a
typical growth temperature of 1200 K, the charge neutrality condition pins the Fermi level close to the crossing
of the formation energies of the Zn−1

Ge acceptor with the Ge2+
Zn shallow donor. Since this point lies closer to the

valence-band maximum (VBM), intrinsic p-type doping would result at the growth temperature and will persist
at room temperature if the defect concentrations are frozen in. It is the highest and of order 1016 cm−3 for the
most Ge-poor condition. On the other hand, for the most Ge-poor condition, it drops to 1013 cm−3 at 1200 K and
to almost zero at 300 K because then the Fermi level is too close to the middle of the gap. Oxygen impurities are
found to strongly prefer the ON substitutional site and are found to be shallow donors with a very low energy of
formation. It can only be suppressed by strongly reducing the oxygen partial pressure relative to that of nitrogen.
At high temperatures, however, introduction of oxygen will be accompanied by compensating Zn−2

Ge acceptors
and would lead to negligible net doping. The prospects for Ga base p-type doping are evaluated. While good
solubility is expected, site competition between Zn and Ge sites is found to lead to a compensation problem
similar to that of the two antisites and leads to p-type doping of the same level of 1016 cm−3.

DOI: 10.1103/PhysRevB.93.155202

I. INTRODUCTION

ZnGeN2 is a heterovalent semiconductor, related to wurtzite
GaN, from which it can conceptually be derived by replacing
Ga (which is a group-III element) by equal amounts of Zn
(group II) and Ge (group IV). If this is done in such a fashion
that each N is surrounded by exactly two Zn and two Ge, then
the octet rule of bonding is locally satisfied and leads to a band
structure and other properties with great similarity to GaN. It
is thus a potential replacement for GaN or at least an addition
to the family of group-III nitrides in various technological
applications, notably light-emitting diodes, lasers, ultraviolet
light sensors, and other optoelectronic devices, as well as
high-electron-mobility transistors, that all rely on the wide and
direct band gap of this material. In a broader context, moving
from binary and pseudobinary isovalent semiconductors to the
class of heterovalent ternary semiconductors could offer new
avenues for band-structure and defect engineering. ZnGeN2 is
part of a broader family of II-IV-N2 semiconductors and the
best studied member of the family. Nonetheless, very little is
currently known about its defect physics.

Band structures of the Zn-IV-N2 compounds with IV =
Si, Ge, Sn were studied previously in our group, using
the quasiparticle self-consistent QSGW method [1]. Lattice
dynamical properties of this family of materials were studied
in Refs. [2–4]. For an overview of the properties of these
materials, their growth methods, including work by other
research groups, we refer the reader to a review in Ref. [5].

*Present address: Department of Physics and Materials Science,
Chiang Mai University, 239 Huay Kaew Road, Muang, Chiang Mai
50200, Thailand.

The general motivation for the study of this materials family is
that heterovalent ternaries may enrich the physics of the usual
binary semiconductors. By their lower symmetry, they offer
new opportunities for optical applications. Combining them
with the family of III-nitrides, new flexibilities are added in
device design.

The observed ordering of the Zn and Ge atoms corresponds
to a Pna21 space group with orthorhombic symmetry and a 16
atom unit cell. The role of the octet rule and possible origins of
disorder in ZnGeN2 were recently studied by Quayle et al. [6].
One of the central questions in this family of materials is
indeed to what extent the group-II and group-IV atoms are
ordered or disordered. Both ordered and disordered phases
have been observed experimentally depending on growth
conditions. In Quayle et al. [6] it is proposed that the observed
disordered phase properties, such as the Raman spectra, x-ray
diffraction (XRD) spectra and photoluminescence or band gap
insensitivity to disorder could be explained in terms of a model
which strictly observes the octet rule locally. In other words,
instead of a fully random distribution of Zn and Ge over the
cation sublattice, a more restricted distribution was postulated
which preserves locally that each N is surrounded by exactly
two Zn and two Ge atoms. In other works [7], more precisely
on ZnSnN2, it was proposed that disorder could strongly affect
the band gap. In the above work by Quayle et al. [6] it was
argued that this might primarily be due to exchange defects
which break the octet rule. As a preliminary to the studying
such exchange defects, which amount to complexes of ZnGe

(Zn on a Ge site) with GeZn antisites, a thorough understanding
of simple point defects seems in order.

The defect physics in a heterovalent semiconductor such as
ZnGeN2 is far more complex than in a binary compound. For
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example, there is now the possibility of cation antisite disorder,
ZnGe and GeZn as well as two types of cation vacancies, VZn

and VGe. Important questions are, which of these defects are
more likely to occur and how do they influence the position
of the Fermi level? One might expect that deviations from
perfect stoichiometry could dope the material since ZnGe

is expected to be an acceptor and GeZn to be a donor. In
previous preliminary considerations about the defect physics,
for example, in Ref. [5], we noted that if one would like to dope
the material p type by introducing Ga on Ge sites rather than
Ga on Zn sites, one would work in Ge-poor conditions. At the
same time this would promote ZnGe antisites, which are also
expected to be acceptors. This contrasts with the usual notion
that in wide-band-gap semiconductors, introducing acceptor
dopants would promote compensating native donors. Other
sources of undesirable n-type background doping in GaN, for
example from Si impurities resulting from the quartz tubes
used in metalorganic chemical vapor deposition (MOCVD),
would not be expected to be dopants in ZnGeN2 because
Si is isovalent with Ge. Thus it seems that the heterovalent
nitrides may have advantages over binary nitrides for p-type
doping. This is important because high levels of p-type doping
are still a limiting factor in nitride devices. The technological
achievement of high efficiency blue LEDs was based in large
part on the breakthrough of achieving p-type doping. So,
p-type doping is a central goal in nitride technology.

Although there thus may possibly be advantages for II-IV-
N2 materials in terms of doping, confirmation of this proposal
requires a thorough investigation of its point defect physics.
As we will show in this paper, the above mentioned ideas of
about Ga doping and doping by stoichiometry variation depend
crucially on their energies of formation and the resulting
Fermi-level pinning in the gap. Secondly, when considering
doping by group-III elements such as Ga, we need to evaluate
the effects of the site competition since Ga on the Zn site would
be a donor and Ga on the Ge site would be an acceptor. Finally,
the effects of commonly observed impurities such as oxygen
need to be evaluated.

In this paper we present a comprehensive study of native
defects, including VGe, VZn, VN, ZnGe, and GeZn. We also
considered ON, a commonly found impurity and possibly
n-type dopant, as well as GaZn and GaGe prospective dopants.
First, however, we present our computational method in some
detail, in particular the aspects which related to supercell size
effects.

II. COMPUTATIONAL METHODS

A. General aspects

Our calculations are based on density functional the-
ory [8,9] in the local density approximation (LDA) [10]. We
use the full-potential linearized muffin-tin orbital method as
implemented in the lm suite [11] and described in Methfessel
et al. [12] and Kotani et al. [13]. To test the effects of the gap
underestimate by LDA, we also used the LDA+U approach,
which allows us to open the gap as explained below. Specific
aspects of this method relating to defect calculations are as
follows.

