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Narrow-band electron systems are particularly likely to exhibit correlated many-body phases driven by
interaction effects. Examples include magnetic materials, heavy-fermion systems, and topological phases such
as fractional quantum Hall states and their lattice-based cousins, the fractional Chern insulators (FCIs). Here
we discuss the problem of designing models with optimal band flatness, subject to constraints on the range of
electron hopping. In particular, we show how the imaginary gap, which serves as a proxy for band flatness, can
be optimized by appealing to Rouché’s theorem, a familiar result from complex analysis. This leads to an explicit
construction which we illustrate through its application to two-band FCI models with nontrivial topology (i.e.,
nonzero Chern numbers). We show how the imaginary-gap perspective leads to an elegant geometric picture of
how topological properties can obstruct band flatness in systems with finite-range hopping.
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I. INTRODUCTION

The accumulation of electronic energy states in narrow-
band systems often results in interaction-driven strongly
correlated many-body phases. The limiting case in which one
or more narrow bands become perfectly flat has attracted
recent attention in both condensed-matter and cold-atom
physics [1,2], with several proposals for realization with
realistic materials [3–8]. Unlike van Hove singularities [9]
and other prominences which can lead to nesting instabili-
ties, flatbands are featureless in momentum space and thus
tend to support similarly featureless many-body states, i.e.,
without breaking of lattice symmetries. A classic example
is the Stoner instability leading to ferromagnetism, which
is rigorously established for flatband systems [10,11], but
notoriously difficult to elicit with typically dispersing bands.
In systems with attractive effective interactions, flatbands and
related density profiles tend to favor a featureless s-wave
superconductor [12,13] over competing charge density wave
states. Correlated states where discrete lattice symmetries
are spontaneously broken by interaction are also possible in
flatband systems, especially at low filling [14]. In addition to
broken-symmetry states, topological states known as fractional
Chern insulators (FCIs) [15–20] have been identified in
interacting nearly-flatband models. These systems are lattice
realizations of the fractional quantum Hall effect, where their
nearly flatbands effectively serve as Landau levels.

Besides the atomic limit with trivially dispersionless bands,
flatbands can also arise in noninteracting systems [21].
Tasaki [1] has described both long-range hopping as well
as local “cell construction” models yielding flatbands which
rigorously exhibit ferromagnetism when Hubbard interactions
are included. The class of lattices known as line graphs, which
includes Kagome, checkerboard, and pyrochlore structures,
all exhibit flatbands at energy E = 2t , where t is the nearest-
neighbor hopping amplitude. This construction was exploited
by Mielke [22] to obtain ferromagnetic ground states in the
presence of a Hubbard term. In each of these cases, the
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hoppings conspire to yield an extensive number of degenerate
localized modes. Such flatband models often exhibit band
touching due to additional modes from the toroidal homotopy
generators [22]. A perfectly flat band can also result from
interaction-induced self-energy renormalization [6]. For FCIs,
nonzero Chern number [23] C as well as band flatness are
desired [24], though a band with C �= 0 and finite-range
hoppings cannot be perfectly flat [25]. Numerical evidence
indicates that this also appears true for bands with nontrivial
Z2 topological invariants [26,27], although this result is not
yet rigorously established.

In this work, we devise a systematic approach for effi-
ciently flattening an electronic band with a given class of
hopping terms. While any band may be trivially flattened
via band projection, i.e., by replacing εn(k) | n,k 〉〈 n,k | with
| n,k 〉〈 n,k |, this maneuver comes at the cost of introducing
nonlocal hoppings in real space. Our aim here is to optimize
band flatness for models with physical hoppings, which are
constrained by locality. This is achieved by deforming a given
Hamiltonian toward one with a maximal imaginary gap (IG).
With the help of Rouché’s theorem from complex analysis,
this problem can be reduced to one involving the analysis of
a polynomial in a single variable. To illustrate our approach,
we specialize to two-band FCIs and show how nontrivial band
topology constrains the size of the IG, and thus the optimal
band flatness. As a byproduct, our mathematical approach also
enables the visualization of the topological index as a certain
winding number, in analogy to Volovik’s interpretation of the
Chern number as a winding of the Green’s function in complex
momentum space [28].

