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We study the excitation spectrum of a family of transverse-field spin chain models with variable interaction
range and arbitrary spin S, which in the case of S = 1/2 interpolates between the Lipkin-Meshkov-Glick and
the Ising model. For any finite number N of spins, a semiclassical energy manifold is derived in the large-S
limit employing bosonization methods, and its geometry is shown to determine not only the leading-order term
but also the higher-order quantum fluctuations. Based on a multiconfigurational mean-field ansatz, we obtain
the semiclassical backbone of the quantum spectrum through the extremal points of a series of one-dimensional
energy landscapes—each one exhibiting a bifurcation when the external magnetic field drops below a threshold
value. The obtained spectra become exact in the limit of vanishing or very strong external, transverse magnetic
fields. Further analysis of the higher-order corrections in 1/

√
2S enables us to analytically study the dispersion

relations of spin-wave excitations around the semiclassical energy levels. Within the same model, we are able to
investigate quantum bifurcations, which occur in the semiclassical (S � 1) limit, and quantum phase transitions,
which are observed in the thermodynamic (N → ∞) limit.
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I. INTRODUCTION

Phase transitions relate macroscopically observable, quali-
tative changes of the properties of a material to its microscopic
structure and order. Thermally-driven phase transitions are
usually described in terms of canonical ensembles, taking
into account all the possible microstates of a system under
appropriate boundary conditions [1–3]. Since quantum phase
transitions occur as a function of external control parameters
at strictly zero temperature [4–6], when considering many-
particle systems one is often tempted to restrict the theoretical
treatment to a single quantum state—the ground state. In fact,
according to a widely employed definition [5], any nonanalytic
behavior of the ground state energy under smooth changes of
the external control parameter in an infinitely extended lattice
is considered a quantum phase transition. To understand the
origin of such a nonanalyticity, however, one has to consider
excited states: Different eigenstates may—due to their local-
ization and/or symmetry properties—respond differently to
changes of the external parameter, which can cause an excited
state to cross the ground state from above. In an adiabatic
picture, this naturally leads to nonanalytic behavior of the
ground state energy and, thus, evokes the quantum phase
transition. In the presence of nonvanishing couplings between
the eigenstates, one instead observes avoided crossings, which
generate jumps of the second derivative of the ground state
energy with respect to the control parameter, and for this reason
in a many-particle context are called second-order quantum
phase transitions.

Crossings and anticrossings are however hardly specific
to the ground state. Inasmuch as these are the expression
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of fundamental changes in the structural properties of the
system—as in the above classical understanding of phase
transitions—and not just the consequence of a perturbation-
induced, local coupling between isolated pairs of states,
one should in general expect dramatic structural changes
throughout the entire spectrum, in the vicinity of a quantum
phase transition. Indeed, quantum phase transitions are often
accompanied [7–9] by chaotic level statistics [10,11], which
can lead to rich dynamics in the vicinity of the critical point
[12]. Moreover, level clusterings in the excited states [13–16]
or in quasienergy states of driven systems [17] have been
identified as analogs of quantum phase transitions. However,
a compelling general connection between the rearrangement
of excited-state levels and the ground-state quantum phase
transition is still lacking.

In this paper we develop semiclassical methods, based on
variational approaches and bosonization techniques, to study
the excitation spectrum of spin chain models with tunable
interaction range undergoing a quantum phase transition. To be
able to investigate both, the effect of the finite interaction range,
and the interplay of thermodynamic and semiclassical limits,
we introduce a model of N interacting spins whose respective
length S naturally defines an effective Planck constant as
�eff = 1/S. The semiclassical (S � 1) and thermodynamic
(N → ∞) limits of our model are fundamentally different—
yet, nonanalytic behavior can be observed in both cases. To
distinguish between the two cases, we introduce the term
quantum bifurcation, which describes nonanalyticities of the
ground state energy of infinitely-connected, semiclassical
(e.g., mean-field) models; see also Refs. [18–20]. Such
quantum bifurcations are encountered in the semiclassical
limit of our model even if N is finite, whereas for finite S

we observe a quantum phase transition in the thermodynamic
limit.
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The central element of our analysis is a multidimensional
semiclassical energy landscape, whose geometry directly
determines the 1/

√
2S expansion of the Hamiltonian for large

S. In the first part of this paper, we study this multidimensional
energy landscape obtained in the semiclassical limit S � 1
for a finite number N of spins. Imposing suitably chosen
constraints, we obtain a series of one-dimensional sections
of this energy landscape, whose extremal points reproduce
key features of the full quantum spectrum, even in the
most quantum case of S = 1/2. The obtained semiclassical
spectrum is furthermore shown to converge to the exact
quantum spectrum when the external magnetic field—the
relevant control parameter—is either very large or very small.
In the second part, employing a bosonized representation of
the spin algebra, we study the quantum fluctuations contained
in terms of higher order in 1/

√
2S. This allows us to identify

the elementary spin-wave excitations of long-range interacting
systems and their dispersion relations. The disappearance of
the excitation gap for the spin waves further predicts the
exact critical point of the quantum bifurcation in a ring
geometry with arbitrary N and arbitrary interaction range.
This critical point is shown to coincide with the bifurcation
point of the corresponding semiclassical energy landscape.
Increasing the number N of spins, we observe the behavior
of the spin waves close to the critical point as the system
evolves from an effective semiclassical few-body system to an
infinitely extended many-body system in the thermodynamic
limit, N → ∞, with tunable interaction range.

The model proposed and investigated in this paper includes,
as special cases, several models that have been of recent
experimental and theoretical interest. Examples include the
long-range Ising model, which can be realized with strings
of trapped ions for spin-1/2 systems [21–23] and, recently,
also for spin-1 [24], as well as the conventional Ising model
with nearest-neighbor interactions, which may be studied with
cold atoms in tilted optical lattices [25–27]. Models with
algebraically decaying, long-range interactions are able to
account for the finite interaction length of, e.g., dipolar [28–30]
or Coulomb [21] interactions, and allow us to assess the
modified spreading behavior of perturbations when compared
[23,31] to lattices with nearest-neighbor interactions [32,33].

II. THE MODEL

We consider a one-dimensional variable-range spin model

H = − 2

S

N∑
i,j=1
(i<j )

Ji,j S
(i)
x S(j )

x − 2B

N∑
i=1

S(i)
y , (1)

where the spin-spin coupling reads Ji,j = J0/|i − j |α . Fur-
thermore, we have defined collective angular momentum
operators S

(i)
β = (1/2)

∑M
k=1 σ

(i,k)
β with β ∈ {x,y,z} such that

[S(i)
x ,S

(j )
y ] = iδijS

(j )
z . In addition, σ

(i,k)
β for k = 1, . . . ,M are

Pauli matrices describing M elementary spins at the ith site, in
such a way that S = M/2. In the course of this paper we will
discuss both cases of open and periodic boundary conditions.
Figure 1 depicts a sketch of the model and its interpretation
in terms of collective angular momentum operators S

(i)
β

FIG. 1. Sketch of the model for a chain with N sites and
M = 3. The upper part of the sketch depicts the spin chain in
terms of collective angular momentum operators S

(i)
β at the ith site.

Correspondingly, the lower part shows the representation in terms of
the elementary spins σ

(i,k)
β with β ∈ {x,y,z} and k = 1,2,3.

and elementary spins σ
(i,k)
β . In the special case of S = 1/2

[12,21–23,34–39], the Hamiltonian (1) reads

H = −J0

N∑
i,j=1
(i<j )

1

|i − j |α σ (i)
x σ (j )

x − B

N∑
i=1

σ (i)
y . (2)

As a function of α, which determines the interaction range,
the Hamiltonian (2) interpolates continuously between the
infinite-range Lipkin-Meshkov-Glick model (α = 0) [40] and
the one-dimensional Ising model with nearest-neighbor inter-
actions (α = ∞) [5,41].

The system’s properties are determined by the relative
strength of the two competing interactions: The internal
spin-spin interaction J0 causes the spins to arrange their
configuration depending on the x coordinates of neigh-
boring spins, while the external field B pushes the spins
along the transverse y direction. The sign of J0 determines
whether the system arranges in ferromagnetic (J0 > 0) or
(anti)ferromagnetic (J0 < 0) order in the limit B = 0. The
quantum phase transition occurs when the two potential energy
terms proportional to B and J0 are of comparable order of
magnitude, whereas the exact position of the critical point
depends on α.

For S = 1/2, the phase transition has been studied for
the special cases of the Ising and Lipkin-Meshkov-Glick
models—analytic solutions are available for both of them
[42,43]. For α = ∞ the system can be solved by Jordan-
Wigner fermionization [44] and exhibits a quantum phase
transition from (anti)ferromagnet to paramagnet at the critical
field Bc = |J0| [5]. In the opposite limit α = 0, a Holstein-
Primakoff bosonization [45] yields an efficient description of
the system in orders of 1/N (since all spins can be combined
into one large spin) [46], which is more practical than its
exact solution [47]. Whenever α � 1, the spectrum is only
bounded in the thermodynamic limit when J0 is rescaled by N

[34]. The quantum bifurcation of the Lipkin-Meshkov-Glick
model (α = 0) occurs at Bc = J̄0 with J̄0 = J0/N when
J0 > 0 [48,49], and at B = 0 when J0 < 0 [50]. Only a
few results are available for intermediate values of α [35].
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A phase transition in a classical long-range model for S = 1/2
was shown to occur for the parameter range 1 < α < 2 [36].
Further studies based on renormalization group techniques
allowed us to investigate the particular case α = 2 [37] and
to describe nonanalyticities of the free energy as a function
of α [38].

Conversely, in the semiclassical limit of Eq. (1), S � 1,
the number M = 2S of elementary spins at each lattice
site becomes very large. As a consequence, each site i is
represented by a composite semiclassical spin, as depicted in
Fig. 1, while different sites are coupled by a finite interaction
range, determined by α. The semiclassical limit allows for
an exact mean-field analysis and produces sharp bifurcations
of the energy landscapes, which directly imply nonanalytic
behavior of the quantum excitations for all values of N � 2.
These phenomena are henceforth referred to as quantum
bifurcations, to distinguish them from the quantum phase
transition in systems that are infinitely extended along the
interacting dimension. A discussion of quantum bifurcations
will be provided in Sec. III B, where the main features are
illustrated with a simple special case of our model. A complete
analysis of the quantum bifurcations in our model is then
provided in Sec. V. The model additionally permits us to
tune the number N of composite spins to independently scan
the transition to the thermodynamic limit, which is associated
with the transition into an infinitely extended one-dimensional
lattice whose interaction range is parametrized by α.