We used a 2 × 2 × 2 supercell of the 16 atom primitive
cell of ZnGeN2, which thus contains 128 atoms. The atomic

positions were fully relaxed. To accelerate this process, we
found it useful to use a finite temperature smearing around the
Fermi level, which allows us to keep the k-point mesh minimal.
Tests were done for either a single k point or a symmetrized 2 ×
2 × 2 mesh and the final results for the energies of formation
were calculated with the larger mesh.

B. Charged defects

Charged defect states were compensated by a uniform
background charge density. This uniform background is
required to obtain meaningful electrostatic energies. One may
also interpret it as representing the screening charge density.
In the FP-LMTO code, it is fully taken into account, not just
to fix the reference level in the Madelung potential. For
example, inside the spheres, a uniform charge density does
not produce a constant potential. While we have used this
form of implementing the background charge density since
we started work on point defects [14], it differs from usual
practice. The importance of this was recently pointed out by
Bruneval et al. [15].

Subsequently, we calculate the band structures and the local
densities of states on the atoms neighboring the defect site
so as to inspect their basic electronic properties. The defect
wave functions ψD(r) or rather |ψD(r)|2 were calculated by
integrating over a small energy window bracketing the defect
band and visualized as a constant value surface for several
states of interest. This is used to determine whether or not
certain states were localized or more delocalized.

C. Energies of formation

We calculate the energies of formation using the equation

Efor(D,q) = Etot(D,q) − Etot(X) +
∑

i

μi�ni

+ q(εv + εF + Valign) + Ecorr. (1)

Here, Efor(D,q) is the energy of formation of defect D in
charge state q, Etot(D,q) is the corresponding total energy of
the supercell, from which we actually already subtracted the
free atom energies, Etot(X) is the supercell total energy of
the perfect crystal calculated in the same size supercell. The
chemical potentials μi depend on the reservoirs to which atoms
for a defect are removed or from which additional atoms are
taken and depend on the growth conditions. The �ni represent
the changes in occupation of the various atomic species in the
defect system relative to the perfect crystal. For example, for
a ZnGe, �nGe = +1 and �nZn = −1.

D. Chemical potentials of the atoms

The allowed ranges of the chemical potentials are deter-
mined by equilibrium with the host material, and various other
binary compounds, i.e., Zn3N2 and Ge3N4, bulk Ge, bulk Zn,
and N2 molecules (see Fig. 1):

μGe + μZn + 2μN = μZnGeN2 ,

3μZn + 2μN � μZn3N2 ,

3μGe + 4μN � μGe3N4 ,

μGe � 0,μZn � 0,μN � 0. (2)
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FIG. 1. Chemical potential diagram for ZnGeN2.

Here the chemical potential are defined relative to their refer-
ence values for each element in its state naturally occurring
at room temperature and standard pressure. In other words,
μi = μabs

i − μ0
i . The reference values μ0

Ge correspond to bulk
Ge in the diamond structure, μ0

Zn to bulk metallic Zn and
μ0

N to the N2 molecule. The total energies in Eq. (1) are
then similarly defined by already subtracting the reference
state chemical potentials. The values used here are slightly
changed from previous work [5] to reflect our updated
calculations of the energy of formation of ZnGeN2 [6]. The
first equation in Eq. (2) is an equality because we assume
definitely equilibrium with the host material. Thus one of
the three chemical potentials is fixed in terms of the other
two by the equilibrium condition with ZnGeN2. We choose
μGe and μZn as independent variables. The diagonal line
(BC) μGe + μZn = Efor(ZnGeN2) corresponds to the N-rich
condition μabs

N = μ0
N or μN = 0. The region where ZnGeN2

is stable is delimited by the labels A-D and the origin. When
adding impurities, such as Ga and O, we also need to fix their
chemical potentials. As usual, this is done by assuming they
have the chemical potential of their standard reference states,
bulk metallic Ga or an O2 molecule. However, if the system
is N-rich, we may also assume that Ga is in equilibrium with
GaN. For O, we will study the behavior as function of the
partial pressure of O2 relative to that of N2.

E. Alignment potential

The last two terms in Eq. (1) represents the chemical
potential of the electrons and the periodic image potential
correction. The Fermi level with respect to the valence-band
maximum (VBM) is εF and the VBM one-electron energy
is εv . The latter needs to be calculated with respect to
the cell-averaged electrostatic potential. Because the average
electrostatic potential in a periodic system is not a well-defined
quantity, an alignment shift is required between the potential
at an atom far away from the defect in the supercell containing
defect and the corresponding potential in the perfect crystal.
For a neutral system, this is easily determined because it
quickly converges but for a charged system, it varies slowly
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FIG. 2. Electrostatic potential energy of an electron for the VN

defect for the q = 0 (a) and q = +1 (b) charge states with respect to
the potential in the perfect crystal as a function of distance from the
defect. The differently colored symbols correspond to potentials on
different sites. For the q = 1 state, the red dashed curve represents
the point charge potential q/εd and the horizontal red dashed line is
its asymptote, which gives the alignment potential.

as q/εd with d the distance from the defect. We followed the
recommendations of a recent paper by Kumagai et al. [16] in
this respect of analyzing and visualizing this dependence in
the full 3D space. This procedure is essentially equivalent
to that proposed by Freysoldt et al. [17–19], although it
differs in some practical aspects. For example, Freysoldt
et al. typically use a continuous 2D averaged form of the
defect model charge potential to determine the alignment
whereas we use a discretized radial distribution. We do not
here include the anisotropic treatment of the point charge
background interaction introduced by Kumagai et al. [16]
because the material under study is not expected to exhibit
low-dimensional or strongly anisotropic aspects.

Our procedure is illustrated in Fig. 2 for the case of the
nitrogen vacancy in the neutral and +1 charge states. First,
we determine electrostatic potential values at the muffin-tin
radii of all atoms in the supercell relative to those of the
corresponding atom in the host unit cell. These are shown
as differently colored circles for the different types of atoms.
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FIG. 3. Electrostatic potential energy of an electron for the GeZn

defect for the q = +2 charge state. The blue dashed line corresponds
to q = +2, and the red dashed line corresponds to qeff = +1.