II. FLATBANDS AND THE IMAGINARY GAP

Suppose we want to flatten the mth band of a given N -band
Hamiltonian H (k) with eigenvalues {εj (k)}. We can do so by
adding a diagonal term −εm(k) IN×N to H (k), so that [29]

H ′(k) = H (k) − εm(k) I (1)

has eigenvalues {ε1 − εm, . . . ,0, . . . ,εN − εm}. To make H ′(k)
physically realistic, we perform a real-space truncation
H ′(k) → H̃ (k) such that H̃ (k) involves only hoppings which
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connect unit cells separated by distances |R| � �, where R is
a direct lattice vector and � is a predefined hopping range. The
mth band now acquires a finite bandwidth, as this truncation
sacrifices perfect flatness for the sake of finite-range hopping.

We assume that there are no generic band crossings [30].
An appropriate dimensionless measure of the flatness of the
mth band is then the ratio �m/Wm of the minimal band gap,

�m = min{εm(k) − εm−1(k) , εm+1(k) − εm(k)}, (2)

across neighboring bands divided by the bandwidth Wm =
max‖εm(k) − εm(k′)‖k,k′ . While this depends on more infor-
mation than provided by the dispersion εm(k) alone, we find,
for a wide variety of models studied, that the flatness is well
approximated by

f =
∑
R>0

ε(R)
/ ∑

R��

ε(R), (3)

where ε(R) = ∫
�̂

ddk
(2π)d ε(k) eik·R is the Fourier transform of

the dispersion ε(k) (dropping the band index m), integrated
over the first Brillouin zone �̂. The numerator in Eq. (3) sets
an overall energy scale roughly proportional to the typical band
gap [31]. Since the bandwidth arises from the finite truncation
range, it should scale approximately as the denominator.

As is well known from classical Fourier analysis [32],
Fourier coefficients generically decay exponentially at an
asymptotic rate given by the so-called imaginary gap (IG). The
concept of the IG is employed in computing decay properties
in subjects ranging from semiconductor surface science to
statistical systems and quantum entanglement [33–40]. An
imaginary gap gμ can be defined for each component kμ

of the wave vector as follows. Consider the Hamiltonian
H (kμ) as a function of complex kμ = Rekμ + i Imkμ, with
all other wave-vector components real and fixed. Its energy
manifold consists of N Riemann sheets which represent the
N bands εn(kμ). The sheets do not touch at physical (real)
wave vectors (Imkμ = 0) where H (kμ) is gapped, but one or
more intersections εm(kμ) = εm±1(kμ) always exist at complex
values of kμ, which are known as ramification or branch
points [41] (see Fig. 1). The imaginary gap gm

μ for the mth
band is given by the magnitude of Imkμ minimized over
all ramification points and over all other real components of
the wave vector. Further minimizing over all directions, one
obtains the overall IG, gm = min(gm

1 , . . . ,gm
d ). The IG gm is

positive and unaffected by energy rescaling.
The Fourier transform of a given band’s dispersion scales

like ε(R) ∼ e−gR in one dimension. This generalizes to

ε(R) ∼
d∏

μ=1

e−gμ|Rμ| (4)

in higher dimensions, as derived in Appendix A, yielding a
flatness parameter

f ∼
∑
R>0

e−gμ|Rμ|
/ ∑

R>�

e−gμ|Rμ| ∼ eg·� > eg‖�‖, (5)

where �μ sets the maximal hopping range along the direction
of elementary reciprocal lattice vector aμ, and ‖�‖= ∑

μ �μ

is the Manhattan distance [42]. When g ‖�‖ is small, the
inequality in Eq. (5) is far from sharp, and we expect ln f ≈

(a) (b) 

FIG. 1. (a) Illustration of the band structure of a gapped Hamil-
tonian in the direction of imaginary momentum. The mth band
touches another band at complex k(m)s, with the imaginary gap
(IG) gm = min(Imk(m)). (b) Plot of Reε1,2(k) for the Dirac model
H (k) = 
d(k) · 
σ , with 
d(k) = (sin k,1 + m − cos k,0) and m = 0.3.
The physical band gap at Imk = 0 (back of the graph) is 2m.
The two bands, which are Riemann sheets in complex momentum
space, intersect (and hence are gapless) beyond the branch point at
Imk ∼ g ≈ 0.2624, where H (k) becomes nonanalytic.

g ( ‖�‖ +r), where 0 < r < 1 is a nonuniversal constant
depending on � and the gμ.