III. SEMICLASSICAL EXPANSION
OF THE SPIN HAMILTONIAN

We begin by deriving a formal semiclassical expansion
(S � 1) of the Hamiltonian (1) for a finite number N of spins.
In this limit, the spectrum of each individual spin resembles
that of a harmonic oscillator, which allows us to express the
spin operators in terms of bosonic creation and annihilation
operators. The associated Holstein-Primakoff transformation
[45] then leads to a perturbative expansion in orders of
1/

√
2S.

A. General formalism

To obtain the semiclassical expansion, we restrict ourselves
to the subspace of maximal angular momentum S = M/2. In
addition, it is convenient to introduce a local rotation operator
of the ith spin as

U (φ(i)) = exp
(
iφ(i)S(i)

z

)
. (3)

Based on these local spin rotations, we introduce the rotated
Hamiltonian as in Ref. [46]

H (φ) = U (φ)HU †(φ), (4)

which is given by

H (φ) = −2J0

S

N∑
i,j=1
(i<j )

1

|i − j |α
[
S(i)

x S(j )
x cos φ(i) cos φ(j )

− S(i)
x S(j )

y cos φ(i) sin φ(j ) − S(i)
y S(j )

x sin φ(i) cos φ(j )

+ S(i)
y S(j )

y sin φ(i) sin φ(j )
]

− 2B

N∑
i=1

[
S(i)

y cos φ(i) + S(i)
x sin φ(i)

]
. (5)

In this expression, U (φ) = ⊗N
i=1 U (φ(i)) is a tensor product of

the unitary operators defined in Eq. (3), and the local spin ori-
entations are characterized by the vector φ = (φ(1), . . . ,φ(N)).
Since U (φ) represents a unitary operation, the spectra of H

and H (φ) coincide. We now invoke the Holstein-Primakoff
representation of the angular momentum algebra [45]:

S(i)
y = S − a

†
i ai, (6)

S(i)
x + iS(i)

z =
√

2Sa
†
i

(
1 − a

†
i ai

2S

)1/2

, (7)

S(i)
x − iS(i)

z =
√

2S

(
1 − a

†
i ai

2S

)1/2

ai, (8)

where S is the total angular momentum at the ith site and ai,a
†
i

are bosonic operators. In the case S � 1 one can expand the
Hamiltonian (5) as

H (φ) = 2SNE(φ) +
√

2SHL(φ) + HQ(φ) + O
(

1√
2S

)
,

(9)

where the leading-order term in S defines a semiclassical
energy landscape

E(φ) = −J0

N

N∑
i,j=1
(i<j )

sin φ(i) sin φ(j )

|i − j |α − B

N

N∑
i=1

cos φ(i). (10)

In the derivation of the energy landscape we considered the
case of maximal angular momentum. However, in Sec. IV A
we show how this assumption can be relaxed to obtain a
generalized energy landscape by using a variational approach.

The partial derivatives of E(φ) further determine the linear
Hamiltonian H L(φ), containing quantum corrections in linear
order,

HL(φ) = −N

N∑
i=1

∂E(φ)

∂φ(i)
(a†

i + ai), (11)

as well as the quadratic Hamiltonian,

HQ(φ) = N

N∑
i,j=1
(i<j )

∂2E(φ)

∂φ(i)∂φ(j )
(a†

i + ai)(a
†
j + aj )

+ 2N

N∑
i=1

∂2E(φ)

∂φ(i)2
a
†
i ai . (12)

Thus, we find that the semiclassical energy landscape E(φ)
contains the complete information about the Hamiltonian for
large S, and determines, via its geometry, also the quantum
corrections to the mean-field contribution. Of special interest
are the stationary points C of E(φ), which are defined as those
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spin configurations φ that satisfy the conditions

∂E(φ)

∂φ(i)
= −J0

N

N∑
j=1

(i �=j )

cos φ(i) sin φ(j )

|i − j |α + B

N
sin φ(i) = 0, (13)

for all i = 1, . . . ,N . At these points, the linear Hamiltonian
H L(φ) vanishes exactly, and the quantum fluctuations are
described by H Q(φ), whose coefficients are given by

∂2E(φ)

∂φ(i)2
= J0

N

N∑
j=1

(i �=j )

sin φ(i) sin φ(j )

|i − j |α + B

N
cos φ(i), (14)

and, for i �= j ,

∂2E(φ)

∂φ(i)∂φ(j )
= −J0

N

cos φ(i) cos φ(j )

|i − j |α . (15)

Using Eq. (13) in Eq. (14) simplifies the second derivative at
a stationary point to

∂2E(φ)

∂φ(i)2

∣∣∣∣
φ∈C

= B

N

1

cos φ(i)
, (16)

provided that cos φ(i) �= 0.
Section IV is dedicated to an analysis of the zero-order

semiclassical energy landscape E(φ). In particular we will
compare the semiclassical predictions for the energy spectrum
based on a series of suitably defined one-dimensional sections
of E(φ) to the numerically obtained quantum spectra, with
particular emphasis on the least classical case of S = 1/2.
In this parameter regime far away from the semiclassical
limit, the quantum phase transition can be observed in the
thermodynamic limit when the external field B approaches a
critical value that depends on α.

Later in Sec. V we study the quantum fluctuations in the
large-S limit, which in turn allows us to reveal quantum
bifurcations for arbitrary N and α by analytical means. We
conclude the present section by formally introducing the
concept of quantum bifurcations, based on a simple illustrative
example, and by discussing its relation to quantum phase
transitions.

B. Quantum bifurcations in the semiclassical limit

In this section, we discuss the Hamiltonian (9) for J0 > 0
in the particular case of just two lattice sites N = 2 to
illustrate the main features of quantum bifurcations. For a
complete analysis of the quantum bifurcations in the model
and additional details on the employed methods, we refer to
Sec. V. Let us further assume an equal spin configuration φc =
(φc,φc), where φc is chosen such that the mean-field energy
E(φc) is minimized. We find a single minimum at φc = 0 when
B � J0 and two degenerate minima at φc = ± arccos(B/J0)
when B < J0. As we will see in this section, this bifurcation
of the classical mean-field energy landscape entails profound
consequences for the quantum fluctuations of the higher-order
terms in Eq. (9).

Due to Eq. (13), the linear Hamiltonian HL(φ) disappears at
critical points of E(φ). The Hamiltonian (9) thus reduces to the

mean-field energy and the quadratic corrections. Through their
dependence on φc, both terms depend on the parameter B/J0.
For B � J0, i.e., φc = 0, we obtain the effective Hamiltonian

H (φc) = −4SB − J0(a†
1 + a1)(a†

2 + a2) + 2B(a†
1a1 + a

†
2a2).

(17)

This Hamiltonian, in fact, can be identified with the effective
Hamiltonian for the on-resonance Dicke model [51] in the
normal phase, where 2B plays the role of atomic and mode
resonances, −J0 reflects the atom-field coupling strength, and
2S is the collective atomic spin [8]. A diagonalization of the
Hamiltonian (17) leads to two collective bosonic modes with
excitation energies ε± = 2

√
B(B ± J0). Correspondingly, ε−

is the gap between the ground state and the first excited state.
When B < J0, i.e., cos φc = B/J0, the Hamiltonian reads

H (φc) = −2S(J0 + B2/J0) − B2/J0(a†
1 + a1)(a†

2 + a2)

+ 2J0(a†
1a1 + a

†
2a2). (18)

Now, we obtain collective excitation energies of ε± =
2
√

J 2
0 ±B2.

The above results indicate that when B → J0 the energy
gap above the ground state vanishes as ε− ∼ |B − Bc|1/2,
where Bc = J0 is the bifurcation point. The energy gap directly
defines a characteristic length scale l− = 1/

√
ε− which deter-

mines the spread of the ground state wave function [8]. Indeed,
the ground state, which is a two-mode Gaussian state, gets
strongly squeezed as the bifurcation point is approached [8].
Similarly, the ground state shows strong quantum correlations
in the vicinity of the bifurcation point [52]. Furthermore,
the divergent length scale l− and the closing gap ε− can be
associated with critical exponents, and finite-size scaling can
be studied when S is finite [8,46–48,52]. In the semiclassical
limit, we find a sharp discontinuity of the ground state energy
at the bifurcation point.

Evidently, these quantum signatures of the classical bifur-
cation stand in direct analogy to quantum phase transitions.
The quantum phase transition, however, occurs in the thermo-
dynamic limit, when the extension of the lattice of interacting,
collective spins becomes infinite. In the semiclassical limit,
which triggers the quantum bifurcation for any value of N , we
extend the zero-dimensional sublattice of elementary spins,
which add up to form a collective spin as it is depicted in
Fig. 1. According to Eqs. (6), (7), and (8), the number M of
elementary spins translates into the maximal occupation of
the effective bosonic modes, and consequently, only in the
semiclassical limit, these modes are unbounded and allow for
a diverging spread of the ground-state wave function. This
way, the many-body character of the spin model is absorbed
by a finite number N of harmonic oscillator modes. The
diverging length scale, however, despite being related to the
ground-state correlations, does not identify a diverging spatial
correlation length, since the elementary spins are arranged on
a zero-dimensional lattice (see Fig. 1). This precisely identifies
the difference between the semiclassical and thermodynamic
limits, i.e., the quantum bifurcation and the quantum phase
transition, respectively.
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A further characteristic of the quantum bifurcation is that
the mean-field description becomes exact in the classical
limit S → ∞. Moreover, the many-body aspect of the model
for finite N becomes irrelevant in the semiclassical limit:
The quantum bifurcation does not explicitly depend on the
substructure of the collective spins. The features close to
the ground state are therefore reproduced by an effective
N -body system rather than an MN -body system. Yet, for an
understanding of the excitation spectrum, this substructure is
essential, as will become apparent in Sec. IV.

