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Correlated electron behavior of metal-organic molecules: Insights from density functional theory
combined with many-body effects using exact diagonalization
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A proper theoretical description of the electronic structure of the 3d orbitals in the metal centers of functional
metalorganics is a challenging problem. We apply density functional theory and an exact diagonalization method
in a many-body approach to study the ground-state electronic configuration of an iron porphyrin (FeP) molecule.
Our study reveals that the consideration of multiple Slater determinants is important, and FeP is a potential
candidate for realizing a spin crossover due to a subtle balance of crystal-field effects, on-site Coulomb repulsion,
and hybridization between the Fe-d orbitals and ligand N-p states. The mechanism of switching between two
close-lying electronic configurations of Fe-d orbitals is shown. We discuss the generality of the suggested
approach and the possibility to properly describe the electronic structure and related low-energy physics of the
whole class of correlated metal-centered organometallic molecules.
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Molecular magnets combine low dimensionality and in-
herent confinement effects with strong electron correlations
and hold prospects in the context of spintronics. An important
molecular property is bistability, i.e., the possibility of realiz-
ing two different spin states, which can in principle be accessed
and manipulated externally. This is important as the switching
of spin has a pronounced effect on measurable quantities, such
as magnetic anisotropy and spin dipole moment contribution
[1]. Finding ways for the efficient manipulation of the mag-
netic state [1–4] of transition-metal (TM)-centered porphyrin
(TM-P) and phthalocyanine (TM-Pc) molecules has critical
consequences in this regard. A crucial interplay between a
molecular ligand field and spin pairing energy makes only a
subspace of this class of materials to respond to spin crossover.

The magnetic properties in TM-P/TM-Pc are largely
governed by the metal center, which features sizable local
Coulomb interactions (U ∼ 4 eV and J ∼ 1 eV) and is simul-
taneously subjected to crystal fields, spin-orbit coupling, and
orbitally dependent hybridization with the ligands. Electronic
correlations are expected to arise [5] and the description by
local density approximation (LDA) or generalized gradient
approximation (GGA) thus potentially becomes inadequate,
for example, leading to an underestimated or even vanishing
HOMO-LUMO (highest occupied molecular orbital and low-
est unoccupied molecular orbital) gap. Hence, the treatment
of the molecular electronic structure in terms of correlated
electron theories, such as ligand field theories or Anderson
impurity models, becomes crucial. These model-based ap-
proaches can be very helpful to trace the physical origin
of phenomena such as spin-state switching [5], emergence
of magnetic anisotropies [6], or many-body resonances [7],
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as soon as solid links between the model and the realistic
structure can be established. It is worth mentioning that Chiesa
et al. [8] have demonstrated a similar density functional theory
(DFT)-based method to construct many-body Hamiltonians
using Foster-Boys molecular orbitals to describe the magnetic
properties of molecular nanomagnets.

In this paper, we have adapted a hybrid approach [9]
(DFT++), which links density functional theory (DFT) and
Anderson’s impurity model to study the physical properties
of FeP and FePc. We demonstrate how the interplay of
Coulomb interactions, crystal fields, and hybridization with
the ligands, which are fully captured in our theory, leads to
correlated electron physics, and how this theory describes
the S = 1 → S = 2 spin crossover in the Fe2+ metal center
of FeP. Furthermore, the crossover between different close-
lying ground-state electronic configurations within the S = 1
subspace of the correlated Fe-d orbitals is analyzed.

The problem can be cast in the following way. The
delocalized orbitals in the organic ring in FeP are described by
LDA or GGA, but the Fe center is considered as an impurity
embedded in the organic host and is described by Anderson’s
impurity model [10].

The model Hamiltonian for the impurity problem can be
expressed as

H =
∑

i,j

εd
ij d

†
i dj + 1

2

∑

i,j,k,l

Uijlkd
†
i d

†
j dkdl

+
∑

ik

(Vikc
†
kdi + H.c.) +

∑

k

εkc
†
kck, (1)

where εd
ij describes the on-site energies and i,j,k,l = (m,σ )

represent combined orbital and spin indices. di is the anni-
hilation operator, while Uijlk represents the local Coulomb
interaction. Uijlk is parametrized by Slater parameters. We
have chosen U = 4 eV and J = 1 eV for l = 2 (3d orbitals) in
our calculations; see Supplemental Material [16] for details.
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In the above equation, the first two terms represent electrons in
Fe-3d orbitals. The third term describes the interaction with the
surrounding atoms, while the fourth term is for the delocalized
ligand electrons with energies εk . The hopping matrix element
Vik appears in the hybridization function, which is represented
as