Note that we plot the electrostatic energy of an electron, so
it is lower near a positively charged defect. We plot them
as function of distance to the defect site to which they are
nearest in the periodic structure. In case of a neutral defect, we
can then easily determine the average over the region where
this alignment potential difference becomes flat, i.e., beyond
a minimum distance from the defect center, about 4.5 Å in
practice. For a charged defect with a well-localized defect net
defect charge, however, there is still a systematic variation
to this potential, which is well described by Valign + q/εd.
Here, ε is the static dielectric constant, for which we use
a value of ∼10 and we use atomic units. After we subtract
q/εd, a region where the average of these potentials looks
flat can again be obtained beyond some distance. So, Valign

is determined by averaging over this region after subtracting
q/εd. This Valign = �V0/b + �Vq/0 = �Vq/b in Freysoldt
et al. ’s notation [17] includes both �V0/b, which is the
difference in average potential between the neutral defect and
bulk host system which simply arises from the arbitrariness
of the average potential, and �Vq/0, which the change between
the charged and neutral average potentials which results from
the periodic arrangement of the net point charges in the
neutralizing background. In some cases, notably for shallow
donor states, we find that potential is better described by an
effective rather than the nominal charge of the defect. A related
concept was earlier introduced by Oba et al. [20] by using a net
charge even for neutral shallow defects. It is illustrated here
for the case of Ge2+

Zn . While the nominal charge of the defect is
+2, it is clearly seen in Fig. 3 that the potential near the defect
is better described using qeff = +1. A way to think about
this is that part of the defect electronic charge is delocalized
and simply reduces the corresponding background, while part
stays localized near the defect because of the nuclear charge.
This model is thus similar to the model charge distribution
consisting of a localized Gaussian of reduced charge plus a
fully delocalized remainder of the charge as used by Komsa
et al. [21] for delocalized cases, such as V +2

C . For the region
far away from the defect, the potential produced by a localized
Gaussian or a point charge should be the same since the

potential outside a spherical charge distribution only depends
on its net charge. The important point is that the net charge is
reduced because of the delocalization.

F. Image potential corrections

Consistent with this point charge model potential, we then
need to add a point charge correction to the total energy for
the charged defect system. This term represents the Madelung
energy of the point charges embedded in the back ground
charge density. However, when the net charge of the defect
is qeff this becomes EMad = −αq2

eff/(2εL), which converges
slowly as 1/L, with L the size of the system. This correction
term was first considered by Leslie and Gillan [22]. In practice,
we calculate the Madelung constant assuming a spherical
model of the supercell, which gives α/(2L) = 9/(10RWS) with
4πR3

WS/3 = Vcell. We here use the static dielectric constant,
consistent with the fact that all atomic positions are relaxed
and thus atomic displacements contribute to the screening.
In other words, a correction energy Ecorr = −EMad is added
thereby extrapolating to the L → ∞ limit. Note that both this
term and the alignment term are calculated with qeff , but the
terms q(εv + εF ) maintain the nominal charge.

This model works well as long as the defect charge density
is sufficiently well localized within the supercell. For a shallow
defect this is not the case. In fact, while in reality there will then
be an effective-mass-like or hydrogenic defect level slightly
(of order a few tens of meV) below the conduction band (for
a donor) or slightly above the VBM (for an acceptor), in the
calculations, we find no states in the gap at all, and instead
a filling of the bottom of the conduction band (or depletion
of the top of the valence band). This situation occurs here,
for example, for GeZn. In this case, the charge density for
the charged or neutral state of the donor is similar because
in the charged state, we add a background charge density,
while in the neutral charge state, the electrons are spread out
nearly uniformly in the conduction band. This is why for the
GeZn case we find that the potential around the defect looks
rather similar in the 0, +1, and +2 states. Segev and Wei [23]
noted that if the defect charge density is modeled as a Gaussian
distribution rather than a point charge, the correction decreases
to zero when the width of a Gaussian defect model distribution
is increased. However, although the electronic contribution to
the defect charge density is spread out, the net charge density
including electron plus nuclear charge is still quite localized
(because of the nuclear charge discrepancy between defect
and host) and a point charge correction is still needed for the
2+ charge state. In this case, we calculate it with qeff . On
the other hand, for the neutral charge state, or +1 we can
then determine the energy of formation from the consideration
that the transition state 2 + /+ should occur essentially at
the shallow level just below the conduction-band minimum
(CBM). This approach is similar to the one proposed by
Kumagai et al. [24]. In agreement with their conclusion, we
find that this is equivalent to adding a point charge correction
even for the neutral charge state.

As was discussed, for example, by Komsa et al. [21] and
Freysoldt et al. [18,19], there is then no need any more for
the quadrupole correction term introduced by Makov and
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Payne [25] because the latter is equivalent to the alignment
term and both vary as 1/L3 with the size of the supercell.

G. LDA+U gap corrections

The local density approximation (LDA) is known to
severely underestimate band gaps and this may affect defect
levels. For a shallow donor or acceptor, it is pretty clear that the
defect states will just follow the conduction or valence band,
respectively, when gap corrections are applied. However, for a
deep level, it is less clear. Therefore we need an explicit way
to correct the gap. Ideally, we would use GW calculations if
we study the one-electron levels. However, the GW method
is still very time consuming for large systems. An alternative
is provided by the LSDA+U method [26–29]. In its simplest
form [29], in the LSDA+U method, an atomic orbital (or more
generally a localized basis set orbital or partial wave inside a
muffin-tin sphere) i is shifted by

Vi = Ui

(
1

2
− ni

)
, (3)

where ni is the occupation number of that orbital. In other
words, if the orbital is completely occupied (ni = 1) its orbital
energy is shifted by −Ui/2 and if the orbital is empty (ni = 0),
its orbital energy is shifted up by Ui/2. While this method
was originally introduced to deal with partially filled shells of
localized orbitals, such as d or f states in transition metals or
rare earths, we here apply it to the orbitals that primarily deter-
mine the gap-edge states. This approach was used successfully
previously for defects in ZnO [30,31]. The valence-band
maximum is N-p like. However, we found in previous QSGW

calculations [1] of ZnGeN2 that the VBM essentially does
not shift. The gap correction is completely carried by the
CBM. Therefore we instead look at the orbital composition
of the CBM. It is formed primarily from Ge-s, Ge-p,
Zn-s, and Zn-p states. The CBM at � is more predominantly
formed by the s-states but the states in the rest of the BZ have
also strong p contributions. We found that we obtain an almost
rigid shift gap correction throughout the Brillouin zone by
applying both s and p U shifts on both Zn and Ge. Specifically
with UGe−s = 3.5 Ryd, UZn−s = 3.5 Ryd, UGe−p = 2.4 Ryd,
UZn−p = 2.4 Ryd, we obtain a direct gap of 3.4 eV and a more
or less rigid shift of the conduction band at other k points. In
other words, this LSDA+U model provides good agreement
with the QSGW results of Ref. [1], which was there shown to
agree well with experiment. This may not be a unique solution
but it provides a good model to examine what the effect of the
conduction-band shift is on defect levels.

We caution that it is not a priori clear that an LSDA+U

model would capture the gap correction and even if it does
so, it is not clear it does so for the right reasons. We know
that the actual GW self-energy 	 is a nonlocal operator and
in fact probably fairly long range. So, it is not evident at all
that its effect can be mimicked correctly by a local shift of
certain atomic orbitals. The values we need for Ui may also
seem extremely large or unphysical. This is in part because the
occupation numbers are not really zero or one. In the bonding,
charge is transferred from Zn and Ge to N, so one expects the
occupation numbers of the Zn and Ge dangling bonds to be
less than 1/2 but they are not zero because the bonding states

TABLE I. Displacement (in Å) of nearest atoms with respect to
the defect site.

