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The discovery of the charge-density-wave formation in the high-Tc cuprate superconductors has activated
intensive theoretical studies for the pseudogap states. However, the microscopic origin of the charge-density-
wave state has been unknown so far since the many-body effects beyond the mean-field-level approximations,
called the vertex corrections, are essential. Toward solving this problem, we employ the recently developed
functional renormalization group method, by which we can calculate the higher-order vertex corrections in
a systematic and unbiased way with high numerical accuracy. We discover the critical development of the
p-orbital-density-wave (p-ODW) instability in the strong-spin-fluctuation region. The obtained p-ODW state
possesses the key characteristics of the charge-ordering pattern in Bi- and Y-based superconductors, such as
the wave vector parallel to the nearest Cu-Cu direction, and the d-symmetry form factor with the antiphase
correlation between px and py orbitals in the same unit cell. In addition, from the observation of the beautiful
scaling relation between the spin susceptibility and the p-ODW susceptibility, we conclude that the main driving
force of the density wave is the Aslamazov-Larkin vertex correction that becomes very singular near the magnetic
quantum-critical point.
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I. INTRODUCTION

Understanding of the exotic electronic states in under-
doped cuprate high-Tc superconductors has been one of the
greatest challenges in condensed-matter physics. Especially,
the charge-density-wave state observed in various compounds
is recognized as a key feature of underdoped cuprate super-
conductors [1–21]. The x-ray measurements have succeeded
in the direct observation of the charge-density waves below
∼200 K [8,9]. By means of the resonant x-ray scattering
and STM measurements, it has now been recognized in many
compounds that (i) the ordering vector of the charge-density
wave is of axial type with the wave vector Qa = (δa,0) [8,9,11–
15,17–21], and (ii) the charge modulation emerges mainly
on the oxygen p orbital [12,17,20,21]. In addition, (iii) the
symmetry of the charge-order pattern is d-wave type, in which
the modulations are antiphase between px and py orbitals in
the intraunit cell [12,17,20,21]. The charge-modulation pattern
[12,17,20,21] is depicted in Fig. 1(a), which can be regarded
as the d-symmetry p-orbital charge-density-wave (p-ODW)
state. The density-wave wave vector Qa corresponds to wave
vector connecting the neighboring “hot spots” shown in
Fig. 1(b). The microscopic derivation of the charge-density-
wave state with the key properties (i)–(iii) based on the realistic
Hubbard model has been desired for years.

Theoretical studies for the pseudogap phenomena have been
performed by considering various strong-correlation effects
[22–26]. Motivated by the discovery of the density wave below
∼200 K [8–21], many scenarios of the spin-fluctuation-driven
nematic order have been proposed in Refs. [27–44], based on
various single-orbital models. Especially, the bond-density-
wave (BDW) state [28–37], the pair-density-wave (PDW)
state [38–42], and the composite charge orders [43,44] have
been studied. The BDW state is defined as the density wave
with d-symmetry form factor. As the driving force of the
BDW state, the authors in Refs. [28–30,33,36] had focused
on the Maki-Thompson vertex correction (VC), in analogy to

the d-wave superconductivity driven by the Maki-Thompson
VC in the Eliashberg theory. The Maki-Thompson process
for the BDW instability is shown in Fig. 1(c), which is
the first-order term with respect to the spin susceptibility.
In general, the Maki-Thompson VC gives the density-wave
instabilities at wave vectors q = Qa or Qd: The wave vectors
Qa and Qd connect the hot spots on the Fermi surface
(FS) shown in Fig. 1(b). The enhancement of the BDW
susceptibility was supported by the renormalization group
(RG) method in the weak-coupling region [31,37]. However,
the predominant wave vector is of the diagonal type Qd,
inconsistently with experimentally observed axial nematic
order. It was also pointed out that the BDW instability driven
by the Maki-Thompson process does not dominate over the
superconducting instability [43,45]. Also, the PDW state has
been considered as the origin of the pseudogap phase [39,40].
The PDW is formed by the linear combination of the Cooper
pairs with finite momenta. The PDW is also induced by the
Maki-Thompson process [41,42], although the induced charge
modulation has momentum 2 Qa [40]. To realize the density
wave with Qa, several types of the composite charge-order
parameters have been proposed [41–44]. However, the d

symmetry of its form factor has not been explained.
Quite recently, the Aslamazov-Larkin VC was suggested to

be more important near the magnetic quantum-critical point
[46]. The Aslamazov-Larkin VC is the second-order term with
respect to the spin susceptibility [Fig. 1(d)]. The predominant
wave vector driven by this VC is of the axial type Qa, due to
the important scattering process shown in Fig. 1(b). However,
only the single Aslamazov-Larkin process had been studied
in Ref. [46]. In addition, the obtained form factor is given
by a complex mixture between the d- and p-orbital charge
densities.