�ij (ε) =
∑

k

VikVkj

ε + iδ − εk

. (2)

The energy-dependent hybridization function can be obtained
from first-principles calculations. We follow the approach
considered by Karolak et al. [9] to construct the local Green’s
function from DFT. The Kohn-Sham Green’s function GKS

can be calculated from the Lehmann representation [11] using

GKS(ε) =
∑

nk

|ψnk〉 〈ψnk|
ε + iδ − εnk

, (3)

where ψnk’s and εnk’s are the Kohn-Sham eigenstates and
eigenvalues for band n and reciprocal space point k. The
projection of the full Green’s function to an atom-centered
local Green’s function Gmm

′
imp for localized orbitals is needed,

which in our case are cubic harmonics (χm),

Gmm
′

imp (ε) =
∑

nk

P m
nkP

m
′

nk

∗

ε + iδ − εnk

, (4)

where P m
nk = 〈χm | ψnk〉 and P m

′

nk

∗ = 〈ψnk | χm′ 〉. The hy-
bridization function is calculated from the local impurity
Green’s function from the expression

G−1
imp(ε) = ε + iδ − Ecryst − �(ε) = ε + iδ − �̃(ε). (5)

In the above expression, Gimp is the projected Green’s function
on local orbitals and �̃ combines the hybridization function
� and static crystal field Ecryst. If the bath orbitals [defined by
εk and Vik in Eq. (2)] are limited to a small number of discrete
orbitals only, the many-body problem defined in Eq. (1) can
be solved by means of exact diagonalization (ED), which will
be used here.

Electrons in Fe-3d orbitals hybridize mostly with the
orbitals of the four surrounding N atoms, which provide a
square planar ligand field. The effect of the outer C-ring
is rather indirect as that mainly shifts N-p levels by both
in-plane and π -π interaction. The energy dependence of that
interaction with surrounding N atoms can be described by
an energy-dependent hybridization function �̃(ε). We have
employed non-spin-polarized density functional calculations
within local density and generalized gradient approximations
to extract the hybridization functions. The DFT calculations
were performed using the VASP code [12] that employs a
plane-wave basis and projector augmented wave method. In
Fig. 1, real and imaginary parts of �̃ are shown. The imaginary
part (Im�̃) quantifies the density of bath states coupling to
each impurity orbital weighted by the hybridization matrix
elements Vik . As seen from Fig. 1, the most dominant peak
in Im�̃(ε) is observed for the Fe-dx2−y2 orbital at 2.03 eV
below the Fermi energy. The formation of in-plane σ bonds
with axial N ligands explains this pronounced peak. It should
be noted that the other in-plane orbital dxy shows almost no
hybridization, apart from a small peak at 4.8 eV below the

FIG. 1. Real and imaginary parts of the hybridization function
for Fe in FeP calculated with PBE in the non-spin-polarized mode.
A smearing parameter of 0.01 eV has been used for this plot for the
sake of visualization. The geometry of FeP is shown in the inset with
the atoms labeled by their types.

Fermi energy. The out-of-plane orbitals have relatively small
peaks in Im�̃, among which the one closest to the Fermi
energy is of dπ (dxz, dyz) character at −2 eV. The appearance
of this peak reflects a π -π interaction of Fe-dπ orbitals with
N-pz orbitals, which is expected in the square planar ligand
field of the FeP molecule. The other out-of-plane and in-plane
contributions are present in the −4.5 to −10 eV energy range.
Taken together, the hybridization function reveals a strong
in-plane interaction between Fe-dx2−y2 orbitals and the N-p
ligand states along with a much weaker interaction among all
other orbitals.

The real part of the hybridization function Re�̃ describes
the energy-dependent ligand field, combined with a static
crystal field, which can be obtained at the ε → ∞ limit. The
strong resonance with the host and dx2−y2 orbital manifests
itself also around −2.03 eV in Re�̃. This strong ligand field
pushes dx2−y2 high in energy, causing almost no occupancy
in either spin channel. In the gas phase, six electrons in Fe2+

thus are distributed in the remaining four d orbitals, with four
and two electrons in the majority and minority spin channels,
respectively, giving rise to an intermediate spin state (S = 1).