The essential insight from Eq. (5) is that a maximization
of the IG g leads to an exponential optimization of the
flatness ratio f . Crucially, Eq. (5) extrapolates well down to
small ‖�‖ despite being rigorously true only for large ‖�‖.
This is empirically evidenced in Fig. 2, which shows a high
correlation between ln f and g for a variety of popular FCI

Model D0.2 D0.4 Dwave D1 CB HC D5 D20

g 0.18 0.33 0.79 0.88 1.01 1.21 1.39 2.94

f 1.62 3.01 6.8 5.82 26 60 37 500
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FIG. 2. Imaginary gaps g and flatness ratios f for different
two-dimensional models flattened through Eq. (1) and truncated to
up to NNN hoppings (‖�‖= 2). Dm refers to the Dirac model [46]
with mass m, Dwave to a C = 2 model [45], and CB and HC to
the checkerboard and honeycomb FCI models, respectively [16,43].
ln f exhibits a strong correlation with g. The linear regression
coefficient of 2.22 agrees well with ‖�‖= 2, with a comparably
small nonuniversal error of r = 0.11. The largest IGs g are attained
by the topologically trivial m = 5, 20 Dirac models, whereas HC
shows the greatest f ≈ 60 among all C �= 0 models considered.
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as well as topologically trivial models [16,43–45] with � =
(1,1) (‖�‖= 2), i.e., when the above truncation procedure
leaves only the nearest- and next-nearest-neighbor (NN and
NNN) hoppings. The value of f for preoptimized flatband
models, such as the checkerboard (CB) and honeycomb (HC)
models [16,43], remains nearly unchanged after the flattening
by Eq. (1).

In Fig. 2, the largest f was found for topologically trivial
models. This is consistent with the fact that a model with
C �= 0 and finite hopping range can never be completely flat.
This was proven in Ref. [25] via K theory, where it was shown
that the band projectors of such models must be Laurent
polynomials with finite order in zμ ≡ eikμ . Consequently,
complex singularities must be present which, in our context,
imply inevitable truncation effects resulting in a nonzero
bandwidth. The converse is more subtle: A perfectly flat
band with f = 0 (g = ∞) can still be topologically nontrivial
(C �= 0) if the hoppings are not truncated. Examples include
lattice models with Gaussian hoppings in a magnetic field [47],
which are inspired by parent Hamiltonians [48–50] for the
chiral spin liquid. Another subtlety is that chiral edge states,
which are usually associated with a nontrivial Chern number,
can occur in Floquet systems with flatbands [51,52].

III. ANALYTICAL OPTIMIZATION
OF THE IMAGINARY GAP

The imaginary gap (IG) g of H (k) provides a good lower
bound of the flatness ratio f � eg‖�‖ for the bands of the
flattened H̃ (k). The next step is to compute g efficiently. We
want to generate a local N × N model H̃ (k) with an almost flat
band and hopping terms satisfying H̃ (R) = 0 for |Rμ| > �μ.
This can be done via Eq. (1), followed by a truncation of
the resulting H (k) → H̃ (k). Expressed in terms of the zμ =
eikμ , we have H̃ij (z) = [H̃ji(z)]∗, with each H̃ij (z) a Laurent

polynomial in each of the zμ with powers ranging from z
−�μ

μ

to z
+�μ

μ ; note that z−1
μ = z∗

μ for z on the unit circle, which is
the boundary of the analytic continuation region. The energy
eigenvalues εn(z) are roots of the characteristic polynomial,

P (ε; z) = det[ε IN×N − H̃ (z)]. (6)

The energy manifold is singular at the roots of the discriminant,

D(z) =
N∏

m<n

[εm(z) − εn(z)]2, (7)

which is defined for any N . As shown in Appendix B,
D(z) can be expressed [53] in terms of the coefficients
pl(z) of P (ε; z) = ∑N

l=0 pl(z) εN−l , with p0 ≡ 1. For k ∈ Rd ,
the coefficients are real because they are symmetric poly-
nomials in the eigenenergies: p1(z) = −∑

j εj (z), p2(z) =∑
j<l εj (z) εl(z), etc. From Eq. (6), each pl(z) is a polynomial

in each zμ with negative degree −l�μ and positive degree
+l�μ. In what follows, it suffices to know that D(z) is itself
a multinomial of maximal degrees ±Mμ = ±N (N − 1)�μ in
each zμ. For local N = 2 band models which can be written as

H̃ (z) = 
d(z) · 
σ [54], the discriminant reduces to the familiar
expression D(z) = ∑3

j=1 d2
j (z).