Structure Zn Ge N

V 0
Ge 0.16; 0.26;

0.22; 0.27
V −2

Ge 0.19; 0.25;
0.22; 0.24

V 0
Zn 0.19; 0.20;

0.18; 0.14
V −2

Zn 0.13; 0.18;
0.14; 0.13

V 0
N 0.16; 0.07 − 0.08; −0.11

V +1
N 0.20; 0.12 − 0.02; −0.08

Zn0
Ge 0.09; 0.11;

0.10; 0.11
Zn−2

Ge 0.11; 0.13;
0.11; 0.12

Ge+2
Zn − 0.12; −0.12;

− 0.13; −0.13
O+1

N 0.12; 0.09 0.06; 0.06
Ga+1

Zn − 0.06; −0.07;
− 0.07; −0.07

Ga0
Ge 0.05; 0.05;

0.05; 0.05
Ga−1

Ge 0.05; 0.05;
0.05; 0.05

have some Zn and Ge character. Also, the conduction-band
states are not purely the corresponding atomic orbital basis
states. Thus the correction will be in the right direction but
we need a fairly large U to shift reproduced the actual band
gap. What is more important is that the potential shifts Vi in
Eq. (3) are physically reasonable. We also do not claim or
use the LSDA+U approach here for other properties of the
material, only as a device to inspect the effect of gap shifts on
the one-electron levels.

Nonetheless, the physics we capture with this model, is that
if a defect wave function is conceptually decomposed into a
conduction and valence-band-like state of the host, then the
defect state will shift in proportion to how much it is valence
or conduction band like and this is captured by applying shifts
to the atomic orbitals that primarily define these states. In other
words, defect states that are strongly N-like will not shift in our
model but states that have a strong Zn or Ge s or p contribution
will shift up. In other words, our model will be most useful
to check the behavior of donor states. If the defects move
up along with the conduction band, they can be considered
shallow donors. However, if the correction shifts them less than
the conduction band, it would make the donor level deeper. In
some cases, it might also change defect resonances occurring
above the CBM in LDA into actual defect levels in the gap.

III. RESULTS

A. Relaxed structures

We start by discussing the relaxed structures of the defects.
Table I shows the displacements of the nearest atoms to the
defect from their idealized positions in the perfect crystal for

155202-5



DMITRY SKACHKOV et al. PHYSICAL REVIEW B 93, 155202 (2016)

various charge states. Positive (negative) values mean outward
(inward) displacements. Except for two cases (OZn and OGe)
the displacement of the defect atom itself (ZnGe, GeZn, ON,
GaGe, and GaZn) with respect to the idealized position is very
small. For OZn and OGe, the displacement of the O atom
from the missing Zn (Ge) atom position is 0.74 (0.43) Å.
Displacements of similar magnitude occur for the charged
states. The defects have no symmetry, since the site point group
consists only of the identity. For the cation vacancies, the atoms
move outward but slightly less for the negative charge state.
For the ZnGe the relaxation is also outward, which is consistent
with the larger Zn-N than Ge-N bond length. The outward
relaxation of nearest N atoms becomes larger for negative
charge states in contrast to the cation vacancies VZn and VGe.
For GeZn, an inward relaxation is observed, again consistent
with the bond lengths. The inward relaxation slightly increases
for the q = +2 state. Following the same trend, there is an
inward relaxation near a GaZn but an outward relaxation of
GaGe. Near the V 0

N, the Ge atoms move in and the Zn move out.
In the q = +1 state, the defect V +1

N pushes back both Zn and
Ge atoms and inward relaxation of Ge atoms slightly decreases
whereas outward relaxation of Zn slightly increases. For the
ON defect, both Zn and Ge atoms have outward relaxation.

B. Qualitative discussion of defect levels

In this section, we discuss the qualitative nature of the
defects studied by examining their one-electron band structure,
density of states, and defect wave functions.

1. Cation vacancies

We start with the VGe in the neutral charge state. Figure 4
shows the supercell band structure and partial densities of
states (PDOS) on the nearest neighbor atoms. An empty sphere
E is located on the vacancy site itself, so we can also examine
the partial wave projected density of states on the defect
site. We can see that a sharp peak occurs in the PDOS just
above the VBM corresponding to three localized bands, which
are partially occupied. This can be understood as follows. In
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FIG. 4. Band structure and PDOS on the nearest neighbor atoms
for VGe in q = 0 state. In this and subsequent band structure plots,
the zero of energy is the Fermi energy.

ZnGeN2, each N is surrounded by two Zn and two Ge atoms.
Nominally, the Zn atoms share 1/2 electron per dangling bond
with 3/2 electrons from N in a Zn-N bond, while the Ge
atoms share each one electron per bond with one from N in
the Ge-N bond. Thus around a VGe we have four N dangling
bonds with four electrons in the neutral charge state. In a
tetrahedral environment, the dangling bonds form an a1 linear
combination, which usually lies below the VBM and a triply
degenerate t2 state in the gap. Thus the t2 state in this case
has two electrons and room for up to four more in the q = −4
charge state. Thus the three bands we see in the band picture
correspond to the t2 state. It is not perfectly degenerate because
of the lower than tetrahedral site symmetry as mentioned
earlier. As we populate these bands with electrons, the level
shifts deeper into the gap and eventually for the q = −4 state,
even the lower a1 symmetry band emerges out of the VBM.

The three defect levels in the gap have indeed quite localized
defect wave functions. They are shown in Fig. 5. In Ref. [32],
we provide additional data files which allow to view this and
similar figures in 3D, rotate the models, zoom in, etc. We label
the states as lowest unoccupied molecular orbital (LUMO),
highest occupied molecular orbital (HOMO), and so on. Note
that in the q = −2 state, the LUMO becomes HOMO and
the LUMO+1 becomes LUMO and in the q = −4 state, the
LUMO+1 becomes HOMO. This is clearly a deep acceptor.

Moving on to the VZn, we have a similar situation but now
in the neutral charge state, the N-dangling bonds are already
filled with four electrons. So, it can maximally occur in a
q = −2 charge state. Its band structure and PDOS (Fig. 6)
show again a sharp peak just above the VBM. It lies closer to
the VBM than in the VGe case, indicating a shallower defect. In
Fig. 7, we show the defect wave functions |ψD|2 for the lowest
unoccupied molecular orbital (LUMO), and the next two levels
below it, HOMO, HOMO-1 for the q = 0 state. We can see that
the LUMO is mostly localized in the plane of the vacancy and
spreads out over first and second nearest nitrogen neighbors of
the VZn in the a direction. The HOMO and HOMO-1 are more
localized and spread in the b and c direction, respectively. All
these states are reasonably well localized, although less than
for the VGe. In particular, the LUMO state which becomes
occupied with electrons in the q = −1 and q = −2 states
is rather spread out. This state could be labeled a shallow
acceptor. Both the VGe and VZn are clearly acceptors and
therefore their wave functions are mostly localized on N atoms
of the VBM.