An intriguing phenomenon of strain-induced spin state
switching is observed theoretically in FeP [1,3,13], which is
relatively difficult to obtain for other molecules with other TM
centers [14,15] or different structures, e.g., transition-metal
phthalocyanines. Iron phthalocyanine (FePc), for example, has
an Fe center but also a larger organic ring. This results in a
stronger hybridization of Fe with the neighboring N atoms
(shown in the Supplemental Material (SM) [16]), which is
reflected in the appearance of a dx2−y2 peak in Im�̃ at −1.86 eV
and a stronger hybridization (3.67 eV). The shift of the bath
energy to −1.86 eV for FePc compared to −2.03 eV in FeP
is due to the presence of four extra N atoms connected to the
pyrolle rings in FePc (see Fig. 2 in the SM [16]). These four
N atoms are not directly bonded to Fe, but are connected to N
atoms in the Fe-N4 block via C atoms.
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FIG. 2. The phase diagram depicting the spin states of FeP with
the tuning of the static crystal field Ecryst and the hybridization strength
V. The phase boundary is accompanied by the allowed values of Ecryst

for fixed values of V. The blue curve is a result of fitting with a
tight-binding model described in the Supplemental Material [16]. AS
and BS indicate antibonding and bonding regions. Calculated values
of Ecryst and V from DFT (non-spin-polarized PBE) are shown in
orange circles along with the corresponding Fe-N bond lengths.

To quantify the conditions required for spin-state switching
of FeP, we have constructed a phase diagram by varying
crystal field and hybridization strength within the DFT++
method. The variation of these parameters mimics the strain
effect on the molecule. Also, as mentioned in the previous
section, we found that the crystal-field splitting of dx2−y2 is
larger compared to other orbitals and, as discussed below, this
splitting is responsible for the spin switching. For this part
of the calculation, we have kept a common reference level of
the rest of the orbitals separated from dx2−y2 by Ecryst, which
was varied. An independent variation of the hopping matrix
elements, Vd

x2−y2 , is done along with the variation of Ecryst.
One needs to keep in mind that for our model calculation, Ecryst

and Vd
x2−y2 are independent, while in DFT calculation, these

parameters are implicitly related. The ligand field variation due
to the strain effect simultaneously changes Ecryst and Vd

x2−y2 .
For the remaining part of the discussion, we will refer to Vd

x2−y2

as V, as this is the only bath-site coupling considered for our
model calculations.

Figure 2 depicts the spin phase diagram of the central atom
in FeP. The phases are defined by the characteristic energy
contributions and demonstrated with the red-green-blue (RGB)
color code (see Supplemental Material [16]). For V → 0
and with sufficiently high crystal field (Ecryst > 2.6 eV), six
electrons occupy the degenerate drest level. Hence, the ground
state will be a low-spin state with an energy gain from the
crystal field (red), but with the cost of exchange energy (blue).
The ground state attains a high-spin state for low crystal
fields. A strong V pushes the molecular orbital containing
predominantly dx2−y2 and, hence, the required crystal field
for spin crossover is small. The intermediate spin state, in
this situation, is governed by the Fe-N bonding (green).
The crystal field can be tuned to occupy the antibonding
molecular orbital and, hence, the S = 2 spin state can be
achieved (denoted AS in Fig. 2). The dependence of V on

Ecryst follows a quadratic behavior. The fitted curve in Fig. 2
at the phase boundary is obtained from a mean-field model
(see Supplemental Material [16]) containing one particle
Hamiltonian, but with a renormalized on-site energy εd .
The discrepancy between the phase boundary and the fitted
curve lies in proper renormalization of εd , which depends
linearly with N , by electron correlation energy, which has a
dependence of N2.

As the spectrum of the FeP molecule is gapped, we placed
chemical potential in the middle of the gap. But it is also
possible to vary the average on-site d energy εd , while keeping
the total number of particles in the system fixed. In addition,
the average d-electron on-site energy is not exactly known
from the DFT simulations—a problem usually referred to
as the double-counting problem in the DFT++, DFT+U,
or DFT+DMFT (dynamical mean-field theory) approaches.
In our case, this means that the average on-site energy or,
more precisely, the average energy difference between the
bath level and the Fe-d block carries some uncertainty. We
thus vary εd in a range, while keeping the total number of
particles in our system constant. In this way, the high-spin to
low-spin transition line has error bars associated with some of
the calculated points shown in Fig. 2.

At a stronger coupling V, the shifting of the on-site energy
εd will allow a variation of Ecryst, where a spin crossover
(SCO) can happen. The range of Ecryst due to the variation
of εd is presented by the orange error bars in Fig. 2. In
the regime of weak hybridization, the system is described
predominantly by crystal fields. There are, in particular, no
charge fluctuations to N = 7 or N = 5 Fe impurity states,
which are generally affected by changing εd . As there is no
mixing with N 	= 6 impurity states in the limit of V → 0,
the error bar is vanishingly small in this limit. For V beyond
2.8 eV, this particular scenario of crystal field will not be able to
switch the spin state. An orbital reversal, i.e., the dx2−y2 energy
becoming lowered compared to other orbitals, is needed in this
case, which requires a different kind of charge distribution in
the molecule. Thus, a transition between the S = 1 and S = 2
states could be realized for V < 2.8 eV, while S = 1 should
be obtained generally for V > 2.8 eV.