We are now ready to optimize the IG. We first compute,
in each direction μ, the IG gμ = min |Re ln ξμ|, where ξμ is
a root of D(. . . ,zμ, . . .), with all zμ′ for μ′ �= μ considered
as parameters with respect to which the minimization is per-
formed. Expressed as a Laurent polynomial, the discriminant
may be written as

D(z) =
M∑

n=−M

Dnz
n, (8)

where D−n = D∗
n, and where we have dropped the direction

index μ. We now analytically continue to [55] |z| �= 1. The
Hermiticity of H̃ guarantees that if D(z) = 0, then D(1/z∗) =
0, and hence exactly M of the 2M roots of the analytic function
zMD(z) will lie within the unit circle |z| = 1. The IG is then
determined by the root lying closest to |z| = 1.

The task of finding this root is greatly facilitated by
Rouché’s theorem [32], which states that if |f (z)| > |h(z) −
f (z)| on a closed contour C, then f (z) and h(z) have the
same number of zeros within C. To understand this intuitively,
consider a man at f (z) walking a dog at h(z) near a tree. Let
arg(z) denote the winding around the tree. If the dog’s leash
is shorter than the minimal distance of the man from the tree,
the dog and the man must encircle the tree the same number
of times.

Now let f (z) = D0 zM and h(z) = zMD(z), with the
contour C being the circle |z| = �. Clearly, f (z) has an
M-fold degenerate root at z = 0 and no others. Since
| ∑n�=0 Dn zn| <

∑
n�=0 |Dn| �M+n on C, where the sums are

over n ∈ {±1, . . . ,±M}, Rouché’s theorem then guarantees
that if |D0|�M >

∑
n�=0 |Dn| �M+n, the function h(z) =

zMD(z) also has M roots within C. Since the right-hand
side of the inequality increases without bound for � � 1, we
conclude that gμ > − ln �, where � is the smallest positive
root of

F (�) ≡
M∑

n=1

|Dn|(�M+n + �M−n) − |D0| �M. (9)

The problem of finding a lower bound for the IG has been
reduced to the simpler problem of solving a real polynomial
equation, F (�) = 0. Essentially, we sacrificed an exact deter-
mination of gμ to settle for a lower bound, and at the same
time avoided the necessary step of finding the arguments of
the roots of h(z). We shall see below that this lower bound is
already sufficient in providing an estimate of f .

Equation (9) can be solved numerically, and in certain cases
analytically via the substitution

U = � + �−1. (10)

An optimally flat model may be obtained by varying H (k) until
the root � > 0 in Eq. (9) is minimized. If � < 1 is maintained
throughout the minimization, no branch point ever touches the
unit circle, i.e., the physical gap never closes, and we remain
in the same topological class.

IV. TWO-BAND CHERN MODELS

Many of the important flatband models such as the honey-
comb, checkerboard, and Dirac models contain only N = 2
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bands and NN hoppings (‖�‖= 1). Their discriminants are,
at most, of quadratic (M = 2) degree, and can be readily
studied and optimized analytically. We write the truncated
Hamiltonian as H̃ (z) = 
d(z) · 
σ , where z = eik for a given
momentum component. The 
d vector takes the form


d = 2( 
w cos k − 
v sin k) + 
β, (11)

where 
w, 
v, and 
β are real three-component vectors that depend
parametrically on the other momenta. With 
α ≡ 
w + i
v, we
can rewrite 
d as 
d = 
α z + 
α ∗ z−1 + 
β. The coefficients in
the discriminant may now be given: D0 = 2
α · 
α ∗ + 
β · 
β,
D1 = 2
α · 
β, and D2 = 
α · 
α. Substituting these expressions
in Eq. (9) and letting U = � + �−1, we obtain

U =
√∣∣∣∣ D1

2D2

∣∣∣∣
2

+
∣∣∣∣D0

D2

∣∣∣∣ −
∣∣∣∣ D1

2D2

∣∣∣∣. (12)