In order to settle down the controversy on the driving force
of the density wave, we have to employ a sophisticated theoret-
ical method to calculate higher-order diagrams, including both
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FIG. 1. (a) Schematic charge distribution in the d-symmetry
p-ODW state with the wave vector Qa = (0.5π,0). The size of
the orbitals represents the charge density. (b) The Fermi surface
of the cuprate superconductors. The density-wave instabilities due to
the VCs emerge at Qd = (δd,δd) and Qa = (δa,0), both of which con-
nect the hot spots. (c) The Maki-Thompson (MT) process [30,33,36]
and (d) the Aslamazov-Larkin (AL) process [46], which are the first-
order and second-order terms with respect to the spin susceptibility,
respectively. The scattering process in the Maki-Thompson VC,
expressed by G( p) G( p + Qd) G( p′) G( p′ + Qd), is shown by green
lines in (b). Also, the important scattering process in the Aslamazov-
Larkin VC, which is expressed by G(k) G(k + Qa) G(k − q ′) in the
three-point vertex, is shown by blue lines where q ′ ≈ Qs (the wave
vector of the spin fluctuation).

Maki-Thompson and Aslamazov-Larkin VCs, in a systematic
and unbiased way. For this purpose, the functional RG method
would be the most appropriate theoretical technique. This
method enables us to calculate various types of VCs up
to the parquet-approximation level, in which the infinite
series of the Maki-Thompson and Aslamazov-Larkin VCs are
included. The RG method has been successfully applied in
the one-dimensional electron systems [47,48] and has been
developed as a powerful method for two-dimensional strongly
correlated electron systems [49–57].

In this paper, we employ the recently developed improved
functional RG method, called the RG+constrained RPA
(cRPA) method [58,59], in order to tackle the unsolved theo-
retical problem on the charge-density-wave state. By utilizing
this method, we can evaluate the momentum dependence
of susceptibilities with high accuracy. We examine various
charge and spin susceptibilities in the realistic three-orbital d-p
Hubbard model [60,61]. We discover that the susceptibility of
the d-symmetry p-ODW state is critically enhanced at the
wave vector Qa in the strong-spin-fluctuation region. The
obtained p-ODW state explains satisfactorily the experimental
key features (i)–(iii) listed above. Thus, we predict that the
p-ODW with d symmetry [Fig. 1(a)] is the origin of the
density wave in cuprate superconductors. The beautiful scaling
between the spin and p-ODW susceptibilities means that the
main driving force of the charge-density instability at Qa is
the Aslamazov-Larkin VC, which is more singular than the
Maki-Thompson VC near the magnetic quantum-critical point.
Therefore, the p-ODW in cuprates originates from the strong
interference between the spin and orbital fluctuations, which
is described microscopically as the vertex corrections.

This paper is organized as follows. In Sec. II, we introduce
the three-orbital d-p model and explain the key idea of the
RG+cRPA theory. In Sec. III, we show the numerical results
on the spin, p-ODW, and d-orbital BDW susceptibilities. In
the weak-spin-fluctuation region, the diagonal density suscep-
tibilities are moderately enhanced by the Maki-Thompson VC,
consistently with the previous results [31,33,36,37]. In the
strong-spin-fluctuation region, in contrast, the axial p-ODW
susceptibility is critically enhanced by the Aslamazov-Larkin
VC, dominating over the BDW susceptibility. In Sec. IV, we
show the beautiful scaling relation between the spin and charge
susceptibilities, which means that the instability at q = Qa is
driven by the Aslamazov-Larkin VC. We briefly discuss the
effect of the Coulomb interaction for p orbital. Section V is
devoted to conclusions. Details of the technical calculations
are given in Appendixes, where the comparison between the
conventional patch-RG and the RG+cRPA theories are also
made for the present three-orbital d-p model.

II. d- p HUBBARD MODEL AND RG+CRPA METHOD

We investigate a standard three-orbital d-p Hubbard model
[60,61], shown in Fig. 1(a), which has been analyzed for
understanding the charge-density-wave state on the oxygen
p orbital [46,62,63]. Its Hamiltonian is given by

Hdp =
∑
k,σ

c†k,σ Ĥ0(k) ck,σ + Ud

∑
j

nd, j ,↑nd, j ,↓, (1)

where c†k,σ = (d†
k,σ ,p

†
x,k,σ ,p

†
y,k,σ ) is the creation operator for

the electron on dx2−y2 , px , and py orbitals with wave vector
k and spin σ . The d-electron density operator is nd, j ,σ =
d
†
j ,σ d j ,σ . We only consider the onsite Coulomb interaction for

the d orbital Ud and the effect of intersite Coulomb interaction
is briefly discussed later. For the kinetic term Ĥ0(k), we use
the first-principles hopping integrals for La2CuO4 in Ref. [64]
(see the note in Ref. [65]). In addition, we introduce the
third-nearest d-d hopping −0.1 eV to make the FS closer
to Y- and Bi-based cuprates by following Ref. [46]. The band
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FIG. 2. (a) The Fermi surface and (b) the band structure in the present three-orbital d-p model. The low-energy region (|E| < 0.5 eV) is
denoted by the shaded areas. The Np-patch discretization for Np = 64 is shown in (a), whereas we set Np = 128 in the numerical study of
this paper. (c) The obtained spin susceptibility for the d orbital χ spin(q) for Ud = 4.40 eV, T = 20 meV, and �0 = 0.5 eV. The peak positions
are q = Qs = (π − δs,π ) and (π,π − δs) where δs ≈ 0.31π . (d) The Ud dependencies of χ

spin
max [≡ χ spin( Qs)] given by the RG+cRPA method

and by the RPA. The initial spin susceptibility given by the cRPA is also shown. No “constrained VC” discussed in Ref. [58] is included in the
present RG+cRPA study.

filling is set to n = nd + np = 4.9, corresponding to the hole
filling x = 0.1. The FS and the band structure are shown in
Figs. 2(a) and 2(b), respectively.