Weakening of the ligand field leading to a spin-state change,
however, needs a nontrivial chemical or physical procedure.
The existence of high-spin (S = 2) porphyrin complexes
with d6 configuration has so far been observed in nonplanar
molecules with five or six coordination of the central Fe atom
[17]. Higher coordination leads to an out-of-plane shift of
the central Fe atom (five coordination) or symmetrical Fe-N
block expansion, resulting in a weaker ligand field. For four
coordination, however, the S = 2 state is yet to be confirmed
experimentally. Figure 2 establishes the parameter space for
when this state is to be expected.

The variation of V is also studied with Perdew-Burke-
Ernzerhof (PBE) by varying the Fe-N bond length in the
molecule. The highest value of V (3.36 eV) is obtained for
a Fe-N bond length of 1.97 Å. The five data points, shown in
Fig. 2 in filled orange circles, are for bond lengths in the range
of 2.04 to 2.11 Å. As mentioned in Refs. [1,3] for FeP either
physisorbed or chemisorbed on surfaces, the required bond
length of Fe-N in FeP for spin switching is beyond 2.04 Å
within the PBE+U approximation with Ueff = 3 eV [18]. This
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FIG. 3. Schematic diagram depicting the C222 and C231 configu-
rations. Ecryst describes the energy separation between dx2−y2 and the
rest of the d orbitals treated as degenerate. V denotes the strength of
hybridization between the dx2−y2 and the bath state with an energy Eb.
The specific orbitals corresponding to the occupation of the energy
levels are also indicated.

is in agreement with the data shown in Fig. 2, where both
DFT++ and PBE suggest a spin crossover beyond 2.04 Å.
A detailed comparison between the bond lengths required for
spin crossover in PBE+U and DFT++ is shown in Fig. 3.
A comparison of PBE and LDA calculations yields values of
the static crystal field, bath energy, and hybridization as 0.42
(0.37) eV, −2.03 (−1.89) eV, and 3.36 (3.63) eV for PBE
(LDA).

The free-molecule spin state (S = 1) is particularly inter-
esting from the point of view of the ground-state configuration.
A strong ligand field in the free molecule leaves dx2−y2 nearly
unoccupied and an intermediate spin state (S = 1) can have
a ground-state electronic configuration with two electrons in
dxy , three electrons in dπ , and one electron in dz2 . We will refer
to this configuration as a C231 (d2

xyd
3
πd1

z2 ) configuration. The
other possible configurations within the S = 1 ground-state
multiplet are C222 (d2

xyd
2
πd2

z2 ), C141 (d1
xyd

4
πd1

z2 ), and C132

(d1
xyd

3
πd2

z2 ), among which the C222 appears to be very close
in energy to the energy of C231. From Re�̃, a splitting
can also be seen among dπ , dz2 , and dxy orbitals, but in a
relatively small energy scale. To acquire a clear view of the
ground-state configuration, we varied the crystal field in the
presence and absence of coupling V. In the first step, we
only considered a crystal-field splitting between dx2−y2 and
the averaged position of the remaining orbitals, as shown in
the leftmost part of Fig. 3. In this pure crystal-field situation,
the S = 1 state leads to the C231 ground-state configuration. As
the coupling V is switched on, the ground-state configuration
becomes on-site energy dependent. This happens because
the inclusion of strong hybridization will admix N = 5 and
N = 7 impurity occupancies with the pure N = 6 ground-state
configuration of the pure crystal-field situation. Varying on-site
energy, the ground-state configuration can be modified. The
energy scale associated to this change is of the order of
meV. A relative splitting among the remaining orbitals has
even more pronounced effects in determining the ground-state
configuration. As shown in Fig. 3, with additional splitting,
if dπ stays above dz2 , C222 is stabilized. However, in the
reverse situation, C231 is obtained. This change occurs in an

FIG. 4. Upper panel: Energy differences between low-spin (LS)
and high-spin (HS) states calculated by DFT++ [double counting
(DC) treated by placing chemical potential in the middle of the
gap and DC calculated using the fully localized limit (FLL)] and
PBE+U (double counting by Dudarev and Lichtenstein) methods as a
function of Fe-N bond lengths in FeP. The error bars correspond to the
variation of on-site energy [model Hamiltonian in Eq. (1)] in DFT++
calculations. Lower panel: Magnetic anisotropy energy (MAE) as a
function of Fe-N bond lengths calculated with the double-counting
correction in the fully localized limit.

at least one- or two-order-higher energy scale compared to the
many-body-effects-induced configuration change, revealing
the crystal field to be the dominant factor from that aspect.