Since � � 1, we choose the root � = 1
2 (U − √

U 2 − 4 ),
yielding a lower bound for the overall flatness ratio f in the
direction μ:

f > min
μ

{
1
2Uμ +

√
1
4U 2

μ − 1
}
, (13)

which is monotonically increasing in Uμ, where �μ and Uμ

are the minimal U and maximal � in direction μ, optimized
over the wave-vector components in all other directions. Note
that the flatness ratio f increases with decreasing |D2| when
U is sufficiently large. In terms of the original three vectors,

|D0| = 2| 
w |2 + 2|
v |2 + | 
β |2,

|D1| = 2
√

( 
w · 
β)2 + (
v · 
β)2, (14)

|D2| =
√

(| 
w |2 − |
v |2)2 + 4( 
w · 
v)2,

which are rotationally invariant, consistent with the basis
independence of H̃ (z). Note also from Eq. (12) that f is
unaffected by an overall rescaling of 
w, 
v, and 
β. To maximize
U , and hence f , we want |D1,2| � |D0|.

Topological constraint on flatness

1. D2 = 0 cases

The parametrization in terms of 
w,
v, and 
β suggests a
geometric interpretation. Various FCI models belong to the
simplest case of D2 = 0, where | 
w | = |
v | and 
w · 
v = 0; for
D2 �= 0 cases, see the next section. From Eq. (12),

U =
∣∣∣∣D0

D1

∣∣∣∣ = | 
w |2 + |
v |2 + 1
2 | 
β |2

| 
w | | 
β‖|
, (15)

where 
β‖ is the component of 
β in the plane spanned by 
w
and 
v : 
β ≡ 
β‖ + 
β⊥. To optimize flatness, 
β must avoid the
largest possible torus of constant U , defined by

| 
β⊥|2 + (| 
β‖ | − U | 
w |)2 = | 
w |2(U 2 − 4). (16)

For large U , its approximate inner and outer radii are 2U−1| 
w |
and 2U | 
w |. Thus, 
β should either have a small magnitude
inside the “donut hole” or a large one outside the torus.

Consider optimizing f in the x direction for a two-
dimensional model, so that 
β = 
β(ky) traces out a loop as

FIG. 3. Nodal ring U = Ux = 2 representing gap closure [red,
Eq. (12)], and 
β loop [blue, Eq. (11)] representing the 
d vector of
Eq. (17) for m = 0.2, 1.2, and 2.2. The linking number between the
ring and the loop is 1 in the m < 2 regime where C = 1, and zero
otherwise. The two loops are furthest separated at m = 1, which also
makes that the case with the highest flatness ratio [see Eq. (16)].

ky varies over a period. To remain in the same topological

class, 
β must not pass through any point where the gap closes,
i.e., where Ux = 2, which occurs when | 
β| = |2 
w|. This is
just the ring of radius |2 
w| in the plane spanned by 
v and

w, centered at its origin (Fig. 3). Configurations belonging to
the same topological class thus are those that can be reached
without intersecting this nodal ring, i.e., those 
β loops have the
same winding number around the ring. To maximize min(Ux),
we can either increase the size of the loop 
β(ky) or shift it
far away from the origin. A large loop, however, entails large
coefficients of the terms in ky , which will lead to small Uy

when the same procedure is applied to the ky direction. Hence
a model with minimal f in both directions should have loops

β(kx) and 
β(ky) of radii of the same order of magnitude as
| 
w | = |
v |.

It is now clear how topology constrains f : In the topolog-
ically trivial case, 
β need not wind around the nodal ring, yet
can still entail arbitrarily large min(Ux) and min(Uy) by being
far from the ring. In contrast, nontrivial topology requires that
the 
β loop winds around the nodal ring, constraining its size
and position.

2. Example: 2D Dirac model

Consider the two-dimensional (2D) Dirac Hamiltonian

H̃ (k)= sin kxσ
x+ sin kyσ

y+(m+ cos kx+ cos ky)σ z, (17)

which is Eq. (11) with k → kx , 
w = (0,0, 1
2 ),
v = (− 1

2 ,0,0),
and 
β = (0, sin ky,m + cos ky). We have |D2| = 0, |D1| =
m + cos ky , and |D0| = 2 + 2m cos ky + m2. Equation (17)
is symmetric in kx and ky , so gx = gy , and we only need
to consider one direction, kx . The ratio that determines the
band flatness is Ux = |D0/D1|. It attains extremal values when
cos ky = ±1, where

Ux =
∣∣∣∣D0

D1

∣∣∣∣ =
∣∣∣∣m ± 1 + 1

m ± 1

∣∣∣∣. (18)