IV. SEMICLASSICAL ENERGY LANDSCAPES

The semiclassical energy landscape E(φ) was derived as
the leading-order contribution to a 1/

√
2S-expansion in a

subspace of maximal angular momentum. We will show in the
first part of this section that this term can also be interpreted as
the energy expectation value of a variational product ansatz of
spin-coherent states in this particular subspace. Spin coherent
states are formal analogues of coherent states of the harmonic
oscillator [53–56]. Their expectation values are characterized
by Bloch vector coordinates, and they minimize the uncertainty
relation with respect to certain angular momentum observables
[54]. These states are therefore often interpreted as semiclassi-
cal, and they allow us to introduce an effective Planck constant
�eff = 1/S [10,55].

Spin-coherent states are, however, not limited to the
subspace of maximal angular momentum S. We can therefore
formulate a more general variational ansatz in terms of
arbitrary spin-coherent states that will allow us to extend the
definition of the semiclassical energy landscape (10) to include
all subspaces of S.

A. Variational approach based on spin coherent states

In this section we employ a product state ansatz for the trial
wave function in terms of local spin coherent states

|lμ,φμ〉 =
N⊗

i=1

∣∣l(i)
μ ,φ(i)

μ

〉
. (19)

The trial states (19) are characterized by the vectors lμ =
(l(1)

μ ,l(2)
μ , . . . ,l(N)

μ ) and φμ = (φ(1)
μ ,φ(2)

μ , . . . ,φ(N)
μ ), which de-

pend on the configuration labeled by μ. The variables l(i)
μ and

φ(i)
μ determine the respective length and orientation of the local

spin coherent state which describes the spin at index i as [56]

∣∣l(i)
μ ,φ(i)

μ

〉 = 1

2l
(i)
μ

l(i)
μ∑

m
(i)
z =−l

(i)
μ

(
2l(i)

μ

l
(i)
μ + m

(i)
z

)1/2

× (−ieiφ(i)
μ

)l(i)
μ +m

(i)
z
∣∣l(i)

μ ,m(i)
z

〉
. (20)

Here |l(i)
μ ,m(i)

z 〉 are the Dicke states [51] of cooperation number
0 � l(i)

μ � M/2, as defined by a total angular momentum
of S(i)2|l(i)

μ ,m(i)
z 〉 = l(i)

μ (l(i)
μ + 1)|l(i)

μ ,m(i)
z 〉, and S(i)

z |l(i)
μ ,m(i)

z 〉 =
m(i)

z |l(i)
μ ,m(i)

z 〉.
This ansatz, by construction, ensures that the local ex-

pectation values are restricted to the xy plane. This choice
is motivated by the fact that S(i)

z does not appear in the

Hamiltonian (1), and therefore does not contribute to the en-
ergy. The expectation values are now conveniently represented
by the Bloch vector coordinates as:〈

l(i)
μ ,φ(i)

μ

∣∣S(i)
x

∣∣l(i)
μ ,φ(i)

μ

〉 = l(i)
μ sin φ(i)

μ , (21)〈
l(i)
μ ,φ(i)

μ

∣∣S(i)
y

∣∣l(i)
μ ,φ(i)

μ

〉 = l(i)
μ cos φ(i)

μ , (22)〈
l(i)
μ ,φ(i)

μ

∣∣S(i)
z

∣∣l(i)
μ ,φ(i)

μ

〉 = 0. (23)

Each of the N spins is composed of M spin-1/2 particles,
leading to a total of MN = 2SN elementary spins in the
system. Using the trial states (19), together with (1), (21),
(22), we obtain the average energy per elementary spin

Eμ(lμ,φμ) = 1

2SN
〈lμ,φμ|H |lμ,φμ〉

= − J0

S2N

N∑
i,j=1
(i<j )

l(i)
μ sin φ(i)

μ l
(j )
μ sin φ

(j )
μ

|i − j |α

− B

SN

N∑
i=1

l(i)
μ cos φ(i)

μ . (24)

This generalized semiclassical energy landscape indeed co-
incides with the energy landscape (10) when we restrict
to the subspace where all of the N composite spins have
maximal angular momentum S, i.e., when l(i)

μ ≡ S for all
i = 1, . . . ,N . In fact, the rotations introduced in Eq. (3)
can be used to generate spin coherent states |S,φ(i)〉 in this
particular subspace as |S,φ(i)〉 = U (φ(i))|S,m(i)

y = S〉, where
S(i)

y |S,m(i)
y 〉 = m(i)

y |S,m(i)
y 〉. In the following we will show that,

in the limiting cases J0 = 0 and B = 0, the ansatz (19) allows
us to generate the exact spectra of (1).

B. (Anti)ferromagnetic spectra at B = 0

Let us first consider the spectrum in the absence of an
external field, B = 0. We define the local eigenstates |S,m(i)

x 〉
by the eigenvalue equation S(i)

x |S,m(i)
x 〉 = m(i)

x |S,m(i)
x 〉, with

m(i)
x = −S, . . . ,S. Introducing

|S,mx〉 =
N⊗

i=1

|S,m(i)
x 〉, (25)

with mx = (m(1)
x , . . . ,m(N)

x ), the Hamiltonian describing the
internal spin-spin interaction

Hin = H |B=0 = −2J0

S

N∑
i,j=1
(i<j )

1

|i − j |α S(i)
x S(j )

x , (26)

which is obtained from (1) for B = 0, satisfies the eigenvalue
equation

Hin|S,mx〉 = −2J0

S

N∑
i,j=1
(i<j )

m(i)
x m

(j )
x

|i − j |α |S,mx〉. (27)
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FIG. 2. Spin configurations φe and φa associated with the largest
and the smallest energy eigenvalue of (26), for N = 6, S = 1/2, and
φ = π/2. The spin coherent state (top), where all spins align in equal
directions, generates the semiclassical ground state configuration
when J0 > 0. In this case, the alternating configuration (bottom)
corresponds to the semiclassical configuration which yields the
largest energy eigenvalue. In the special case of the Ising model
(α → ∞), the configurations φe (equal directions) and φa (alternating
directions) yield energies Ee = −J0(N − 1) and Ea = J0(N − 1),
respectively [see Eq. (31)].

To reproduce this exact spectrum (27) from the energy
expectation value per spin (24), we impose certain conditions
on the spin coherent state ansatz (19). In particular, we assume
that all the local spin orientations φ(i)

μ are represented by the
same angle φ, while allowing individual spins to be inverted
such that φ(i)

μ = ±φ. Thus, we see from Eq. (24) at B = 0 that
configurations with arbitrary sequences of positive or negative
local angles +φ or −φ, lead, at the particular value of φ = π/2
(see below), to the scaled energy expectation value

Eμ(lμ,φμc ) = − J0

S2N

N∑
i,j=1
(i<j )

l(i)
μ ε(i)

μ l
(j )
μ ε

(j )
μ

|i − j |α , (28)

where we have defined ε(i)
μ = ±1 via the equality sin φ(i)

μ =
ε(i)
μ sin φ. The possible values of Eq. (28) can now be deter-

mined by scanning over the full range of −S � l(i)
μ ε(i)

μ � S.
Comparison to Eq. (27), while recalling that −S � m(i)

x � S,
demonstrates that the product state ansatz (19) of trial states is
able to reproduce the exact spectrum at B = 0, i.e., the set of
eigenvalues coincides with the set of all possible values of

Eμ = 2SNEμ , (29)

where Eμ represents the total energy, in contrast to the energy
Eμ per elementary spin unit. Note that this observation is,
in fact, independent of the coupling coefficients, which here
are given by the algebraically decaying function Ji,j = J0/

|i − j |α .
Figure 2 illustrates two examples of spin configurations

φc
μ for N = 6, which differ by the number of inverted spins.

The natural orientation of the spin-spin interaction along the x

direction causes the spins to assume an orientation along the
x axis in the absence of the transverse field. Hence, the angle
assumes the value φ = π/2, see Eqs. (21)–(23).

In total there are 2N different configurations labeled by μ. In
the case S = 1/2, this number indeed reflects the Hilbert space
dimension. However, two symmetries lead to degeneracies of
the Eμ:

(i) The invariance of the energy expectation value under
a global sign flip, φ → −φ, originates in the Z2 symmetry
[5,8] (π rotation around the y axis) of the Hamiltonian (1) and

permits to restrict our analysis to configurations with at most
half of the spins inverted.

(ii) For open boundary conditions, which we impose in
this section, the energy of the chain remains invariant under a
mirror reflection with respect to the center: i → N − i + 1.

In the following we discuss the quantity (28) where, for
simplicity, we focus on the special case of S = 1/2. The
analysis can be extended easily to larger spins. When S = 1/2,
the length of the individual spin coherent states is fixed
at l(i)

μ = 1/2, for all i = 1, . . . ,N . Any given configuration
(lμ,φμ) is then fully determined by the orientations φμ of the
local spins. For this special case, we introduce the effective
spin-spin coupling constant

Jμ = J0

N

N∑
i,j=1
(i<j )

ε(i)
μ ε

(j )
μ

|i − j |α , (30)

which determines the energy spectrum Eμ at B = 0
through Eμ = NEμ(φc

μ) = −NJμ [where we used S = 1/2
in Eqs. (28) and (29)].

For arbitrary values of the interaction decay constant
α, the different possible configurations φc

μ lead to rather
irregular distributions of the energy eigenvalues. However,
in certain extreme cases, when we recover Ising (α = ∞)
or Lipkin-Meshkov-Glick interactions (α = 0), only few,
strongly degenerate energy bands are obtained.

For example, in the limit of nearest-neighbor interactions,
α = ∞, we infer from (30)

Eμ = −J0

N−1∑
i=1

ε(i)
μ ε(i+1)

μ = −J0(N − 1 − 2rμ), (31)

where rμ = 0, . . . ,N − 1 counts the number of domain walls
in the configuration φμ. In a ferromagnet (antiferromagnet),
these occur when two neighboring spins align in opposite
(equal) directions [5]. Conversely, for an infinitely extended
interaction range, α = 0, we have

Eμ = −J0

N∑
i,j=1
(i �=j )

ε(i)
μ ε(j )

μ /2 = − J0

2N
[(N − 2sμ)2 − N ], (32)

where sμ = 0, . . . ,N denotes the number of inverted spins in
φμ.