Let us now move on to the realistic calculations, where
DFT-extracted V and Ecryst are explicitly employed. Apart
from dx2−y2 , the relative splitting within the rest of the d

orbitals is considered as well. In the upper panel of Fig. 4,
a comparison between the spin-crossover properties of FeP
as predicted by different flavors of PBE+U and DFT++
is shown. In the PBE+U calculations, we stabilize the
nonfavorable spin solutions by constraining the spin moments.
First of all, the energy difference between the LS and HS
configurations is close for the PBE+U calculations done using
the Dudarev and Lichtenstein approaches. However, there is
a notable difference between these PBE+U methods in the
Fe-N bond length required for the LS-HS transition. Second,
the bond lengths required for the spin transition obtained
from Lichtenstein PBE+U and DFT++ with the same form
of double-counting correction are higher compared to that
obtained from the Dudarev method. This is understandable
since both the Lichtenstein variant of PBE+U and DFT++
employ the full four-fermion Coulomb matrix as defined
through the Slater parameters, whereas Dudarev assumes a
simplified Coulomb vertex. DFT++ with two different DC
corrections is also expected to yield spin crossover, but with
larger strains. The black curve in the upper panel of Fig. 4
represents the choice of double counting that puts chemical
potential in the middle of the gap between the N = 8 and N =
7/9 spectra. The error bars define the situations corresponding
to the placement of chemical potentials close to the edges of
the gap. The choice of fully localized limit (FLL) of double
counting results in the red curve in the upper panel of Fig. 4.
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The general difference between the DFT++ and PBE+U
approaches in terms of spin-crossover energies is clearly
evident from Fig. 4. DFT++ results in multiple Slater
determinant states, the evidence of which can be observed
from the occupations corresponding to two different spin
states. The high-spin (S = 2) state exhibits an almost integer
occupation, suggesting the presence of a single Slater deter-
minant. In contrast to that, the S = 1 solution produces rather
fractional occupations, reflecting the presence of multiple
Slater determinants. As PBE+U always chooses a single Slater
determinant, an additional energy cost is involved. This energy
cost is much higher for the S = 1 state due to its multiple
Slater determinantal nature compared to the S = 2 state. This
can be clearly seen from the upper panel of Fig. 4, where
ELS − EHS for PBE+U is significantly small compared to
DFT++, signifying the differences in strain in FeP required
to bring about the spin crossover in two cases. In the lower
panel of Fig. 3, the calculated magnetic anisotropy energies
(MAEs) within DFT++ (with DC correction in FLL) are
shown for different Fe-N bond lengths. In all of the cases,
we have found the easy axis of magnetization to lie in the
plane of the molecule. Our calculated large values of MAE
have also been observed in recent experiments [19].

It should be mentioned that convergence tests on spin-
transition energy �E(ELS-EHS) have been performed by
increasing the number of bath states per d orbital. The
number of bath states for the most important dx2−y2 orbital
is systematically increased from 1 to 4, while the number of
bath states for other d orbitals is considered to be 0 and 1. Our
DFT++ calculations with four bath states for dx2−y2 and one

bath state for each of the rest of the orbitals result in a minor
change (about 3%) in �E (see SM [16] for more details). This
justifies the validity of our approximation of using a single
bath state.

In summary, we have presented ground-state electronic
properties of Fe in an FeP molecule with a hybrid approach
of DFT combined with a many-body treatment, using exact
diagonalization. We have demonstrated that a delicate in-
terplay of the static crystal field, ligand hybridization, and
Coulomb interactions promotes iron porphyrin to be a potential
candidate for realizing spin-crossover behavior. In general,
our calculated phase diagram indicates the possibility of
tuning electronic and magnetic properties of organometallic
molecules to serve the purpose of molecular electronics
and storage devices. Moreover, the long-standing debate
regarding the electronic ground-state configuration, e.g., C222

vs C231, has been solved by identifying the proper parameters
required to switch one to the other, which will have important
consequences for the spin dipole moments and magnetic
anisotropies, where the energy positions of d orbitals with
specific symmetries are important.
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