In underdoped cuprates, the spin, charge, and orbital
degrees of freedoms are strongly coupled by the electron
correlation. This fact had prevented the explanation of the
experimentally observed nematic charge order so far. In
order to analyze the competing strong fluctuations in the
two-dimensional systems accurately, we apply the RG+cRPA
method developed in Refs. [58,59], in which the q dependen-
cies of susceptibilities can be obtained with high accuracy in
comparison with the conventional patch-RG method.

In the RG+cRPA method proposed in Ref. [58], we set the
initial cutoff �0 smaller than the bandwidth [Fig. 2(b)]. The
scattering processes of electrons having energies |E| < �0

are integrated within the one-loop RG scheme based on the
conventional N -patch RG method [50–52,56]. The division
of lower-energy Brillouin zone (|E| < �0) into Np patches
is illustrated in Fig. 2(a). The scattering processes involving
higher-energy states with |E| > �0 are evaluated by the
constrained RPA (cRPA) accurately using fine k meshes
and incorporated into the initial values. This treatment is
based on the natural assumption that the vertex corrections
become significant only in the low-energy regions |E| �
�0. Due to this treatment, low numerical accuracy for the

higher-energy processes inherent in the conventional patch-
RG method is greatly improved in the RG+cRPA method.
Another advantage of the RG+cRPA theory for multiorbital
systems is that the interband processes (so-called van Vleck
contributions) can be included. Therefore, the susceptibilities
at low temperatures are obtained with high accuracy in the
RG+cRPA method.

In the present analysis we set �0 = 0.5 eV and Np = 128.
We have checked the case for �0 = 1.0 eV and find that
the results are essentially independent of �0. In the present
RG+cRPA method, the numerical accuracy is sufficiently
improved in comparison with the conventional patch-RG
method. However, the main results of this paper are robust and
reproduced qualitatively even in the conventional patch-RG
method. The direct comparison between the numerical results
of the RG+cRPA and those of the conventional patch-RG
method are made in Appendix A.

III. NUMERICAL RESULTS

A. Spin susceptibility

First, we analyze the spin susceptibility using the
RG+cRPA method, by following the procedure explained in
Refs. [58,59]. Because of the d-orbital Coulomb interaction
Ud , the spin fluctuations develop only on the d orbital. The
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d-orbital spin susceptibility per spin is given as

χ spin(q) = 1

2

∫ 1/T

0
dτ 〈Sd (q,τ ) Sd (−q,0)〉, (2)

where Sd (q,τ ) is the spin operator for the d orbital. The
momentum dependence of the obtained χ spin(q) is shown in
Fig. 2(c). The strong spin fluctuations are realized at the in-
commensurate wave vectors Qs = (π − δs,π ) and (π,π − δs).
The obtained q dependence of χ spin(q) is consistent with the
neutron measurements. As increasing Ud , the maximum of the
spin susceptibility χ

spin
max develops monotonically and diverges

at Ud = U cr
d (≈ 4.5 eV), as shown in Fig. 2(d). The value of

U cr
d will increase to the first-principles value Ud ≈ 8 eV by

including the spin fluctuation-induced self-energy [66].
As seen from Figs. 2(c) and 2(d), the contributions from

the cRPA are small for �0 = 0.5 eV but quite important
(especially for the four-point vertex [58,59]) in order to
derive reliable results. In order to verify the validity of the
RG+cRPA theory, we analyzed the same d-p model by using
the conventional patch-RG method established in literature
[50–52,56] in Appendix A: It is confirmed that the essential
results given by the RG+cRPA method presented in the main
text are qualitatively reproduced by the conventional patch-RG
method, whereas the numerical accuracy is well improved in
the RG+cRPA method.