The normalized counting function

N (E) = 2−N

2N −1∑
i=0

θ (E − Ei) (33)

is obtained from the exact variational ansatz for B = 0, and
is shown in Fig. 3 for different values of α. We observe
that, as a function of α, the spectrum at B = 0 interpolates
smoothly between the two strongly degenerate cases of a
quadratically spaced sequence of eigenvalues at α = 0 and
a harmonic spectrum, which is symmetric around zero at
α = ∞. For intermediate values of α, the energy levels
are broadly distributed between the two extreme values
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0

1
0.1

100

α

E/J0

N(E/J0)

FIG. 3. The counting function (33) in the ferromagnetic regime
(J0 > 0, B = 0) for S = 1/2 reflects a strongly degenerate, quadrat-
ically spaced energy spectrum of the Lipkin-Meshkov-Glick model
at α = 0, described by Eq. (32). As the range of the interaction
decreases, i.e., as α increases, the spectrum evolves into a broadly
distributed energy distribution, especially at values of α ≈ 1, and
finally approaches the equally spaced, and, again, strongly degenerate
spectrum of the Ising model at α = ∞, described by Eq. (31), which
is symmetric around zero. The spectra are obtained using the exact
semiclassical result (28) for N = 15 spins.

Ee = −NJe and Ea = −NJa, where

Je = J0

N

N∑
i,j=1
(i<j )

1

|i − j |α (34)

and

Ja = J0

N

N∑
i,j=1
(i<j )

(−1)i+j

|i − j |α (35)

are generated from Eq. (30) by means of an equal mean-field
configuration of parallel spins, and an alternating mean-field
configuration where the spin orientation of neighboring spins is
inverted, respectively. These two configurations are depicted
in Fig. 2. The latter describes a twofold degenerate ground
state configuration of an antiferromagnet as well as the highest
excited states of a ferromagnet.

Let us briefly discuss the behavior of Je and Ja in the
thermodynamic limit N → ∞. We rewrite

Je = J0

N

N∑
k=1

N − k

kα
= J0

N∑
k=1

1

kα
+ J0

N

N∑
k=1

1

kα−1
. (36)

For α > 1, we have ζ (α) = limN→∞
∑N

k=1 k−α , where ζ (α)
denotes Riemann’s zeta function [57]. In this case the second
term approaches zero, since

∑N
k=1 k1−α ∼ O(N2−α) [34].

Hence, for α > 1, we have

lim
N→∞

Je = J0ζ (α), (37)

whereas for α � 1 the sum diverges and the spectrum becomes
unbounded. At α = 1 the divergence is logarithmic in N .

ζ(α)

(a)

(b)

η(α)

α

α

N = 50

N = 10

Rescaled functions

Actual functions

Je/(cNJ0)

−Ja/(cNJ0)

ζ(α)

η(α)

−Ja/J0

Je/J0

FIG. 4. (a) In the thermodynamic limit (N → ∞), the effective
spin-spin coupling Ja [Je] of the ground state configuration is given
by η(α) [ζ (α)] if J0 < 0 [J0 > 0], which coincide for α → ∞.
(b) Finite-size effects (see dashed lines for N = 10 and N = 50) can
be compensated with the correction term cN = 1 − 1/N . The rescaled
effective spin-spin couplings Ja/(J0cN ) and Je/(J0cN ) collapse onto
the thermodynamic limit, except for deviations at very small values
of α.

Employing an analogous rearrangement of terms, we find
for α > 0,

lim
N→∞

Ja = −J0η(α), (38)

where η(α) = limN→∞
∑N

k=1(−1)kk−α is Dirichlet’s eta func-
tion (α > 0) [58], which is related to Riemann’s zeta function
by η(α) = (1 − 21−α)ζ (α). Evaluating the sum explicitly at
α = 0 yields limN→∞ Ja = −J0/2 which coincides with the
analytic continuation [59], η(0) = 1/2, allowing us to extend
the above equality to all α � 0.

For α = ∞ both Ja and Je coincide in magnitude in the
thermodynamic limit, since limα→∞ ζ (α) = limα→∞ η(α) =
1, and, thus, the Ising spectrum is bounded between ±NJ0,
which, in the considered limit of large N , is consistent with
Eq. (31). The convergence towards the thermodynamic limit
is displayed in Fig. 4. To leading order, finite-size effects are
caused by the 1/N prefactor of the second term of Eq. (36), and
of the corresponding alternating expression for Ja. Hence, to a
good approximation, these finite-size effects are compensated
by a factor cN = 1 − 1/N , and small deviations can only be
observed when α is very small, as is shown in Fig. 4(b).
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C. Paramagnetic spectrum at J0 = 0

After discussing the (anti)ferromagnetic spectrum, we turn
to the opposite limit of very strong external magnetic fields, by
setting the spin-spin coupling to zero: J0 = 0. The Hamiltonian

Hex = H |J0=0 = −2B

N∑
i=1

S(i)
y , (39)

describing the interaction with the external field, is indepen-
dent of α. The spectrum of Hex is easily found, e.g., by
employing a treatment in complete analogy to the one shown in
the beginning of the preceding section: We introduce product
states |S,my〉 of local eigenstates |S,m(i)

y 〉 of S(i)
y , characterized

by a vector my = (m(1)
y , . . . ,m(N)

y ) of eigenvalues m(i)
y =

−S, . . . ,S. This leads to the eigenvalue equation

Hex|S,my〉 = −2B

N∑
i=1

m(i)
y |S,my〉. (40)

The resulting spectrum is harmonic and elementary excitations
are given by spin flips against the magnetic field in the y

direction. Recalling Eqs. (21)–(23), we see that the previously
introduced inversion of a spin, φ → −φ, which corresponds
to a mirror reflection at the y axis, does not change the expec-
tation value of the paramagnetic energy term. However, the
configurations φμ = (φ(1)

μ ,φ(2)
μ , . . . ,φ(N)

μ ) are able to account
for such excitations via spin flips, defined by the operation
φ(i)

μ → φ(i)
μ + π , which describes a combined mirror reflection

at the x and y axes. We again describe the entire spin chain
configuration in terms of a single angle φ, and introduce
ξ (i)
μ = ±1 through cos φ(i)

μ = ξ (i)
μ cos φ to label the presence

or absence of a spin flip at position i.
Indeed, employing the spin coherent states (19), combined

with the above constraints, generates the following energy
expectation values [see Eq. (24)] for J0 = 0 and at φ = 0:

Eμ = − B

SN

N∑
i=1

l(i)
μ ξ (i)

μ , (41)

which, due to −S � l(i)
μ ξ (i)

μ � S, reproduce the full spectrum,
as given in Eq. (40). According to Eqs. (21)–(23) the angle
φ = 0 reflects the polarization of the spins along the y direction
of the external field.

Let us focus again on the special case of S = 1/2. We then
can express the energy eigenvalues for J0 = 0 as Eμ = −NBμ,
where the effective magnetic fields are given by

Bμ = (N − 2kμ)B/N, (42)

and kμ = 0, . . . ,N counts the number of flipped spins in
the configuration characterized by φμ. We recover the well-
known equidistant energy levels of a paramagnetic chain.
This resembles the spectrum at B = 0 when α = ∞. The
difference between the two cases is that for J0 = 0, there can
be between 0 and N inverted spins, which leads to N + 1
energy bands, whereas for B = 0 and α = 0 there are between
0 and N − 1 domain walls, and, thus, only N energy bands.
Notice that, due to the symmetry of the paramagnetic spectrum
with respect to energy zero, a global change of the signs of
all energy eigenvalues for arbitrary J0 and B always produces

the spectrum of the chain for parameter values −J0 and B,
independently of α and S.

D. Semiclassical spectra from analytically determined extrema
of one-dimensional energy landscapes: Multiconfigurational

mean-field approach

So far, we formulated a variational ansatz in terms of
spin coherent states to reproduce the exact spectra when
either B = 0 or J0 = 0, for arbitrary α and S. Starting
from a uniformly distributed spin arrangement (φ, . . . ,φ),
we employed combinations of spin inversions (φ(i)

μ → −φ(i)
μ )

and spin flips (φ(i)
μ → φ(i)

μ + π ) to design excited-state con-
figurations φμ = (φ(1)

μ ,φ(2)
μ , . . . ,φ(N)

μ ). Note that spin flips,
φ(i)

μ → φ(i)
μ + π , also change the (anti)ferromagnetic energy

expectation value, which can be compensated by an additional
inversion, φ(i)

μ → −φ(i)
μ + π . In total, each spin can assume

one of four different orientations, i.e., φ(i)
μ = φ, φ(i)

μ = −φ (in-
verted), φ(i)

μ = φ + π (flipped), and φ(i)
μ = −φ + π (inverted

and flipped). Independently of the orientation, each of the spin
coherent states also has a tunable length l(i)

μ that can assume
discrete values between the minimum value 0 (if S is integer)
or 1/2 (if S is half-integer) and the maximum value S = M/2.

The orientation of each individual spin φ(i)
μ is parametrized

by a single angle φ, and, thus, the variational ansatz can be
understood as a mean-field approach. Based on the above
recipe, we obtain an entire family of mean-field descriptions
(multiconfigurational mean-field), labeled by the index μ,
which represents a particular spin configuration. A spin
configuration (lμ,φμ), is fully characterized by the two vectors
lμ and φμ, which determine the local lengths and orientations
of the spins, respectively. Suitable design of these configu-
rations leads, via Eq. (19), to a series of single-parameter
trial states that yield any arbitrary eigenvalue at B = 0 and,
independently, any arbitrary eigenvalue at J0 = 0. These two
eigenvalue solutions will then be attained at different values
of the parameter φ: As we saw in the previous sections, the
spin orientation in the paramagnetic phase is given by φ = 0,
while in the (anti)ferromagnetic phase we have φ = ±π/2.

To continuously parametrize the energy spectrum for arbi-
trary B and J0, we employ the configurations φμ derived above
to analyze the semiclassical energy landscape Eμ(lμ,φμ),
introduced in Eq. (24), as a function of B and of the angle
φ. For each μ, we obtain a one-dimensional semiclassical
energy landscape

Eμ(φ) = −Jμ sin2 φ − Bμ cos φ, (43)

with

Jμ = J0

S2N

N∑
i,j=1
(i<j )

l(i)
μ ε(i)

μ l
(j )
μ ε

(j )
μ

|i − j |α , (44)

and

Bμ = B

SN

N∑
i=1

l(i)
μ ξ (i)

μ . (45)

The semiclassical energy landscape (43) is characterized by
the effective magnetic field Bμ, which is proportional to B, and
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−
E
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Jµ < 0
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FIG. 5. (a) Energy landscape for positive Jμ as a function of φ

and Bμ. The energy minimum (red line) represents a semiclassical
energy level as a function of Bμ ∝ B [see Eq. (45)]. The change of
the dependence of the minimum energy on B from quadratic to linear
is a consequence of the underlying bifurcation into two degenerate
but distinct solutions at weak magnetic fields. In the case of the
ground state, such a bifurcation represents the semiclassical analog
of the tipping point between the symmetric paramagnetic state, where
the symmetry of the Hamiltonian is dictated by the B-dependent
term, and the symmetry-broken (anti)ferromagnetic state, where the
symmetry of the Hamiltonian is dictated by the J0 term. (b) When
Jμ is negative, the energy maximum describes a semiclassical energy
level and exhibits analogous behavior.

the effective spin-spin coupling constant Jμ, proportional to
J0. These two effective parameters determine the exact spectra
in the extreme cases considered before. The resulting energy
landscape is depicted as a function of B in Fig. 5. The position
of its extremal values shifts as a function of B.