2. Nitrogen vacancy

The VN (Fig. 8) shows one defect level about 0.3 eV below
the gap with the Fermi level passing through it in the neutral
charge state. In creating a VN, we remove eight valence states
but only five electrons per vacancy. Thus the defect levels
should accommodate three electrons. We can also think of
these as residing in the Ge and Zn dangling bonds, which,
respectively, provide one electron and half electron each. The
defect level in the gap contains clearly just one electron, so
there must be two more electrons in a defect state below
it. On closer inspection one indeed can see a sharp peak in
PDOS just above or at the VBM. So, that must be the other
defect state. We can view the lower state as the a1 combination
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FIG. 5. Defect wave functions |ψD|2, for VGe in q = 0 state,
from top to bottom LUMO+1, LUMO, HOMO. The magenta sphere
indicates the VGe site. In this and subsequent defect wave-function
plots, the small grey spheres are N, the large grey spheres are Zn,
and the large purple spheres are Ge. The figure shows a unit cell
containing one defect. However, the calculated structure is periodic,
so the charge densities shown as yellow isosurface should be viewed
as periodically repeating. Thus some parts of this charge density near
the edge of the cell may be closer to the defect in the neighboring
cell.

of dangling bonds in a tetrahedral model, but inspecting this
defect level wave function, it is found to be rather delocalized
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FIG. 6. Band structure and projected density of states on atoms
near the VZn in q = 0 state.

and spread mostly over N atoms as can be seen in Fig. 9 for
the HOMO-1 state. The level below the CBM (HOMO in the
q = 0 state) on the other hand is very strongly localized on
the two neighboring Ge atoms, consistent with the fact, that
these atoms move inward toward the vacancy. We can also
discern two additional bands above the CBM, which form
resonances in the conduction band. Together with the defect
level, these could be viewed as being derived from the t2
tetrahedral linear combinations of Ge and Zn dangling bonds.
In principle, this defect can support q = +3, + 2, + 1,0,−1
states. Furthermore, the q = 0 and q = 2 states would have
an unpaired spin (S = 1/2) and need to be studied including
spin-polarization. The +2 and +3 states are expected to only
occur if the Fermi level is very close the VBM. The defect can,
in principle, both capture an electron or release an electron, so
it could be viewed as a deep amphoteric trap level. However,
we will show later that the negative charge state lies above the
CBM, so it behaves rather like a deep donor.

Because the main defect level has a rather localized wave
function it is not so clear how it will change when corrections
of the gap beyond LDA are included. Therefore we need to
closely examine how this level behaves with the LSDA+U

method. In Fig. 10, we show the band structure and PDOS for
the V 0

N within the LSDA+U model described in Sec. II. We can
see that the gap is now close to 3.4 eV, and the defect level for
the majority spin lies a little deeper (0.5 eV) below the CBM
than before. We now treated the system spin-polarized to take
into account its net spin S = 1/2. In fact, the minority spin state
of the defect level is seen to lie just below the CBM. We can still
see two even sharper resonances in the conduction band and the
lower one of these is now right at the CBM. Thus the character
of the defect did not change by using LSDA+U . This is con-
sistent with its defect character being very localized on Ge-s
and Ge-p states. In the single positive charge state, the Fermi
level becomes pinned at the lower defect level (the a1 like level)
and these states did not move at all because they are mostly
N-p like and in that case, there is also no net magnetic moment.

3. Antisite defects

Next, we examine the antisite defects. For the ZnGe case,
we show the band structure and PDOS in Fig. 11. We see
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FIG. 7. Defect wave functions |ψD|2, for VZn in q = 0 state, from
top to bottom LUMO, HOMO, and HOMO-1. The magenta sphere
indicates the VZn site.

a situation very similar to the VZn. This is indeed expected
to be a double acceptor. It can take two extra electrons in a
defect level just above the VBM in the band picture. Its LUMO
wavefunction in the q = 0 state is shown in Fig. 12 and is seen
to be fairly localized.

For GeZn (Fig. 13), we find that in the neutral and even in
the q = +1 charge state, the Fermi level lies well inside the
conduction band. No states are seen in the gap. No changes
in bands are discernible but for q = +2 the Fermi level shifts
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FIG. 8. Band structure and projected density of states on atoms
near the VN in q = 0 state.

to the VBM. This is a signature of a shallow donor state. One
can see a resonance state in the CBM but not states in the
gap. This is because a truly shallow donor state is spread well
beyond the size of our supercell. Our model does not include
the hydrogenic Coulomb tail q/εr that would extract a shallow

FIG. 9. Defect wave functions |ψD|2, for VN in q = 0 state, from
top to bottom HOMO, HOMO-1. The magenta sphere indicates the
VN site.
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FIG. 10. Band structure and projected density of states on atoms
near the VN in q = 0 state using the LSDA+U method.

bound state below the CBM. Thus the GeZn is a shallow double
donor. We find that if we apply the LSDA+U method, still no
state occurs in the gap. In other words, the resonance does
not drop out of the CBM by shifting up the CBM. Thus we
conclude that the shallow donor character of this defect is
robust against gap corrections beyond LDA.

4. Impurities

We now examine various impurities. For oxygen, we
performed calculations for OGe, OZn and ON. For the cation
locations of the O, we found strong relaxations including of the
defect atom itself. We find that the O moves close to one of the
surrounding N atoms and forms essentially an NO bond with
bond lengths of about 1.2–1.3 Å. Two defect levels occur in the
middle of the gap with several more close to the VBM. These
are a mixture of O-p and dangling bonds on N or possibly a NO
molecular state. In the Ge case, they contain two less electrons
than in the Zn case in the neutral state. Both these defects,
however, have much higher energies of formation of order
4–7 eV than for the N site and therefore we have not analyzed
these situations in more detail and we do not show their band
structure and PDOS results here because they are very unlikely
to occur. They are, however, included in Ref. [32].
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FIG. 11. Band structure and projected density of states on nearest
atoms to the ZnGe antisite in the q = 0 state.

FIG. 12. Defect wave function |ψD|2 for the LUMO in the ZnGe

antisite in q = 0.

For the neutral charge state of ON, the Fermi level lies
within the conduction band. No defect states occur in the gap.
In Fig. 14, we show the bands and PDOS for the q = +1 state
when the Fermi level lies at the VBM. So, this is a shallow
donor situation similar to GeZn. We see again a resonant level
slightly above the CBM. When using LSDA+U , we find a
similar band structure. In other words, the resonance does not
drop into the gap.

For Ga impurities, we need to consider both the Zn and Ge
site. In the GaZn case, we find a shallow donor situation similar
to that of GeZn except that it is a single donor. For GaGe, we find
a situation similar to that of ZnGe but now with single acceptor
character. A peak corresponding to the acceptor defect level is
seen in the band structure very close to or at the VBM. Band
structure and PDOS figures are included in Ref. [32] for these
cases.

C. Energies of formation

The energies of formation were calculated according to
Eq. (1) using effective charges as explained in Sec. II E.
For the shallow donors (GeZn, ON, and GaZn), we place the
formation energy of the defect in the state with the donor level
occupied, at the bottom of the conduction band neglecting the
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FIG. 13. Band structure and projected density of states on nearest
atoms to the GeZn antisite in the q = +1 state.
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FIG. 14. Band structure and projected density of states on nearest
atoms for ON in q = +1 state.

small binding energy of the shallow donor. Likewise, for the
shallow acceptor GaGe, we calculate the neutral charge state
assuming the 0/− transition level occurs close the VBM. This
is equivalent to taking into account an effective point charge
correction even for the neutral charge state. For the VN, we
found the +2 and +3 states to occur below the VBM, so they
are not shown. We also include the LSDA+U shifts for the
donors by shifting the +/0 transition of the VN by the same
amount as the one-electron level shifts in the band calculations.
A similar correction shifts the 0/− state above the CBM. The
acceptor transition levels are not affected by the gap correction
and all lie somewhat deeper than the donors, at a few 0.1 eV
above the VBM.