B. p-ODW susceptibility and d-orbital BDW susceptibility

In contrast to spin susceptibility, any charge susceptibilities
are not enhanced by Ud in the mean-field-level approxi-
mations. Nonetheless, we reveal that the strong p-ODW
instability emerges in the present RG analysis, thanks to the
VCs that are dropped in the RPA. Since Up = 0, the effective
interaction on p orbitals that causes the p-ODW instability is
originated from the many-body effects on the d orbital. The
p-ODW susceptibility per spin is defined as

χ
p-orb
αβ (q) = 1

2

∫ 1/T

0
dτ 〈nα(q,τ ) nβ (−q,0)〉, (3)

where α,β = x,y represent the px,py orbitals. According to
the experimental analyses [12,17], we introduce the suscepti-
bilities for the p-ODW with d and s ′ symmetries:

χ
p-orb
d (q) ≡ χp-orb

xx (q) + χp-orb
yy (q) − 2χp-orb

xy (q), (4)

χ
p-orb
s ′ (q) ≡ χp-orb

xx (q) + χp-orb
yy (q) + 2χp-orb

xy (q). (5)

The susceptibility χ
p-orb
d (q) measures the development of the

antiphase correlation between px and py orbitals in the same
unit cell. Aside from the conventional charge/orbital orders, it
was pointed out in literature [28–30,33,35,63] that the bond-
density order with d-wave form factor is expected to develop
in the Hubbard model. Therefore, we calculate the d-orbital
BDW susceptibility:

χBDW(q) = 1

2

∫ 1/T

0
dτ 〈B(q,τ ) B(−q,0)〉, (6)

B(q) =
∑
k,σ

f (k + q/2) d
†
k,σ dk+q,σ , (7)

where f (k) is the d-wave form factor: f (k) = cos(kx) −
cos(ky). The order parameter 〈B(q)〉 �= 0 represents the bond-
ordered state, which is equivalent to the modulation of the
hopping integrals [35]. In the case of q = 0, the susceptibility
χBDW(q = 0) measures the nematic or Pomeranchuk instabil-
ity [50–52,56]. We also evaluate the conventional d-orbital
charge susceptibility

χd-orb(q) = 1

2

∫ 1/T

0
dτ 〈nd (q,τ ) nd (−q,0)〉, (8)

where nd (q,τ ) is the density operator for the d orbital.
Although the upper limit of χd-orb(q) is 1/Ud in the present
Hubbard model, χd-orb(q) in the one-loop RG may diverge
unphysically if we set Ud too large. Thus, we always verify
the nonsingular behavior of χd-orb(q) to ensure that the
adopted parameter value is within a valid range. We applied
the finite-temperature RG formalism based on the sharp
bandwidth cutoff and solved the RG equations down to
�l = 0. In the actual calculation of the RG equations, we
introduce a lower-energy cutoff �l = πT for the four-point
vertex function in order to obtain stable numerical results
[31]. The physical meaning of this lower-energy cutoff is,
for example, the suppression of the Cooper channel due to the
impurity scattering or the magnetic field. Experimentally, the
charge-density-wave state is strongly stabilized by applying
the magnetic field beyond 15 T [67,68]. This fact means that
the Cooper instability is less important for the density-wave-
formation mechanism.

In Fig. 3, we present the obtained p-ODW susceptibilities
with d and s ′ symmetries, together with the d-orbital BDW
susceptibility for Ud = 4.40 eV in Figs. 3(a)–3(d), and Ud =
4.50 eV in Figs. 3(e)–3(h). In the case of Ud = 4.40 eV, in
which the spin susceptibility is moderate (χ spin

max ≈ 12 eV−1),
both χ

p-orb
d and χBDW are enlarged compared to the RPA

results as shown in Figs. 3(a) and 3(c), whereas χ
p-orb
s ′ in

Fig. 3(b) is not enhanced at all. Therefore, the p-ODW and
BDW susceptibilities are moderately enhanced by the VCs
that are neglected in the RPA. However, the highest peaks of
both χ

p-orb
d and χBDW are located at q = Qd, inconsistently

with the axial nematic density wave in cuprates.
In the case of Ud = 4.50 eV, in which the spin susceptibility

is large (χ spin
max ≈ 200 eV−1), both the p-ODW and d-orbital

BDW susceptibilities shown in Figs. 3(e) and 3(g) possess
large sharp peaks at q = Qa and Qd, which originate from
the VCs generated in the renormalization procedure. The most
divergent density-wave susceptibility is χ

p-orb
d (q) at q = Qa.

In contrast, χp-orb
s ′ (q) is seldom enhanced. Therefore, the axial

p-ODW with d symmetry shown in Fig. 1(a) is realized. We
have verified that | Qa| = δa increases with hole doping in the
present RG study, consistently with experiments in the Y-,
Bi-, and Hg-based compounds. According to neutron inelastic
scattering studies, χ spin

max is as large as ∼500 eV−1 in the slightly
underdoped YBCO [69]. Therefore, the nematic density wave
in cuprates is realized in the strong-spin fluctuation region
experimentally.