For Jμ > 0 and Bμ > 0, we find the minimal energy

Emin
μ (B) =

{
−Jμ − B2

μ/(4Jμ), Bμ < 2Jμ

−Bμ, Bμ � 2Jμ

. (46)

For Bμ � 2Jμ a unique minimum is identified at φ0 = 0, which
coincides with the result for the paramagnetic system (J0 = 0).
For Bμ < 2Jμ the minimum is twofold degenerate at φ± =
± arccos Bμ/(2Jμ), which reflects our previous result for the
(anti)ferromagnetic system (B = 0; see Sec. IV B), where the
two degenerate energy eigenvalues were found at φ = ±π/2.

As we continuously scan B [remember, according to (45),
that Bμ ∝ B], the position of the minimum changes and a
bifurcation occurs, see Fig. 5(a). Simultaneously, the minimum
energy makes a change from quadratic to linear dependence
on B, which in turn induces a jump of the energy’s second
derivative at the bifurcation point Bμ = 2Jμ.

In the particular case of the semiclassical description of
the ground state, the symmetry of the paramagnetic phase is
represented by the unique minimum of the energy landscape,
whereas two minima express the symmetry-broken character
of the (anti)ferromagnetic phase, in which only one of the two
nonsymmetric configurations that minimize the semiclassical
energy landscape can be realized. In an associated quantum
picture, this corresponds to two degenerate eigenstates which
span the ground-state manifold and lead to quantum superpo-
sitions of the two semiclassical configurations.

For Jμ < 0 the minimum energy does not depend on Jμ

which would result in an unphysical prediction for the energy
at B = 0. However, in that case the maximum,

Emax
μ (B) =

{
−Jμ − B2

μ/(4Jμ), Bμ < −2Jμ

Bμ, Bμ � −2Jμ

, (47)

represents a physically relevant energy level and shows the
same type of bifurcation as the minimum before, as shown in
Fig. 5(b). The symmetry of the paramagnetic spectrum around
zero allows us to restrict to positive values of Bμ. The negative
(positive) part of the paramagnetic spectrum is then obtained
from Emin

μ (Emax
μ ) [60].

To summarize, each mean-field configuration that produces
a pair of nonzero effective coupling constants Jμ and Bμ of
equal sign leads to a semiclassical energy landscape, and,
depending on the sign of Jμ, its maximum or minimum then
characterizes a semiclassical energy level as a function of B.
The energy levels obtained from Eqs. (46) and (47) connect
the two exact spectra from B = 0 to B � |J0|. Figures 6
and 7 compare the semiclassical levels to the exact quantum
spectrum for the cases S = 1/2 and S = 5/2, respectively.
Those semiclassical levels obtained from maxima are plotted
as red lines, and green lines correspond to semiclassical
minima. In the intermediate range, when B ∼ |J0|, the quan-
tum spectrum is characterized by an abundance of avoided
crossings—especially when additionally α ∼ 1—which ex-
press the incompatibility of the symmetries imposed by the
kinetic and by the magnetic term in (1), respectively. This
intricate spectral structure reflects the global reorganization of
the system eigenstates, within a finite interval of the control
parameter, while passing through the phase transition. Such
chaotic parametric level dynamics cannot be captured by our
semiclassical analysis, since the effective energy manifolds of
Fig. 5 it is building on are destroyed in this parameter regime.

E. Deviation from the ground state energy for S = 1/2

We quantify the deviation between the semiclassical results
and the exact quantum spectrum through the relative deviation
of the respective ground-state energies. We introduce

d(B) = Emin(B) − E0(B)

|E0(B)| , (48)
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α = 1

E
/J

0

B/J0B/J0

α = 1α = 1
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FIG. 6. Comparison between the exact quantum spectrum (black lines) and the semiclassical energy values, depicted as green and red
lines, depending on whether the latter are given by a minimum [see Fig. 5(a)] or a maximum [Fig. 5(b)] of the semiclassical energy landscape,
respectively. The semiclassical energy levels yield exact results at B/|J0| = 0 and B/|J0| = ∞. The dots indicate the points at which the
corresponding extremum of the semiclassical energy landscape exhibits a bifurcation, together with a change of its magnetic field dependence
from quadratic to linear. Parameters in (1) are N = 11, S = 1/2, and J0 > 0, for different interaction ranges α as indicated. Changing signs on
all energy levels yields the corresponding spectra for −J0. The insets zoom into the parameter region where levels reorganize to mediate the
transition from the ferro- to the paramagnetic phase.

where Emin(B) and E0(B) denote semiclassical and numeri-
cally exact ground state energies, respectively. This quantity
is always positive since, when applied to the ground state, our
ansatz can be considered as an instance of the Ritz variation
principle [61]. We plot d(B) for different parameters in Fig. 8,
on a double-logarithmic scale. The semiclassical ground-state
energy approaches the exact paramagnetic result generally as
(B/|J0|)−2 for B � |J0|, whereas a change of the interaction
range α only generates a small constant offset. Indeed, in this

E
/
J

0

B/J0

FIG. 7. Exact quantum spectrum (black lines) and semiclassical
energy values (red lines) for the positive energy sector of H with
N = 3, S = 5/2, J0 > 0, and α = 1, as a function of B/J0, on a
double-logarithmic scale.

limit, the parameters which determine the spin-spin couplings
have vanishing influence. In the opposite limit B � |J0|, we
also observe a quadratic convergence ∼ (B/|J0|)2 towards the
exact solution, except for very long range interactions (α � 1),
in which case the convergence is even faster for ferromagnets.
In the antiferromagnetic regime, the convergence rate of
long-range interacting systems further depends on whether
N is even or odd.

In the latter case, we recover quadratic convergence with
a noticeable offset compared to interactions of shorter range.
The maximum deviation is found at intermediate values of
B ∼ |J0|, i.e., in the vicinity of the phase transition. Because
of the symmetry properties of the Hamiltonian (1) the deviation
observed for the ground state at a given value of J0 is equal to
that of the highest excited state at −J0.

F. Distribution of excited-state bifurcation points

The range of intermediate values of B is particularly
interesting since this is where we expect the quantum phase
transition in the thermodynamic limit, whereas the exact value
of the critical point will depend on α. Remember that each
semiclassical level exhibits a discontinuous second derivative
at a specific bifurcation point Bc

μ, defined by the condition
Bμ|B=Bc

μ
= 2|Jμ| as given by (46). In this Section we analyze

the distribution of these points as semiclassically determined
by the bifurcations of the minima of effective energy land-
scapes (green dots in Fig. 6). We will call these stable
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FIG. 8. Relative deviation d(B), Eq. (48), between the semiclassical and the numerically exact ground state energy for S = 1/2 and different
interaction ranges. In most cases, the exact solution at small and large B is approached as (B/|J0|)±2. Exceptions are found for very long range
interactions, which converge faster towards the (anti)ferromagnetic solution, unless J0 < 0 and N odd. The strongest deviation is found in the
vicinity of the critical point.

bifurcation points. As we have noted before, the spectrum
for J0 coincides with that for −J0 upon mirroring at energy
zero. This implies that the stable bifurcation points of the
ferromagnet (J0 > 0) coincide with the unstable bifurcation
points (those obtained from maxima; red dots in Fig. 6) of the
corresponding antiferromagnet (J0 → −J0) and vice versa,
which allows us to analyze two systems with one set of Jμ.

The Bc
μ are entirely determined by the effective couplings

Jμ and Bμ, which are straightforwardly obtained. However,
a large amount of near degeneracies in the Jμ, when α is
finite but either very large or very small, requires us to treat a
considerable number of spins (N � 100), to obtain significant
statistics in the intermediate range of B values. For systems of
more than 25 spins this remains computationally challenging,
despite the rather simple form of Eq. (30). However, the
distribution of the Jμ is easily obtained in the limits α → 0
and α → ∞. In these cases, we can resort to the exact results,
Eqs. (31) and (32), to predict the distribution of bifurcation
points analytically, also for large systems.

Figure 9 displays the distributions of stable bifurcation
points on logarithmically binned histograms. In this repre-
sentation, the histograms show distinct maxima with positions
which depend on the sign of J0 and α. For the antiferromag-
netic Lipkin-Meshkov-Glick model (J0 < 0, α = 0), we find
the most likely bifurcation point at B = J0. In this model,
the density of bifurcation points decays as B−1 for B > J0,
while for B < J0 the distribution does not seem to follow a
power law. For the ferromagnetic case, J0 > 0, α = 0, the

peak position depends on the system size and is located at
B = NJ0. For B > NJ0, we again find a decay of the density
as B−1 and an increase as B1/2 for B < NJ0. Finally, in the
Ising limit, α = ∞, due to the symmetry of the spectrum, the
bifurcation points coincide for both signs of J0. A clear peak
can be identified at B = 2J0, which is approached from below
and above as B1 and B−1, respectively.

What does this tell us about the quantum bifurcation and the
quantum phase transition? Let us start with the case α = 0: In
rescaled units J̄0 = J0/N , the Lipkin-Meshkov-Glick model
shows a quantum bifurcation at B = J̄0 when J0 > 0, which
coincides with the histogram’s peak position. For J0 < 0, a
first-order transition is found at zero field when rescaled units
are used. The histogram peak at B = J0 also approaches zero
as 1/N when rescaled units are employed. On the other hand,
in the Ising limit, α = ∞, the maximum of the distribution
of bifurcation points deviates from the ground-state critical
field by a factor of two, since the quantum phase transition
defined by the nonanalyticity of the ground state occurs at
B = |J0| [5].