We then obtain the flatness ratio f � �−2
x = �−2

y by choosing

the larger of the solutions to �x = � = 1
2 (U − √

U 2 − 4 ).
The optimal flatness ratio bound is obtained at m = √

2,
where f = 3 + √

8 ≈ 5.82. In this case, the bound set by
Rouché’s theorem is saturated. A numerical computation from
H̃ (k) gives an actual flatness ratio of f ≈ 6, which is close
to our lower bound. One can verify that in this case, the
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FIG. 4. An illustration of the nodal surface (red) and 
β loop (blue)
for the general case D2 �= 0, with constant |v| = 1.05 |w| and 
w · 
v =
0.05 | 
w||
v|. Shown is 
β with linking number 2.

inequality in Rouché’s theorem is saturated for all values
of m. Geometrically, we see that 
β describes a circle of
radius unity: (βy − m)2 + β2

x = 1. As shown in Fig. 3, it has
a linking number of 1 with the nodal circle β2

x + β2
y = 1 for

0 < |m| < 2, i.e., C = ±1.

3. General cases with nonzero D2

We now discuss the geometric picture for general two-
dimensional two-band models with D2 not necessarily zero.
From the general expression of U in Eq. (9) of the main text,
we find that the nodal points (where U = 2) occur at |D0| =
1
2 |D1| + 1

2 |D2|. As shown in Fig. 4, the nodal ring in general
broadens to become two bean-shaped surfaces that intersect at
two points. In general, their exact shape will also depend on
the other momentum parameters.

Most importantly, this general case is topologically identi-
cal to the D2 = 0 case. The Chern number remains the winding
number of 
β around the nodal region, which still has the
same topology as the ring, except that there are two additional
topologically trivial regions inside each of the bean-shaped
surfaces. 
β loops inside them are limited to small values of U ,
and are of limited usefulness to the search of flatband models
with large f .

V. CONCLUSION

We have restated the band flattening problem for a truncated
Hamiltonian H̃ (k) with finite-range hoppings in terms of the
optimization of the imaginary gap, which is the smallest
imaginary component of the wave vector for which the
Hamiltonian H̃ (k) is singular. Appealing to Rouché’s theorem,
this optimization is further reduced to an analysis of a finite-
order polynomial, and finally to a vector geometry problem.
Our approach provides geometric insight into how a nonzero
Chern number imposes a finite bandwidth for short-range
hopping models. It also offers a constructive approach to
optimizing the band flatness of short-range hopping models.
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APPENDIX A: DECAY PROPERTIES OF THE
EIGENENERGIES ε(kx,ky) IN REAL SPACE AND THE

IMAGINARY GAP

We provide a derivation that the scaling behavior of real-
space hoppings ε(R) is given by

∏d
μ=1 e−gμ|Rμ|, where gμ is

the imaginary gap for k parallel to the elementary reciprocal
lattice vector bμ, with other components of k held fixed. This
result forms the basis of Eq. (3) of the main text. For ease
of notation, we specialize to the case of two dimensions,
R = (X,Y ). First, we clarify how the analytic continuation
is performed. The energy of a particular band ε(kx,ky) is a
function of two variables, which we analytically continue to
the complex plane one at a time, while regarding the other as
a parameter, i.e., ε(kx,ky) → ε(z,ky) with z = eikx .

The Fourier decay rate gx(ky) can be found by finding the
location of the singularity of ε(z,ky) closest to the unit circle
|z| = 1. Analyzing ε(kx,z) with z ≡ eiky yields gy(kx). We
now find the asymptotic bound on ε(X,Y ). First, we Fourier
transform over kx ,

ε(X,Y ) =
∫

�̂

d2k

(2π )2
ε(kx,ky) ei(kxX+kyY )

=
∫

dky

2π
ε(X,ky) eikyY

∼
∫

dky

2π
e−gx (ky )|X| eiθ(X,ky ) eikyY , (A1)

where we have invoked |ε(X,ky)| ∼ e−gx (ky )|X| [32]. The
quantity θ (X,ky) represents an unknown phase that turns out
to be irrelevant. Next we do the ky Fourier transform. We
obtain a simple bound upon expanding about the minimum gx

of gx(ky),

ε(X,Y ) ∼
∣∣∣∣
∫

dky

2π
e−gx (ky )|X| eiθ(X,ky ) eikyY

∣∣∣∣
�

∫
dky

2π
|e−gx (ky )|X||

=
∫

dky

2π
e−gx |X| e−g′′

x (ky−k0
y )2|X|/2+···

≈ (2π |X| g′′
x )−1/2e−gx |X| ∼ e−gx |X|, (A2)

where k0
y is the value of ky where gx(ky) = gx is minimized,

and g′′
x is the curvature at that point. The above approximation

is justified in the limit of large |X|, where higher-order terms in
(ky − k0) are rapidly suppressed. As such, only contributions
from gx(ky) = gx and a small neighborhood around it are non-
negligible. Note that we have replaced the periodic integral
over ky with an infinite integral above, so the former will not
be strictly correct in the limit of constant gx(ky). Still, the result
ε(X,Y ) ∼ e−gx |X| holds in that case.