We note that both χ
p-orb
d and χBDW have subdominant

broad peaks at q = 0, indicating that “the q = 0 Pomeranchuk
instabilities” are also enhanced in the present model. This
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FIG. 3. The p-ODW [χp-orb
d (q) and χ

p-orb
s′ (q)] and d-orbital BDW [χBDW(q)] susceptibilities in the three-orbital Hubbard model with Ud =

4.40 eV in (a)–(d), and Ud = 4.50 eV in (e)–(h). The temperature is T = 20 meV. The maximum of the spin susceptibility is χ
spin
max ≈ 12 eV−1

(200 eV−1) for Ud = 4.40 eV (4.50 eV). The RPA results are also shown for comparison. The axial wave vector is Qa ≈ (0.37π,0) and the
diagonal wave vector is Qd ≈ (0.41π,0.41π ). Both peak positions Qa and Qd correspond to the wave vector connecting the hot spots shown
in Fig. 1(b). The wave vectors Qa and Qd obtained from the RG+cRPA method change with carrier doping, by following the change in the
vectors connecting the hot spots.

instability had been reported in the previous theoretical
studies [31,70–72], and also observed experimentally in
cuprates as the enhancement of the B1g channel Raman
response [70–72]. The temperature-flow RG scheme [53]
would also be useful for the study of the Pomeranchuk
instability [50,54].

IV. DISCUSSIONS

A. Scaling relation between p-ODW susceptibility
and spin susceptibility

In the inset of Fig. 4(a), we show the Ud dependencies
of p-ODW and d-orbital BDW susceptibilities at q = Qa.
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FIG. 4. (a) The p-ODW and d-orbital BDW susceptibilities χ
p-orb
d (q) and χBDW(q) at peak positions as functions of χ

spin
max . The short-dashed

lines represent the RPA results, which are almost independent of Ud . χ
p-orb
d (q) starts to increase when χ

spin
max exceeds 10 eV−1 (shown by the

arrow). The corresponding Stoner enhancement is χ
spin
max/χ0 ≈ 40. The gradient of the dotted line is 1, so a beautiful scaling relation χ

p-orb
d ∝ χ

spin
max

is satisfied in the strong-spin-fluctuation region (χ spin
max > 10). The inset shows the Ud dependencies of χ

p-orb
d (q) and χBDW(q) at q = Qa. (b)

The d-symmetry and s ′-symmetry p-ODW susceptibilities χ
p-orb
d (q) and χ

p-orb
s′ (q), as well as the d-orbital BDW and charge susceptibilities

χBDW(q) and χd-orb(q) at q = Qa, as functions of χ
spin
max . In the strong-spin-fluctuation region, χp-orb

d (q) exhibits a critical enhancement, whereas
the d-orbital charge susceptibility χd-orb(q) remains small. Thus, the enhancement of χ

p-orb
d ( Qa) is obtained within the reliable parameter range

of the RG method.

The p-ODW susceptibility exceeds the BDW one with
increasing Ud . In the main figure of Fig. 4(a), we plot
both the p-ODW and d-orbital BDW susceptibilities at q =
Qa and Qd as functions of χ

spin
max , in order to reveal the

correlation between the spin and density susceptibilities. In
the weak-spin-fluctuation region (χ spin

max � 10 eV−1), both the
p-ODW and d-orbital BDW susceptibilities increase mod-
erately. In the strong-spin-fluctuation region, only χ

p-orb
d (q)

starts to increase drastically in proportion to χ
spin
max . In this

region, the highest peak of χ
p-orb
d (q) shifts to q = Qa,

consistently with the experimental wave vector. The relation
χ

p-orb
d ( Qa) 
 χBDW( Qa) is robust against the choice of model

parameters.
The most important finding in Fig. 4(a) is that χ

p-orb
d (q)

at q = Qa well scales to χ
spin
max in the strong-fluctuation region

(χ spin
max � 10 eV−1). This beautiful scaling relation is obtained in

the wide range of model parameters. This fact indicates that the
p-ODW is driven by the Aslamazov-Larkin VC that describes
the strong interference between spin and orbital fluctuations.
Also, as shown in Fig. 4(b), χ

p-orb
s ′ (q) as well as the conven-

tional charge susceptibility for the d orbital χd-orb(q) decrease
with χ

spin
max in the weak-spin-fluctuation region, whereas they

turn to increase slightly in the strong-spin-fluctuation region.
The obtained relation χd-orb(q) < 1/Ud supports the reliability
of the present RG result even for χ

spin
max ∼ 200 eV−1.

B. Why is the axial p-ODW susceptibility enlarged in the
strong-spin-fluctuation region?

In order to understand the physical origin of the p-ODW
and, in addition, in order to confirm the validity of the present

RG analysis, we also perform the diagrammatic analysis
for the d-p Hubbard model. Hereafter, we demonstrate
that the characteristic behaviors of the p-ODW and BDW
susceptibilities are well understood by taking VCs for the
irreducible susceptibilities. The lowest-order Maki-Thompson
and Aslamazov-Larkin VCs, XMT(q) and XAL(q), are shown
diagrammatically in Fig. 5(a). Their exact expressions are
given in Appendix C. In the strong-spin-fluctuation region,
the Aslamazov-Larkin VC is scaled as [46]

XAL( Qa) ∝
∑

q

χ spin(q) χ spin(q + Qa) ∝ ξ 2 ∝ χ spin
max , (9)

where ξ is the magnetic correlation length, while the Maki-
Thompson VC is scaled as

XMT( Qa,d) ∝
∑

q

χ spin(q + Qa,d) ∝ ln ξ 2 ∝ ln χ spin
max . (10)

Thus, the Aslamazov-Larkin VC is expected to dominate over
the Maki-Thompson VC in the strong-spin-fluctuation region.