For Zn−1
Ge , we find the electrostatic potential near the defect

to look very similar to that for q = 0 and both are very flat.
This can be related to the nature of the LUMO defect wave
function in Fig. 11. While it is fairly localized on the ZnGe site
itself and its nearest neighbor N atoms, there is also a tail in
this distribution spread almost to the edge of the cell, at least in
some directions. Thus the holes are in part compensating the
nuclear charge deficit of Zn but in part also spread out. When
we switch to the q = −1 state, we replace this delocalized hole
charge by a background charge of the same sign, so nothing
much changes. That is why the qeff for this case is quite small.
We estimate it as qeff = 0.3.

The deeper acceptor levels are consistent with a hydrogenic
model because of the much higher valence-band effective
mass. We can make a simple estimate using the hydrogenic
model. Averaging the inverse effective masses in the three
directions, the top valence band gives an effective mass of
0.5 and this gives a binding energy of 70 meV for a single
acceptor, 140 meV for a double acceptor and about 0.3 eV
for a quadruple acceptor. These are probably underestimates
because of the need for a central cell correction and the
degeneracy of the VBM. For the donor states, only one charge
state occurs as lowest energy in the gap, the +1 state for GaZn,
and ON and the +2 charge state for GeZn. Their +/0 or 2 + /+
transition levels are expected to occur within a few tens of meV
below the CBM in a hydrogenic model but in our calculation
we place it at the CBM itself. These donor levels were all

TABLE II. Formation energy (in eV) for various defects in
different charge states at εF = 0.

Efor(εF = 0)

Defect q qeff A B C D

VGe 0 0 9.52 8.82 9.09 10.21
−1 −0.7 9.94 9.24 9.51 10.63
−2 −1.5 11.75 11.05 11.32 12.44
−3 −2 13.49 12.79 13.07 14.19

VZn 0 0 5.37 5.02 4.74 5.30
−1 −0.5 5.53 5.18 4.90 5.46
−2 −1.5 7.14 6.79 6.52 7.08

VN 0 0 4.53 5.05 5.05 4.21
1 1 1.94 2.47 2.47 1.63

ZnGe 0 0 2.61 2.26 2.82 3.38
−1 −0.3 2.69 2.34 2.89 3.45
−2 −1 4.09 3.74 4.29 4.85

GeZn 2 1 − 0.73 − 0.38 − 0.94 − 1.50
ON 1 1 − 3.30 − 2.78 − 2.78 − 3.62
OGe 0 0 7.03 6.33 6.61 7.73

−1 −1 8.96 8.26 8.54 9.66
−2 −2 11.87 11.17 11.45 12.57

OZn 0 0 6.03 5.68 5.41 5.97
1 1 4.58 4.23 3.96 4.52

−1 −1 6.69 6.34 6.07 6.63
−2 −2 9.20 8.85 8.57 9.13

GaZn 1 0.7 − 1.69 − 2.04 − 2.32 − 1.76
GaGe −1 −0.5 0.59 − 0.11 0.17 1.29

found to follow the CBM when the gap is corrected using the
LSDA+U method.

In Figs. 15 and 16, we allow the Fermi level εF to
vary from the VBM at 0 energy to the actual experimental
conduction-band minimum of 3.4 eV. In these figures we show
only the energy of formation of the charge state with lowest
energy at any given Fermi level position. The discontinuities
in slope then indicate the transition levels. The figures show
these energies for four different choices of chemical potential,
as labeled in Fig. 1. Figure 15 corresponds to the native defects
and Fig. 16 to the impurities. The energies of formation at
εF = 0 for various charge states which are used in drawing
this figure are summarized in Table II. The transition levels
are independent of chemical potentials and are summarized in
Table III.

We note that the effective charges were determined by
visual inspection of the fit of the electrostatic potentials by

TABLE III. Transition levels of various defects in ZnGeN2.

Defect Transition levels

+1/0 0/−1 −1/−2
VZn 0.16 1.62
VN 2.58
ZnGe 0.07 1.40
OGe 1.94 2.91

0/−1 −1/−3
VGe 0.42 1.78

+1/−1 −1/−2
OZn 1.06 2.50
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FIG. 15. Formation energies for different growing conditions (points A, B, C, and D on the diagram Fig. 1) for native defects VGe, VZn, VN,
ZnGe, and GeZn.
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a point charge model beyond a certain range. However, the
precise value depends somewhat on the range chosen where
the fit should apply. Thus these values and correspondingly the
energies of formation and transition levels have an uncertainty
of at least 0.1 eV. For example, for ZnGe, using the nominal
charge we would have found the acceptor level at 0.48 eV,
significantly deeper. The latter is most likely an overestimate,
while the values obtained with qeff = 0.3 may be a slight
underestimate.

The +/0 level of VN appears to be deeper below the
CBM than the band structure plots indicated. However, this
is because in the dilute limit the one-electron levels also need
a finite size correction to the Madelung potential [24]. This
would shift the levels by

δV = −αq/(Lε). (4)

This correction shifts acceptor levels up and donor levels down.
For example, for VN , we found the one-electron band in our
128 atom supercell about 0.5 eV below the CBM, adding this
correction, it shifts down by about 0.36 eV and is then in good
agreement with the +/0 transition level which lies 0.84 eV
below the CBM. Thus the one-electron levels and transition
levels are in good agreement with each other as required by
the generalized Koopman’s theorem. This also applies to the
VGe acceptor levels, which are fairly deep. For the VZn and
ZnGe, on the other hand, the correction is small because these
are shallow acceptors.

Among the native defects, we see that the cation antisites
have significantly lower energy than the vacancies. A similar
conclusion was obtained for ZnSnN2 by Chen et al. [33]
and also for ZnSnP2 by Kumagai et al. [16] but not for
ZnGeP2 [14,34–36]. We thus expect the dominant native
defects to be the cation antisites.

In particular, the VGe is found to have a very high energy
of formation even for the most Ge-poor conditions B and C.
For example, for chemical potential condition A, we find that
the energy of formation of the VGe 9.52 eV, is larger than the
sum of the energies of formation of VZn and ZnGe which is
7.98 eV. This indicates an intrinsic thermodynamic instability
or at least only metastability of the VGe. The neighboring Zn
could hop to the VGe site forming a defect complex and then
the two defects would repel each other. A similar situation was
found for ZnGeP2 [14]. We have not checked yet if there exists
a barrier toward this defect reaction. Although this defect has
high energy of formation in equilibrium, vacancies are easily
created by radiation damage and may still be important.