Discrepancies in the Ising limit are not surprising, since the
small number of interaction partners for each spin generally
limits the performance of mean-field treatments. The energy
landscapes characterize the order of the quantum phase
transition and provide a qualitative behavior, but for systems
of spin-1/2 coupled by short-range interactions, they cannot
provide a quantitative prediction of, e.g., the exact critical
point. In the case of the Ising model, similar observations
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FIG. 9. Logarithmically binned histograms of stable bifurcation
points defined by the extremal points of the effective (semiclassical)
energy landscapes (see Fig. 5), for the special cases of α = 0 (Lipkin-
Meshkov-Glick) and α = ∞ (Ising).

were made in a study in the context of adiabatic quantum
computations [62].

To summarize, in the present section we discussed geo-
metrical features of the semiclassical energy landscape E(φ).
The stationary points of a series of one-dimensional sections
Eμ(φμ) [see Eq. (43)] of E(φ) were analyzed analytically. This
enabled us to reproduce features of the excitation spectrum
at the mean-field level, with an overall good qualitative
agreement that even becomes quantitatively exact in parameter
regimes far away from the quantum phase transition. The
geometrical aspects of those semiclassical energy landscapes
further entail essential features of the second-order quantum
phase transition, which—within the presently employed mean-
field ansatz—is associated with the entire excitation spectrum,
rather than only the ground state. In the next section, we show
that bifurcation points of the semiclassical energy landscape
entail dramatic consequences for the quantum corrections in
higher orders of the semiclassical expansion. This leads to the
observation of quantum bifurcations in the semiclassical limit.

V. SPIN WAVE THEORY FOR EXCITED STATES

In perspective of the semiclassical expansion (9), we
have, so far, described the semiclassical, spectral features
of the spin chain in terms of the lowest-order contribution
of Eq. (10) and their generalization in Eq. (24). Now we

turn to an analysis of the quadratic quantum fluctuations,
which are described by the Hamiltonian Eq. (12), to study the
excited states of the spin chain. Considering periodic boundary
conditions, S

(N+1)
β = S

(1)
β for β ∈ {x,y,z}, i.e., a closed ring

configuration rather than an open chain, will allow us to obtain
an exact analytical description of the dispersion relations of
the elementary excitations.

The Hamiltonian describing a ring of long-range interacting
spins is given, for arbitrary N , by

H p = −J0

S

N∑
i=1

S(i)
x

⎛⎝� N−1
2 �∑

r=1

S(i+r)
x + S(i−r)

x

rα

+ 1 + (−1)N

2

S
(i+N/2)
x(

N
2

)α

⎞⎠ − 2B

N∑
i=1

S(i)
y , (49)

where indices such as (i + r), are to be taken as mod N ,
i.e., S

(i+N)
β = S

(i)
β , and �x� describes the largest integer � x.

Henceforth, the superscript p denotes periodic boundary
conditions. We simplify the above expression to

H p = −J0

S

N∑
i=1

∑
r∈I 0

N

S(i)
x S(i+r)

x

|r|α − 2B

N∑
i=1

S(i)
y , (50)

where we define the set

IN = {−N/2, . . . , −1,0,1, . . . ,N/2 − 1} (51)

when N is even, and

IN = {−(N − 1)/2, . . . , −1,0,1, . . . ,(N − 1)/2} (52)

for N odd, respectively, and the summation over r is carried out
over I 0

N = IN\{0}. As is shown in Appendix A, an analogous
derivation as in Sec. III again allows us to express the rotated
Hamiltonian H p(φ) = U (φ)H pU †(φ) as in Eq. (9), where the
semiclassical energy is now given by

Ep(φ) = − J0

2N

N∑
i=1

∑
r∈I 0

N

sin φ(i) sin φ(i+r)

|r|α − B

N

N∑
i=1

cos φ(i),

(53)

and linear and quadratic Hamiltonians, H
p
L(φ) and H

p
Q(φ),

are determined by the mean-field energy (53) through similar
expressions as before, see Eqs. (A7) and (A8). We look
for stationary points of Ep(φ), which generally lead to the
disappearance of the linear Hamiltonian (H p

L = 0), and study
the quantum fluctuations described by

H
p
Q(φ) = −J0

2

N∑
i=1

∑
r∈I 0

N

cos φ(i) cos φ(i+r)

|r|α

× (a†
i + ai)(a

†
i+r + ai+r )

+ 2J0

N∑
i=1

∑
r∈I 0

N

sin φ(i) sin φ(i+r)

|r|α a
†
i ai

+ 2B

N∑
i=1

cos φ(i)a
†
i ai . (54)
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These expressions are direct extensions of the results for
open boundary conditions, presented in Sec. III, to a chain with
periodic boundary conditions. The resulting ring configuration
implies that the spin that is furthest away from a given spin
is found at the opposite side of the ring, rather than at the
furthest end of the linear chain, which reduces the maximal
distance between two spins. As a consequence, the energy of
a finite-sized chain is different from that of a ring of same
length. This difference then vanishes in the thermodynamic
limit (N → ∞).

A. Quantum fluctuations around the ferromagnetic
ground state

In Sec. IV A we developed effective one-dimensional de-
scriptions of the N -dimensional configuration space, spanned
by the vectors φ = (φ(1),φ(2), . . . ,φ(N)). We now revisit some
of these configurations to study the quantum fluctuations
around the mean-field results. Notice, however, that the single-
parameter configurations φμ which lead to stationary points of
the one-dimensional function Eμ(φμ) will not necessarily also
be stationary configurations of the high-dimensional energy
landscape Ep(φ). The simplest single-parameter configuration
which does lead to a stationary point of Ep(φ) is the uniform
configuration φe = (φ,φ, . . . ,φ), which in Sec. IV A was
shown to reproduce the ground state energy of a ferromagnetic
chain (J0 > 0). This configuration reproduces extremal points
of the high-dimensional energy landscape Ep(φ), introduced
in Eq. (53), if the condition [cf. Eq. (A3)]

N
∂Ep(φ)

∂φ(i)

∣∣∣∣
φ=φe

= sin φ
(
B − 2Jp

e cos φ
) != 0 (55)

is satisfied. We have introduced the effective spin-spin inter-
action constant for periodic boundary conditions

Jp
e = J0

2

∑
r∈I 0

N

1

|r|α , (56)

where, again, the subscript e indicates the equal mean-field
configuration. Note that for α > 1, Jp

e has a well defined
thermodynamic limit, which coincides with the limit of Je,
defined in Eq. (34) [see also Eqs. (36) and (37)],

lim
N→∞

Jp
e = lim

N→∞
Je = J0ζ (α). (57)

Analogous to Sec. IV D, we find the minima of Ep(φ) to
be given by cos φc

e = B/2Jp
e for B � 2Jp

e and by φc
e = 0 for

B > 2Jp
e . Inserting these solutions φ = φc

e ∈ [−π/2,π/2] into
Eq. (53), we obtain the semiclassical energy [see also Eq. (46)]

Ep, min
e (B) =

{
−Jp

e − B2
/(

4Jp
e
)
, B � 2Jp

e

−B, B > 2Jp
e
. (58)

To investigate the quantum fluctuations about this semiclas-
sical result, we consider the Hamiltonian (54) for the uniform

configuration φe,

H
p
Q(φe)

∣∣
φ=φc

e
= −J0

2
cos2 φc

e

N∑
i=1

∑
r∈I 0

N

1

|r|α (a†
i +ai)(a

†
i+r +ai+r )

+ (
4Jp

e sin2 φc
e + 2B cos φc

e

) N∑
i=1

a
†
i ai . (59)

We map this Hamiltonian onto the reciprocal space introducing
the Fourier transformed operators

al = 1√
N

∑
k

Ake
ikl . (60)

The periodic boundary conditions al = al+N imply that the
quasimomenta are quantized, i.e., k = 2nπ/N where n ∈ IN .
In the thermodynamic limit N → ∞, the quasimomentum
becomes a continuous variable k ∈ [−π,π ]. We now transform
the Hamiltonian (59) into reciprocal space. By using the
commutation relations [Ak,A

†
k′] = δkk′ , we eventually obtain

H
p
Q(φe)

∣∣
φ=φc

e

= −J0 cos2 φc
e

∑
k

C(N)
α (k)(A†

kA
†
−k

+A
†
kAk + A−kA

†
−k + AkA−k)

+ (
2Jp

e sin2 φc
e + B cos φc

e

)∑
k

(A†
kAk + A

†
−kA−k).

(61)

We introduced the function C(N)
α (k) = (1/2)

∑
r∈I 0

N
cos kr/

|r|α , which in the thermodynamic limit converges to the
Clausen function, limN→∞ C(N)

α (k) = Re[Liα(eik)], where
Lis(z) = ∑∞

n=1 zn/ns is the polylogarithm of order s [63,64].
In order to diagonalize the Hamiltonian (61), we consider

the canonical form

H
p
Q(φe)

∣∣
φ=φc

e
=

∑
k

[Fe(k)(A†
kAk + A−kA

†
−k)

+Ge(k)(A†
kA

†
−k + A−kAk)] + NE0

e , (62)

where we defined the real-valued functions

Ge(k) = −J0 cos2 φc
eC

(N)
α (k), (63)

Fe(k) = Ge(k) − E0
e , (64)

E0
e = −2Jp

e sin2 φc
e − B cos φc

e . (65)

Now we can diagonalize the Hamiltonian by means of a
Bogoliubov transformation: Introducing bosonic operators
γ±k,γ

†
±k with(

Ak

A
†
−k

)
=

(
cosh θk sinh θk

sinh θk cosh θk

)(
γk

γ
†
−k

)
(66)
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k

FIG. 10. Energy dispersion relation εe(k) and finite-size effects
for spin-wave quantum corrections to the ferromagnetic ground state.
The plot displays the parameters α = 2 and B/J0 = 2 (red), B/J0 =
2ζ (2) (blue), and B/J0 = 4 (green) for N = 17 (squares), N = 51
(dots), and N = ∞ (lines).

and tanh 2θk = −Ge(k)/Fe(k) leads to

H
p
Q(φe)

∣∣
φ=φc

e
= 1

2

∑
k

εe(k)(γ †
k γk + γ

†
−kγ−k + 1) + NE0

e

=
∑

k

εe(k)

(
γ
†
k γk + 1

2

)
+ NE0

e , (67)

where εe(k) = 2
√

Fe(k)2 − Ge(k)2. The energy offset E0
e

stems from the second derivative of the mean-field term Ep(φ).
Its contribution to the 1/

√
2S-expansion of H p(φ) is on the

order of N , and therefore small compared to the mean-field
energy Ep(φ), which contributes in on the order of 2SN , see
Eq. (A6).