Figure 5(b) shows the q dependencies of the Maki-
Thompson and Aslamazov-Larkin VCs for the p-ODW sus-
ceptibility, at Ud = 4.06 eV and T = 50 meV. In this case,
the system is in the intermediate-spin-fluctuation region with
χ

spin
max ≈ 24 eV−1. Here, the Aslamazov-Larkin VC possesses

the highest peak at q = Qa, and the Maki-Thompson VC
has the second highest peak at q = Qd. Thus, the irreducible
susceptibility

�
p-orb
d (q) ≡ χ

p-orb
d,0 (q) + X

p-orb
d,MT(q) + X

p-orb
d,AL (q) (11)

has the largest peak at q = Qa due to the Aslamazov-Larkin
VC.
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FIG. 5. (a) The lowest-order Maki-Thompson VC XMT(q) and Aslamazov-Larkin VC XAL(q). Their exact mathematical expressions are
given in Appendix C. (b) The momentum dependencies of the Maki-Thompson and Aslamazov-Larkin VCs for the p-ODW susceptibility,
at T = 50 meV. The magnitude of Ud is set to satisfy the Stoner factor αs = 0.99. The noninteracting susceptibility χ

p-orb
d,0 (q) is also shown.

(c) The Maki-Thompson and Aslamazov-Larkin VCs for the d-orbital BDW susceptibility, for αs = 0.99 with T = 50 meV. At q = Qd, the
Maki-Thompson and Aslamazov-Larkin VCs are comparable. The inset shows that �BDW( Qd) does not scale to χ

spin
max . (d) The full susceptibilities

χ
p-orb
d ( Qa) and χd-orb( Qa) as functions of χ

spin
max . The scaling relation χ

p-orb
d ( Qa) ∝ χ

spin
max is well satisfied in the strong-spin-fluctuation region.

For comparison, the RPA result for χd-orb( Qa) is also shown.

We also show the Maki-Thompson and Aslamazov-Larkin
VCs for the d-orbital BDW susceptibility in Fig. 5(c).
Since both VCs have large peaks at q = Qd, the irreducible
susceptibility

�BDW(q) ≡ χBDW
0 (q) + XBDW

MT (q) + XBDW
AL (q) (12)

takes the highest peak at q = Qd. As shown in the inset of
Fig. 5(c), �BDW(q) at q = Qd does not scale to χ

spin
max , which

is consistent with the smallness of χBDW(q) in Fig. 4(a).
Next, we derive the full susceptibilities from the irreducible

susceptibilities. Figure 5(d) shows the obtained χ
p-orb
d (q) and

χd-orb(q) at q = Qa as functions of χ
spin
max by changing Ud .

Since Up = 0 in the present model, the p-ODW suscep-
tibility is well approximated as χ

p-orb
d (q) ≈ �

p-orb
d (q). The

obtained χ
p-orb
d ( Qa) behaves very similarly to the RG result in

Fig. 4(a). Especially, the scaling relation χ
p-orb
d ( Qa) ∝ χ

spin
max

is well reproduced by the diagrammatic analysis, due to large
contribution from the Aslamazov-Larkin VC. In contrast, the
d-orbital charge susceptibility

χd-orb(q) = �d-orb(q)

1 + Ud �d-orb(q)
(13)

at q = Qa shows a minimum at finite χ
spin
max , similarly to

the RG result in Fig. 4(b). This behavior is also understood
analytically: In the weak-spin-fluctuation region, in which
the VCs are negligible and therefore �d-orb(q) ≈ χd-orb

0 (q)

is satisfied, the d-orbital susceptibility decreases with Ud

in proportion to 1/[1 + Udχ
d-orb
0 (q)]. In the strong-spin-

fluctuation region, �d-orb(q) increases drastically because of
the Aslamazov-Larkin VC, and therefore χd-orb(q) increases
toward 1/Ud .

Thus, we revealed that the characteristic behaviors of the
p-ODW susceptibility in the present RG study, such as the peak
position at q = Qa and the scaling relation χ

p-orb
d ( Qa) ∝ χ

spin
max ,

are qualitatively understood by including the Aslamazov-
Larkin VC into the RPA. This result is never trivial in that
the higher-order VCs, unrestricted to the Maki-Thompson and
Aslamazov-Larkin VCs, are systematically produced in the
RG theory. For example, the higher-order Maki-Thompson
and Aslamazov-Larkin processes are included in the RG.
Also, the spin and charge fluctuations and the four-point
VCs are calculated consistently. Thus, the dominant role of
the lowest-order Aslamazov-Larkin VC shown in Fig. 5 is
confirmed in the present RG theory.