Among the impurities, we see that O has indeed a definite
site preference for the N position and the ON is a very
low-energy defect. This is similar to ON in GaN [37]. Ga
has a low energy of formation on the Zn site for Fermi levels
close the VBM but Ga on the Ge site has a low energy of
formation for Fermi levels close to the conduction band. The
energies of formation of the Ga impurity are smaller than the
corresponding antisite native defects. This is to be expected
because they constitute a smaller perturbation. This indicates
a good solubility of Ga is to be expected but with a site
competition between both sites. Because this defect from the
band structures appears to be a truly shallow hydrogenic type
defect, our calculations do not predict the neutral charge state,
in which the Fermi level lies below the VBM, well. Thus we

use the approach for hydrogenic defect levels, or perturbed
host states, as they are sometimes called and determine its
neutral charge state formation energy assuming an acceptor
level at the VBM.

D. Defect concentrations, Fermi level pinning, and doping

Assuming no other native defects are present, we can self-
consistently determine the defect concentrations and Fermi
level for a given set of chemical potentials. The defect
concentrations are given by

C[Dq,μ,T ] = N [Dq]e−Efor(Dq,μ)/kT . (5)

Here, N [Dq] is the number of available sites per unit volume
for a given defect times a degeneracy factor depending on the
charge state. For example, if the defect has a singly occupied
defect level, in which it can occur in two spin states, its
degeneracy factor is 2 but if it is full occupied or empty, its
degeneracy factor is 1. The energy of formation depends on
the chemical potential of the electrons μ. C[Dq,μ,T ] is the
equilibrium concentration of defect D in charge state q and is a
function of the Fermi level μ and temperature. The Fermi level
is determined by the overall charge neutrality requirement:

− n(μ,T ) + p(μ,T ) +
∑

i

qiC
[
D

q

i ,μ,T
] = 0. (6)

Here, n(μ,T ) is the concentration of electrons in the conduc-
tion band and p(μ,T ) is the concentration of holes in the
valence band, which are given by

n(μ,T ) =
∫ ∞

εc

D(ε)f (ε,μ,T )dε,

p(μ,T ) =
∫ εv

−∞
D(ε)[1 − f (ε,μ,T )]dε (7)

with

f (ε,μ,T ) = 1

e
ε−μ

kT + 1
(8)

the Fermi function. Since realistically only the bottom of the
conduction band and the top of the valence band contain
electrons or holes, respectively, we calculate the electron and
hole concentrations assuming a parabolic approximation to the
band dispersions, which leads to

n(μ,T ) = −2

(
mnkT

π�2

)3/2

Li3/2
(−e(μ−εc)/kT

)

≈ 2

(
mnkT

π�2

)3/2

e−(εc−μ)/kT ,

p(μ,T ) = −2

(
mpkT

π�2

)3/2

Li3/2
(−e(μ−εv )/kT

)

≈ 2

(
mpkT

π�2

)3/2

e−(μ−εv )/kT , (9)

where Li3/2(x) is the Polylogarithm (also known as the
Jonquière) function, and εc is the one-electron energy of the
CBM. The approximate forms with a Boltzmann type factor are
valid when εc − μ � kT and μ − εv � kT and hold except
very close to the band edges. The effective masses mn and
mp here are so-called density of states masses. For ZnGeN2,
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TABLE IV. Equilibrium electron chemical potential (in eV), electron and hole concentrations, and defect concentrations, all per cm3. The
values at 300 K assume the total defect concentration is quenched from 1200 K. Open slots in the table correspond to negligible concentrations
less than 105.

A B C D

T (K) → 1200 300 1200 300 1200 300 1200 300

μ (eV) 1.15 0.15 0.95 0.17 1.27 0.27 1.58 1.44
n 6.0 × 109 8.2 × 108 1.9 × 1010 3.8 × 1011

p 6.0 × 1015 5.3 × 1015 4.4 × 1016 4.3 × 1016 1.9 × 1015 8.0 × 1014 9.6 × 1013

Ge+2
Zn 5.5 × 1015 5.5 × 1015 9.8 × 1015 9.8 × 1015 3.7 × 1015 3.7 × 1015 2.1 × 1015 2.1 × 1015

Zn0
Ge 2.3 × 1011 2.2 × 1013 6.8 × 1012 6.9 × 1014 3.3 × 1010 1.7 × 1012 1.5 × 108

Zn−1
Ge 1.6 × 1016 1.6 × 1016 6.3 × 1016 6.3 × 1016 7.1 × 1015 8.2 × 1015 6.3 × 1014 7.2 × 1014

Zn−2
Ge 7.30 × 1014 4.0 × 1014 1.1 × 1015 1.9 × 1015 1.8 × 1015

V +1
N 4.3 × 109 4.3 × 109 2.0 × 108 2.0 × 108 8.4 × 106 8.4 × 106 1.4 × 109 1.4 × 109

V −1
Zn 2.6 × 107 2.6 × 107 2.3 × 106 3.1 × 106

which has an orthorhombic crystal structures, as discussed in
Punya et al. [1], m

3/2
n = (mambmc)3/2 with ma , mb, and mc

the effective conduction-band masses along the a, b, and c

directions. The valence band in this material is split in three
levels, and expressions of the above type are applied separately
for each level with the appropriate effective masses given in
Table VII of Ref. [1].

First, we only consider native defects. The concentrations
of defects are evaluated at a typical growth temperature of
1200 K. Using the above analytical expressions, it is then
straightforward to find the μ for which the charge neutrality is
obeyed. From the energy of formations, it is easy to see that
the Boltzmann factors will suppress all but the lowest energy
of formation defects. This implies in this case that the Fermi
level μ is essentially determined by the competition between
the Ge2+

Zn and Zn−1
Ge defects and the free electrons and holes. We

checked, that using only these two defects or all of the defects,
made almost no difference in the resulting Fermi level, which
for chemical potential condition B is 0.95 eV above the VBM,
slightly above the crossing of the energies of formation of
these two defects. Since this Fermi level position is closer to
the VBM than to the CBM, the net resulting doping is p type
with a concentration of holes p ≈ 4.4 × 1016 cm−3 at 1200 K.

We also consider the electron and hole concentration at
room temperature (300 K) assuming that the total concentra-
tion in all possible charge states stay the same as at 1200 K, but
their charge state can adjust to a new neutrality condition at
300 K. In other words, the defect concentrations are quenched
but the electrons and holes adjust to the Fermi function at
300K and so do the charge states of the defect according to their
relative Boltzmann factors. This leads to a Fermi level position
much closer to the VBM, μ = 0.17 eV and a slightly lower
hole concentration of p ≈ 4.3 × 1016 cm−3. Clearly, at lower
temperature, in order to keep the same carrier concentration
of holes to compensate the Zn−1

Ge , the Fermi level will need to
move closer to the VBM. Meanwhile, both the concentration
of Ge2+

Zn and of electrons in the conduction band are fairly low
because for low Fermi energy, the energy of formation of Ge2+

Zn
is higher and so fewer of these defects are generated.