If we repeat the above derivations starting from the partial
Fourier transform ε(kx,Y ) instead, we obtain an analogous
bound involving gy . Combining these results, we obtain

ε(X,Y ) ∼ e−gx |X|−gy |Y | < e−g‖R‖. (A3)

Equation (3) of the main text predicts a flatness ratio of
f ∼ eg‖�‖ after a real-space truncation of ε(X,Y ) that retains

155155-5



CHING HUA LEE, DANIEL P. AROVAS, AND RONNY THOMALE PHYSICAL REVIEW B 93, 155155 (2016)

only terms within |X| � �x and |Y | � �y . This ratio depends
crucially on Eq. (A3), which is exact only in the asymptotic
limit of large �. In practice, however, it provides excellent
agreement with numerical results even for ‖�‖= ||(1,1)|| =
2, as shown explicitly in Fig. 2 of the main text, and in
the example on the Dirac model (also see main text). As
mentioned, gμ only rigorously controls the real-space decay
rate asymptotically. Furthermore, the derivation leading to
Eq. (A3) also contains large |R| approximations. There may

also be certain peculiarities in the shape of ε that suppress
certain Fourier components, e.g., the case of the D-wave
model, which has a poor overlap with the first harmonics
cos kx and cos ky . These will lead to an anomalous decay
not captured in the asymptotics. When g is small, the next
smallest truncated terms will not be much smaller than the
leading truncated terms, being only suppressed by a factor
e−g , and the decay rate should in fact lie between g ‖�‖ and
g( ‖�‖ +1).

APPENDIX B: MORE ON THE DISCRIMINANT

1. Explicit form

The discriminant of a polynomial

P (ε; z) =
N∑

l=0

pl(z) εN−l , (B1)

with p0 = 1, can be expressed in terms of the resultant of P (ε) and its derivative P ′(ε) (with z suppressed). The resultant is
proportional to the determinant of the (2N − 1) × (2N − 1) Sylvester matrix shown below, where the first N − 1 rows consist
of the coefficients of P (ε) and the next N rows consist of the coefficients of P ′(ε). Written out explicitly, the discriminant is
equal to (−1)N(N−1)/2/pN times the determinant of the Sylvester matrix,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pN pN−1 pN−2 . . . p1 p0 0 . . . . . . 0
0 pN pN−1 pN−2 . . . p1 p0 0 . . . 0
...

...
0 . . . 0 pN pN−1 pN−2 . . . p1 p0

N pN (N − 1) pN−1 (N − 2) pN−2 . . . 1 p1 0 . . . . . . 0
0 N pN (N − 1) pN−1 (N − 2) pN−2 . . . 1 p1 0 . . . 0
...

...
0 0 . . . 0 N pN (N − 1) pN−1 (N − 2) pN−2 . . . 1 p1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B2)

Since pl is of maximal degree l�μ in zμ, the discriminant as shown above must be of maximal degree,

degD(z) = 2�μ(1 + 2 + · · · + N ) = N (N − 1)�μ. (B3)

More generally, the resultant of two polynomials disappears whenever the two polynomials have a common root.

2. Alternatives to the discriminant

When N > 2, the roots of the discriminant gives us all the possible branch points, even those not associated with the mth
energy sheet that we desire to be almost flat. Consequently, the flatness of the desired band in H̃ (k) may be underestimated.
To remedy this, we may alternatively define gμ to include only the roots of (εm − εm+1)2(εm − εm−1)2. However, this procedure
may be more complicated to perform analytically, involving the explicit solution of the degree N characteristic polynomial. An
analytic solution may not even exist for N � 5 due to the Abel-Ruffini theorem [32], although this is not too constraining since
most interesting flatband models in the literature contain no more than N = 4 bands.
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