Of course, the lowest-order Aslamazov-Larkin VC study
cannot explain the RG results in many parts. For example,
if only the lowest-order Aslamazov-Larkin VC is included,
the relation χBDW( Qa) ∝ χ

spin
max is realized although it re-

mains small in the RG results. Also, the d-symmetry form
factor in the p-ODW cannot simply be obtained by the
lowest-order Aslamazov-Larkin VC. These facts indicate
the importance of the higher-order diagrams included in
the RG.
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FIG. 6. The p-ODW susceptibility χ
p-orb
d ( Qa; Up,Vpp) [Eq. (14)]

as a function of χ
spin
max for Up = 0.7 eV. As an approximation, the

irreducible susceptibility is given by the RG result for Up = Vpp = 0.

Note that there is another type of the Aslamazov-Larkin VC
given by the product of spin and charge (or orbital) propagators
∼χ spin(q ′) χ charge(q ′′). This gives rise to the correction to the
spin susceptibility χ spin and is also included in the present RG
formalism. From the data of spin susceptibility [Fig. 2(d)],

it can be confirmed that such a VC does not have a strong
effect.

C. Effect of the Coulomb interactions for O sites
on the p-ODW susceptibility

The scaling relation χ
p-orb
d ( Qa) ∝ χ

spin
max obtained in Fig. 4

indicates that the spin-density-wave order and the p-ODW
order emerge simultaneously. However, the p-ODW will be
realized in the paramagnetic state in the presence of small but
finite Coulomb interaction between the nearest-neighbor p-p
orbitals Vpp. The p-ODW susceptibility is given as

χ̂p-orb(q; Up,Vpp) = χ̂p-orb(q)

1 + V̂ (q) χ̂p-orb(q)
, (14)

where χ̂p-orb(q) represents the irreducible susceptibility with
respect to Up (the p-orbital onsite interaction) and Vpp.
The nonzero matrix elements of V̂ (q) are Vxx = Vyy =
Up and Vxy = Vyx = 8Vpp cos(qx/2) cos(qy/2). When Up,

Vpp are very small, χ̂p-orb(q) is safely approximated by
the RG susceptibility for Up = Vpp = 0. Figure 6 shows
the obtained χ

p-orb
d ( Qa; Up,Vpp) for Vpp = 0.2 and 0.3 eV

with Up = 0.7 eV, which diverges even when χ
spin
max is

finite. Now, we explain why the tiny Vpp critically en-
hances the p-ODW susceptibility. Considering the relation
χ

p-orb
xx χ

p-orb
yy ≈ [χp-orb

xy ]2 obtained in the present RG at q =
Qa, the d-symmetry p-ODW susceptibility is approximately
given as

χ
p-orb
d ( Qa; Up,Vpp) ≈ χ

p-orb
d ( Qa)

1 + Up

[
χ

p-orb
xx ( Qa) + χ

p-orb
yy ( Qa)

] + 2Vxy( Qa) χ
p-orb
xy ( Qa)

, (15)

which is enhanced by Vpp since χ
p-orb
xy ( Qa) is negative. The

enhancement due to Vpp dominates over the suppression
due to Up, if Up � 8Vpp cos δa. In real materials, finite
electron-phonon coupling would also enlarge the p-ODW
susceptibility in the strong-spin-fluctuation region. Therefore,
the Aslamazov-Larkin VC accounts for the p-ODW ordering
in the pseudogap region of the cuprate superconductors.

V. CONCLUSIONS

In this paper, we applied the RG+cRPA theory to the
three-orbital d-p Hubbard model and discovered that the
d-symmetry p-ODW susceptibility critically develops at q =
Qa in the strong-spin-fluctuation region. The main result is
shown in Figs. 3(e)–3(h). The obtained p-ODW state has
the following characteristics: (i) the ordering vector is axial
type Qa = (δa,0), (ii) the charge modulation occurs on the
oxygen p orbital, and (iii) the symmetry of the p-orbital order
pattern is of the d-wave type. Therefore, the present RG+cRPA
theory reproduced satisfactorily the experimental charge-
density-wave state. The p-ODW originates from the strong
interference between the spin and orbital susceptibilities. Such
an interference is the main characteristic of the electronic states
in underdoped cuprates.

In the previous scenarios of the spin-fluctuation-driven
density-wave states, such as BDW [28–37], PDW [38–42],
and the composite orders [43,44], the Maki-Thompson VC
has been studied as possible origins [28–30,33,36,41–43]. In
the weak-spin-fluctuation region, the Maki-Thompson VC is
dominant and the BDW instability with q = Qd is obtained,
consistently with Refs. [28–31,33,36,37]. However, in the
strong-spin-fluctuation region, the p-ODW with the axial
wave vector Qa is critically enhanced: The obtained beautiful
scaling between the spin and p-ODW susceptibilities means
the important role of the Aslamazov-Larkin VC. Therefore,
the p-ODW in cuprates originates from the strong interference
between the spin and orbital fluctuations, which is microscop-
ically described as the vertex corrections.