In Fig. 15, we indicate the equilibrium Fermi level at 1200
and at 300 K with their corresponding p-type hole concentra-
tion. In Table IV, we give the equilibrium concentrations of

the different defects as well as the Fermi level position and net
electron and hole concentrations at 1200 K and after quenching
to 300 K for each of the chemical potential conditions A-D. We
can see that our calculations predict the materials to be native
p type with a significant hole concentration up to 1016 cm−3

if the chemical conditions are chosen optimally as in case B.
There have thus far been very few reports on the carrier

type in ZnGeN2. Larson et al. [38] reported their samples
to be n type with a carrier concentration n ≈ 1018–1019 cm−3,
while Kikkawa and Morisaka [39] reported their samples to be
insulating. The first group used a vapor growth method which
involves ZnCl2 and GeCl4 as intermediate products. Cl is likely
to be an n-type dopant if present in the samples. Kikkawa and
Morisaka [39] used a sputter growth technique. Very recently,
Dyck et al. [40] used Seebeck coefficient measurements and
reported n-type behavior. The n-type behavior apparently
cannot be explained by the native defects considered here.
Although Ge2+

Zn is a shallow donor and has fairly low energy of
formation for εF = εv , the charge balance dictates a Fermi
level closer to the VBM by competition with the Zn−1

Ge
acceptors. Being closer to the VBM, we then obtain more
holes than electrons.

On the other hand, we see from Fig. 16 that substitutional
ON is a very low-energy defect and since it is a donor, it
might lead to n-type doping. To be more precise about the
incorporation of O, we need to consider the chemical potentials
of O and N at finite temperature. In other words, we need to
consider their free energies including entropic contributions.
The most important contribution here is the pressure term

μN = μN(N2) + kT ln (pN2 ) (10)

with a similar expression for oxygen. We ignore the smaller
vibrational and rotation free energy terms since they are similar
in both molecules. In the ON energy of formation, we need
μN − μO so, what enters is the ratio pN2/pO2 . In other words,
the concentration of ON is given by

C[O+
N] = 2

(
pO2

pN2

)(
8

Vcell

)
e−(Efor(ON,μ=0)+μ)/kT . (11)

We recalculate the Fermi level position and the corre-
sponding defect concentrations and effective doping from
the neutrality condition including the O+1

N defect for various
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ratios of the partial pressure ratios p(N2)/p(O2) for the case
of chemical potentials B. At low pN2/pO2 = 10, we find a
very large oxygen concentration, of order 1024 cm−3, leading
essentially to an oxynitride. However, there is then also a
high concentration of ZnGe in both −1 and −2 charge states,
compensating the positive charge, so we end up with a Fermi
level near 2 eV and a low net n-type doping of 1013 cm−3.
In this sense, ZnGeN2 differs strongly from GaN. In GaN,
the only native acceptor is a V −3

Ga and this defect has high
energy and thus crosses the O+1

N only very close to the VBM.
In contrast, ZnGeN2 has a low-energy antisite acceptor ZnGe.

At 300 K, keeping the defect concentrations fixed, the Fermi
level drops to 1.58 eV, the electrons are less easily excited to the
CBM and thus play even less a role in compensating the O+1

N
and we find insulating behavior. This means that oxygen should
be strongly suppressed during growth to keep the concentration
of both O+1

N and Zn2−
Ge down. At 1200 K, we need to increase

the pN2/pO2 ratio to about 106 to switch from n to p type.
The p-type concentration is then of order only 1012 cm−3 at
1200 K but the concentration of ZnGe and ON is still of order
1021. Only for a partial pressure ratio as high as 1015, the ON

and ZnGe at the growth temperature could be suppressed to the
1015 cm−3 level, to recover the native p-type concentration
level of 1016 cm−3 at 300 K.

Thus the question arises if oxygen could still explain the
unintentional n-type doping. If the sample is exposed to air
after cooling down, oxygen could still enter the sample because
it has a very low energy of formation. However, diffusion will
be limited at these temperatures and thus, we can probably
not assume equilibrium any more. Nonetheless, it appears
plausible that the regions near the surface or in small particles
of polycrystalline material, some oxygen uptake could take
place even if it was avoided during growth. In this case, we
no longer expect ZnGe antisites to be able to form and hence
it would then lead to residual n-type doping. Another possible
source for n-type dopants would be interstitials. We thus plan
to study interstitials in a future study.

Finally, we examine the effects of Ga doping. The optimal
condition for introducing Ga preferentially on the Ge rather
than the Zn site is the Ge poorest situation B. We choose this
condition as we are aiming for p-type doping. In that case,
because the system is rich in N, we assume the μGa = μ0

Ga +
Efor(GaN). We find the Fermi level now becomes pinned close
to the intersection of the Ga+1

Zn and Ga−1
Ge energies of formation,

with the Fermi energy at about 1.00 eV above the VBM. This
leads to a p-type doping of order 2.5 × 1016 cm−3 at 1200
K. We find the concentrations [Ga+1

Zn ] = 4.592 × 1019 cm−3

and [Ga−1
Ge ] = 4.583 × 1019 cm−3. We can see that there is

compensation of these two defects to 1 part in a 100 with
slightly more donors than acceptors. However, there also is a
sizable concentration of Zn−1

Ge of 1.1 × 1017cm−3, which help
to tip the balance in favor of p-type behavior. The net hole type
concentration however is actually slightly lower than we found

earlier for the native material under growth condition B. If we
now quench to 300 K, the Fermi level drops to 0.20 eV but
the hole concentration drops only slightly to 1.2 × 1016 cm−3.
So, Ga acts indeed as a p-type dopant but is not more effective
than the intrinsic doping by ZnGe, which assists it.

IV. CONCLUSIONS

In summary, we have presented a study of the main expected
native defects and a few dopants in ZnGeN2. The main findings
of the paper are as follows. Cation antisites are the dominant
native defects. The Ge+2

Zn shallow donor and Zn−1
Ge shallow

acceptor states pin the Fermi level at a position closer to the
VBM than the CBM and hence should lead to native p-type
doping. The level of this doping depends on the chemical
potential conditions and is also still somewhat uncertain due to
the uncertainties in our calculation of the energies of formation
related to finite size corrections. Upon quenching to room
temperature, the Fermi level moves closer to the VBM but
still could retain a fairly significant level of p-type doping
level. The n-type doping one has found so far in ZnGeN2

is tentatively ascribed to ON. Although the latter has a low
energy of formation, it would be compensated by formation of
native antisite acceptors Zn2−

Ge at the growth temperature. This
is different from GaN where no low energy compensating
acceptors exist. This actually predicts very little residual n-
type doping at room temperature when defect concentrations
are frozen. To explain residual background n-type doping by
oxygen, we then need to assume that during the cooling down
of the sample, more oxygen is introduced then compensating
antisites formed. Alternatives such as interstitials need further
study.

In terms of methodology, we discussed the various finite
size effects and proposed to model the defect electrostatic
potentials with a point charge model, which, however, could
have a different effective charge from the nominal charge of
the defect. This tends to reduce the energies of formation
and the transition levels of the acceptor for relatively shallow
acceptors. Unfortunately, the effective charge has still some
remaining uncertainty. The latter could presumably be further
reduced by using larger supercells.
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