The properties of the elementary spin-wave excitations
[65] are determined by the dispersion relation εe(k), which is
depicted in Fig. 10 for finite values of N , as well as in the limit
N → ∞. Most interestingly, when the condition E0

e = 2Ge(k)
is satisfied, we observe gapless excitations, i.e., εe(k) = 0.
This implies that the spin system allows for the creation of
excitations from the ground state at no energy cost, and the
consequent instability precisely characterizes the critical point
of the quantum bifurcation.

The closing of the gap can be observed for the k = 0 mode
when the magnetic field reaches the value B = Bc

e , where,
hence,

Bc
e = 2Jp

e (68)

defines the critical point of the quantum bifurcation. From
Eq. (58), we observe that this coincides with the bifurcation
point of the semiclassical energy landscape, see also Fig. 5.
The energy of the k = 0 mode can be observed in Fig. 11 as
a function of B for different values of N .

This identifies a quantum bifurcation, which, recalling the
discussion from Sec. III B, implies a series of consequences
for the elementary excitations close to the bifurcation point. In
analogy to the diverging correlation length, which is observed
in extended lattice systems in the vicinity of a quantum
phase transition, we can identify a diverging characteristic
length scale as l0 = 1/

√
εe(0). This length scale determines the

localization of the resulting N -mode Gaussian ground state,

ε e
(0

)

B/J0

FIG. 11. Closing of the excitation gap for the ferromagnetic
ground state and finite-size effects at k = 0 for α = 2 and N = 2
(dashed-dotted line), N = 17 (dotted line), N = 51 (dashed line)
and N = ∞ (continuous line). The quantum phase transition from
ferromagnet to paramagnet occurs when the excitation gap closes at
Bc

e = 2Jp
e .

which is expected to become strongly squeezed close to the
critical point [8].

We emphasize here that Eq. (68) predicts a sharp quantum
bifurcation even without necessarily performing the thermo-
dynamic limit (N → ∞), since we describe the Hamiltonian
in the semiclassical limit S � 1. In fact, the semiclassical
limit triggers a sharp discontinuity for all values of N > 1.
This occurs because in the semiclassical limit S = M/2 � 1
we consider a large number M of elementary spins at each
site i, such that the collective spin operators can be mapped to
unbounded bosonic degrees of freedom.

In the thermodynamic limit N → ∞, the critical field
behaves as limN→∞ Bc

e = 2J0ζ (α) when α > 1, according to
Eq. (57). A complete view of the behavior of the dispersion
relation εe(k) as a function of B in the thermodynamic
limit is depicted in Fig. 12(a), while Fig. 12(b) displays the
dependence of the critical field on α.

B. Quantum fluctuations around the highest excited
ferromagnetic state

The results of the previous section can be extended to
different configurations besides the uniform arrangement of
spins φe. Next, we consider the alternating configuration φa,
characterized by φ(i)

a = (−1)iφ. This configuration was shown
to produce the highest excited state of a ferromagnet (J0 > 0)
due to a maximum amount of domain walls, and the ground
state of an antiferromagnet (J0 < 0).

Setting the first derivatives of the semiclassical energy land-
scape, Eq. (A3), to zero, while inserting sin φ(i) = (−1)i sin φ

and cos φ(i) = cos φ, we obtain the condition

N
∂Ep(φ)

∂φ(i)

∣∣∣∣
φ=φa

= (−1)i sin φ
(
B − 2Jp

a cos φ
) != 0, (69)

where we defined

Jp
a = J0

2

∑
r∈I 0

N

(−1)r

|r|α . (70)
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FIG. 12. (a) Energy dispersion relation εe(k) for spin-wave exci-
tations to the ferromagnetic ground state, as a function of B for α = 3
in the thermodynamic limit N → ∞. The closing of the excitation
gap can be observed at k = 0 (blue line) at B = 2J0ζ (3) ≈ 2.4J0.
(b) Energy of the k = 0 mode as a function of B and α. The gap
closes at B = 2J0ζ (α) (red line) for α > 1.

In the thermodynamic limit we obtain for all α � 0,

lim
N→∞

Jp
a = lim

N→∞
Ja = −J0η(α), (71)

as was shown in Eq. (38).
As follows immediately from the discussion in Sec. IV D,

the solution φc
a = π for B > −2Jp

a and cos φc
a = −B/2Jp

a for
B � −2Jp

a yields a maximum of Ep(φ) for J0 > 0, with the
value

Ep, max
a (φs) =

{
−Jp

a − B2
/(

4Jp
a
)
, B � −2Jp

a

B, B > −2Jp
a
, (72)

in direct correspondence with Eq. (47).
Employing this extremal solution, the quadratic Hamilto-

nian (54) reads

H
p
Q(φa)

∣∣
φ=φc

a
= −J0

2
cos2 φc

a

N∑
i=1

∑
r∈I 0

N

1

|r|α (a†
i +ai)(a

†
i+r +ai+r )

+ (
4Jp

a sin2 φc
a + 2B cos φc

a

) N∑
i=1

a
†
i ai, (73)
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FIG. 13. (a) Energy dispersion relation εa(k) for spin-wave
excitations around the highest excited ferromagnetic state, as a
function of B for α = 3 in the thermodynamic limit N → ∞. The
closing of the excitation gap now occurs at k = ±π (blue lines).
(b) Energy of the k = π mode as a function of B and α. The gap
closes at B = −2J0η(α) (red line).

which has exactly the same form as Eq. (61). Thus, an anal-
ogous derivation yields the following diagonal representation
in terms of the Bogoliubov modes δk and δ

†
k:

H
p
Q(φa)

∣∣
φ=φc

a
=

∑
k

εa(k)

(
δ
†
kδk + 1

2

)
+ NE0

a , (74)

where εa(k) = 2
√

Fa(k)2 − Ga(k)2 with

Ga(k) = −J0 cos2 φc
aC

(N)
α (k), (75)

Fa(k) = Ga(k) − E0
a , (76)

E0
a = −2Jp

a sin2 φc
a − B cos φc

a . (77)

Figure 13 shows the energy dispersion of spin-wave excitations
around the highest excited energy level of a ferromagnet in
the thermodynamic limit. Similarly to Fig. 12, the energy
dispersion shows a singular behavior, in this case for the mode
at k = ±π . We conclude that critical behavior, reminiscent of
a quantum phase transition, can be observed around the highest
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excited energy level of a ferromagnet at the critical field

Bc
a = −2Jp

a, (78)

which, according to Eq. (71), converges to limN→∞ Bc
a =

−2J0η(α).
The considered configuration also reproduces the ground

state of an antiferromagnet in the case J0 < 0. Thus, the
results of the present section can be interpreted as the spin
wave excitations of the antiferromagnetic ground state. In this
case, the vanishing excitation gap indicates a “conventional”
ground-state quantum phase transition. Conversely, the results
of Sec. V A describe the critical behavior of the highest excited
state of an antiferromagnet when J0 < 0.

C. Quantum fluctuations around intermediate energy states

Let us finally illustrate the application of the methods devel-
oped in the previous sections to an example of an intermediate
excited state of the system. For simplicity, we consider the
absence of a transverse field, i.e., B = 0. We focus here on the
description of the configuration φI = (φ + π,φ,φ + π, . . . ),
which is created by performing a spin flip at every odd
site of a uniform configuration. Using sin φ(i) = (−1)i sin φ

and cos φ(i) = (−1)i cos φ, it is direct to obtain two sets of
extremal points of the energy landscape (53), characterized by
cos φI1 = 0 and sin φI2 = 0, respectively.

In the case of the first solution φI1 , the system’s semiclassi-
cal energy is given by Ep(φI)|φ=φI1

= −Jp
a , and the quadratic

Hamiltonian (54) has already diagonal form H
p
Q(φI)|φ=φI1

=
4Ja

∑N
i=1 a

†
i ai .

For the second solution φI2 , we obtain the energy
Ep(φI)|φ=φI2

= 0. Correspondingly, the quantum fluctuations
are governed by the Hamiltonian

H
p
Q(φI)|φ=φI2

= −J0

2

∑
r∈I 0

N

(−1)r

|r|α (a†
i + ai)(a

†
i+r + ai+r ).

(79)

One can map such staggered configuration into a uni-
form one by means of a unitary transformation � =
exp (iπ

∑
l odd a

†
l al). This defines a new Hamiltonian

H̃
p
Q(φI)|φ=φI2

= �†H
p
Q(φI)|φ=φI2

�, which reads

H̃
p
Q(φI)|φ=φI2

= −J0

2

∑
r∈I 0

N

1

|r|α (a†
i + ai)(a

†
i+r + ai+r )

= −J0

∑
k

C(N)
α (k)(A†

kA
†
−k + A

†
kAk + A−kA

†
−k + AkA−k).

(80)

After a Bogoliubov transformation, one observes that the
system exhibits a flat energy dispersion εI (k) = 0. A flat
dispersion relation was also noted for the configurations in
the preceding sections in the absence of a magnetic field, see
Figs. 12(a) and 13(a). For the configuration considered here,
the rotation � was able to remove the alternating phases, which
allowed us to describe the Hamiltonian in terms of a single
bosonic species. If this is not the case, a unit cell with several

kinds of Bogoliubov bosons is required for the description of
fluctuations around intermediate energy states. For complete-
ness, in Appendix B we discuss the case of a lattice with two
different types of bosons per unit cell. A careful analysis of
the two-species scenario at a saddle-point configuration of the
semiclassical energy (53) is beyond the scope of the present
paper. Due to the dynamical instability, such a configuration
would lead to a complex energy spectrum and the breakdown
of the second-order expansion (9) at long times.

VI. SUMMARY AND CONCLUSIONS

To summarize, a semiclassical energy landscape was
derived by a variational ansatz in terms of spin-coherent
states, and, equivalently, as the lowest-order term of a formal
1/

√
2S-expansion. Employing a series of single-parameter

spin configurations, we produced one-dimensional projections
of this N -dimensional energy landscape. This provided a sim-
ple semiclassical approximation of the full quantum spectrum,
which is exact for vanishing or very strong external fields—
independently of the length S of the spins and of the interaction
range. As the strength of the external field is increased, each of
the mean-field signatures of the semiclassical excited-state lev-
els exhibits a bifurcation. In the case of the ground state, the bi-
furcation of the energy landscape is directly related to the bro-
ken symmetry characterizing the (anti)ferromagnetic phase.

By studying the spin-wave fluctuations about the semi-
classical energy for a selection of spin configurations, we
identified quantum signatures of the bifurcation of the energy
landscape in the dispersion relations of spin waves around
some of the excited states. Furthermore, in the semiclassical
limit S = M/2 � 1, a closing excitation gap of the elemen-
tary excitations around the ground state predicts the exact
magnetic field at which a quantum bifurcation occurs for the
Hamiltonian (1) of an arbitrary number N of long spins with
tunable-range interactions.

Interestingly, our model allows us to explore the semiclassi-
cal and the thermodynamic limits separately and in a controlled
fashion. For a finite number of sites N , the semiclassical limit
is reached by allowing for a large number M of noninteracting
elementary spins at each site. The thermodynamic limit, in
turn, is approached by increasing the number N of interacting,
composite spins. For finite S, we observe a quantum phase
transition in the thermodynamic limit, which, e.g., includes
the well-known transition of the Ising model for S = 1/2
and α = ∞. This quantum phase transition occurs among
the N � 1 composite spins of length S, whose interaction
range is characterized by α. For finite interaction ranges
(α > 0), semiclassical mean-field methods typically fail to
make quantitative predictions close to criticality. Conversely,
in the semiclassical limit the M � 1 elementary spins, which
are always concentrated in a single point, can be represented
by few effective degrees of freedom, whose spectral spread
depends on M . Consequently, in the semiclassical limit, the
mean-field prediction becomes exact for all values of N and
α. The observed nonanalytic phenomena are referred to as
quantum bifurcations, since they are direct quantum signatures
of the bifurcation of the semiclassical energy landscape. The
long-range interacting spin-S model with transverse field,
Eq. (1), thus provides a family of Hamiltonians which exhibit
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both quantum bifurcations and quantum phase transitions.
Previously studied phase transitions in models with infinite
connectivity [16], such as the Lipkin-Meshkov-Glick [48] or
the Dicke model [8], according to the definition presented
here, are to be identified as quantum bifurcations rather than
as quantum phase transitions.

One advantage of the semiclassical limit S = M/2 � 1
is that for a small number N of sites, one could perform
a complete semiclassical analysis in terms of trajectories in
phase space. For example, for a system with N = 4, one could
find all the critical points of the energy landscape of Eq. (10).
In this case, the existence of saddle points would lead to singu-
larities in derivatives of the density of states, which are referred
to as excited-state quantum phase transitions [15,16]. In this
context, it would be interesting to explore the character of
the singularities of the density of states in the thermodynamic
limit N → ∞ [66] by considering a description in terms of
field theory [5]. In future work, it will be interesting to explore
the dynamical consequences of the geometry of the energy
landscape, i.e., the evolution of the quantum correlations [67]
when the system is initially prepared in a coherent state
centered at an unstable fixed point. Another possibility is to
study the effect of an external driving, which enables control
of the geometry of quasienergy landscapes [17,68].
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APPENDIX A: BOSONIZED HAMILTONIAN
WITH PERIODIC BOUNDARY CONDITIONS

To derive the bosonized expansion of the spin Hamiltonian
(50) with periodic boundary conditions in the thermodynamic
limit, we follow the procedure introduced in Sec. III. Employ-
ing the rotation U (φ), as introduced below Eq. (3), followed
by a Holstein-Primakoff bosonization [45,46], we obtain the
following expression for H p(φ) = U (φ)H pU †(φ):

H p(φ) = −SJ0

N∑
i=1

∑
r∈I 0

N

sin φ(i) sin φ(i+r)

|r|α − 2SB

N∑
i=1

cos φ(i)

+ J0

√
2S

N∑
i=1

∑
r∈I 0

N

(ai + a
†
i ) cos φ(i) sin φ(i+r)

|r|α

− B
√

2S

N∑
i=1

(ai + a
†
i ) sin φ(i)

+ 2J0

N∑
i=1

∑
r∈I 0

N

a
†
i ai sin φ(i) sin φ(i+r)

|r|α

− J0

2

N∑
i=1

∑
r∈I 0

N

cos φ(i) cos φ(i+r)(ai +a
†
i )(ai+r +a

†
i+r )

|r|α

+ 2B

N∑
i=1

a
†
i ai cos φ(i). (A1)

We introduce the mean-field energy for periodic boundary
conditions

Ep(φ) = − J0

2N

N∑
i=1

∑
r∈I 0

N

sin φ(i) sin φ(i+r)

|r|α − B

N

N∑
i=1

cos φ(i)

(A2)

with its first derivatives

∂Ep(φ)

∂φ(i)
= −J0

N

∑
r∈I 0

N

cos φ(i) sin φ(i+r)

|r|α + B

N
sin φ(i), (A3)

and second derivatives

∂2Ep(φ)

∂φ(i)2
= J0

N

∑
r∈I 0

N

sin φ(i) sin φ(i+r)

|r|α + B

N
cos φ(i), (A4)

and

∂2Ep(φ)

∂φ(i)∂φ(i+r)
= −J0

N

cos φ(i) cos φ(i+r)

|r|α . (A5)

This allows us to reexpress Eq. (A1) as

H p(φ) = 2SNEp(φ) +
√

2SH
p
L(φ) + H

p
Q(φ) + O

(
1√
2S

)
(A6)

where we have introduced

H
p
L(φ) = −N

N∑
i=1

∂Ep(φ)

∂φ(i)
(ai + a

†
i ), (A7)

and

H
p
Q(φ) = N

2

N∑
i=1

∑
r∈I 0

N

∂2Ep(φ)

∂φ(i)∂φ(i+r)
(ai + a

†
i )(ai+r + a

†
i+r )

+ 2N

N∑
i=1

∂2Ep(φ)

∂φ(i)2
a
†
i ai . (A8)

Note also that, given ∂Ep(φ)/∂φ(i) = 0 and cos φ(i) �= 0 ∀i,
Eq. (A4) simplifies to

∂2Ep(φ)

∂φ(i)2
= B

N

1

cos φ(i)
, (A9)

in analogy to Eq. (16). If the above conditions are satisfied, this
expression may be used to simplify the quadratic Hamiltonians
at extremal points, by modifying for instance the respective
second terms of Eqs. (59), (61), and (73), as well as expressions
(65) and (77).

APPENDIX B: QUANTUM FLUCTUATIONS IN THE CASE
OF TWO SUBLATTICES

Similarly to Ref. [65], let us consider an index l =
1,2 . . . ,N/2 to label the unit cell and a partition of the
system into two sublattices B and C with lattice vectors
iB(l) = 2l − 1 and iC(l) = 2l, respectively. For simplicity, we
restrict to the case an even number N of spins. The two
sublattices are characterized by angles φB and φC though
the configuration φBC = (φB,φC, . . . ,φB,φC). In this case, the
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condition Eq. (A3) reads ∂Ep(φ)/∂φB = ∂Ep(φ)/∂φC = 0,
which is equivalent to the two coupled equations

−J0 cos φB

(
M

(N)
B sin φC + M

(N)
C sin φB

) + B sin φB = 0

−J0 cos φC

(
M

(N)
B sin φB + M

(N)
C sin φC

) + B sin φC = 0 ,

(B1)

where

M
(N)
B =

∑
r∈I 0

N

r odd

1

|r|α , (B2)

and

M
(N)
C =

∑
r∈I 0

N

r even

1

|r|α . (B3)

The set I 0
N was introduced below Eq. (50). In addition, we

define the operator ( Â†
l )

T = (a†
2l−1,a

†
2l). Similarly, we define

X̂ l = Âl + Â†
l . By using these definitions, we can write the

Hamiltonian (54) for the configuration φBC in a simple way:

H
p
Q(φBC) =

N/2∑
l=1

( Â†
l )

TM(N) Âl +
N/2∑
l=1

(X̂†
l )

TN X̂ l

+
N/2∑

l

∑
R∈I 0

N/2

[(X̂†
l )

TK|R| X̂ l+R], (B4)

where

M(N) =
(

ω
(N)
B 0
0 ω

(N)
C

)
(B5)

and

ω
(N)
B,C = J0 sin φB,C

(
M

(N)
B sin φC,B + M

(N)
C sin φB,C

)
+ 2B cos φB,C. (B6)

In a similar way, we describe the coupling of the Bogoliubov
bosons within the lth unit cell by using the matrix

N = −J0

2
cos φB cos φC

(
0 1
1 0

)
(B7)

and the intercell coupling matrix

KR = −J0

⎛⎝ cos φ2
B

(2R)α
cos φB cos φC

(2R+1)α

cos φB cos φC

(2R−1)α
cos φ2

C

(2R)α

⎞⎠ . (B8)

In a similar way to the discussion of the ferromagnetic case,
we introduce here a discrete Fourier transformation

Âl =
√

2

N

∑
k

Âke
ikl . (B9)

In addition, one can show that in the particle-hole basis,
(�̂†

k)T = (Â†
k,Â−k), one can write the Hamiltonian (B4) as

H
p
Q(φBC) = ∑

k(�̂†
k)T Hk�̂k . Correspondingly, we define the

Bogoliubov de Gennes Hamiltonian

Hk =
(

M(N)+2N +2Re(Kk) 2N +2Re(Kk)
2N +2Re(Kk) M(N)+2N +2Re(Kk)

)
.

(B10)

In the thermodynamic limit, one obtains the expres-
sions limN→∞ M

(N)
B = 2(1 − 2−α)ζ (α) and limN→∞ M

(N)
C =

2−α+1ζ (α), which enable one to calculate the thermodynamic
limit of the matrix M(N). Interestingly, in this limit, the effect
of the long-range interactions between the bosonic particles is
included in the Fourier transformation of the coupling matrix
Eq. (B8), which reads

Kk = −J0

2α

(
ζ (α) cos φ2

B L3/2(k) cos φB cos φC

L1/2(k) cos φB cos φC ζ (α) cos φ2
C

)
,

(B11)

where L1/2(k) = �(eik,α,1/2), L3/2(k) = �(eik,α,3/2), and
�(λ,n,a) is the Lerch transcendent function [63,64].
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