Despite that the p-ODW and the d-orbital BDW have the
same d symmetry, we found that the p-ODW susceptibility
is strongly enhanced while the enhancement of the BDW
susceptibility is moderate, as seen from Fig. 4(a). This fact
implies that the charge-density modulation in cuprates is not
due to the bond modulation of the d orbital, but due to
the charge modulation on the p orbital. In fact, the recent
x-ray diffraction study reported that the sizable oxygen-site
displacements occur in the charge-density-wave state, whereas
the Cu-site displacements are very small [73]. This result
supports the p-ODW scenario proposed in this paper.
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The RG+cRPA theory developed in this study will be
useful for analyzing unsolved problems in strongly correlated
electron systems. For example, it is interesting to apply the
RG+cRPA theory for Fe-based superconductors in order to
understand the origin of the electronic nematic state [74–77].
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APPENDIX A: COMPARISON BETWEEN RG+cRPA
AND THE CONVENTIONAL PATCH-RG SCHEME

In the main text, we have analyzed the susceptibilities
using the recently developed RG+cRPA theory [58,59]. In
the conventional patch-RG method, the numerical accuracy
for the higher-energy processes becomes worse because of
the large patch radius [50–52,56]. In order to improve the
numerical accuracy, in the RG+cRPA method, the higher-
energy processes are calculated accurately within the cRPA by
introducing fine k meshes. For this reason, the q dependencies
of susceptibilities are obtained very accurately. Although the
effect of VCs is underestimated in the RG+cRPA method, this
underestimation is not serious since the VCs are important
mainly in the lower-energy processes. In this section, we
make a direct comparison between the numerical results of the
RG+cRPA and those of the conventional patch-RG method in
order to confirm the validity and reliability of the RG+cRPA
theory.

The band structure and the patch discretization in the
conventional patch-RG method are shown in Figs. 7(a) and
7(b), respectively. The Brillouin zone is divided into the patch
segments with respect to the angle φi [Fig. 7(b)]. Here, the ra-
dial variable kr from the center of each patch p(φi) is neglected
in the vertices, that is, 
({ki}) = 
({kr,i ,φi}) → 
({φi}) for
the four-point vertex and R(q; k1,k2) → R(q; φ1,φ2) for
the three-point vertex [50–52,56]. The justification of this
approximation is frequently ascribed to the simple scal-

−4
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2

(0,0) (π,0) (π,π) (0,0)

E
ne

rg
y

[e
V

]

0

0

kx
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−π
−π

(a) (b)

FIG. 7. (a) Band structure and (b) Fermi surface in the present
model. The discretization of the Brillouin zone (Np = 64) in the
conventional patch-RG scheme is shown. In each patch, the center
momentum p(φi) is shown as the open circle. The initial cutoff �0

is set to the bandwidth of the conduction band, and the contributions
from the valence bands are neglected.

d

dl q
k1

k1+q

=
k2

q

k2 + q

k2

k1+q

k1

R(q;φ1, φ1) R(q;φ2, φ2) Γ(φ1, φ2;φ1, φ2)

FIG. 8. The RG equations for the three-point vertex R(q; φ,φ′),
where φ is the patch index and l is the scaling parameter. The slashed
(crossed) line represents an electron propagation having energy on
�l+dl < |E| < �l (|E| > �l) where �l = �0e

−l . The patch indices
are determined so that the momenta ki and ki + q (i = 1,2) are,
respectively, on the φi and φ′

i patches. Therefore, ki �= p(φi) and
ki + q �= p(φ′

i).

ing argument in the weak-coupling limit. However, the kr

dependencies are quantitatively important in reality since the
“momentum mismatch” problem is serious in the higher-
energy processes. Moreover, this problem becomes more
serious in multiorbital systems since the orbital components
of each band, called the “orbital makeup” [56], depend on kr

in usual multiorbital models.
The conventional patch-RG scheme can be reproduced in

the present RG+cRPA method by neglecting the valence-band
contributions and by setting the cutoff �0 to the bandwidth
of the conduction band [see Fig. 7(a)]. The RG equation
for R(q; φ1,φ2) is shown diagrammatically in Fig. 8. The
susceptibilities χ spin(q), χ

p-orb
d (q), χBDW(q), χ

p-orb
s ′ (q), and

χd-orb(q) obtained by the conventional patch-RG method for
Ud = 9.5 eV are shown in Fig. 9. As shown in Fig. 9(a),
strong antiferromagnetic fluctuations are obtained, although
the obtained incommensurate peak position of χ spin(q) is
at q = (π − δs,π − δs), differently from the experimental
peak positions at q = (π,π − δs) and (π − δs,π ) that are
reproduced by the RPA as well as the RG+cRPA theory [see
Fig. 2(c)].

Figure 10 shows the inverse of the spin susceptibili-
ties [χ spin(q)]RG+cRPA and [χ spin(q)]conv-RG, obtained in the
RG+cRPA and conventional patch-RG methods, respectively.
In the case of Ud ∼ 0, [χ spin(q)]RG+cRPA almost perfectly
reproduces the RPA susceptibility χ

spin
RPA(q) = χ0(q)/[1 −

Uχ0(q)], where χ0(q) is the bare susceptibility. It is note-
worthy that the result of the RG+cRPA method for �0 = 0.5
eV is very similar to that for �0 = 1.0 eV. In contrast,
[χ spin(q)]conv-RG gives under-estimated value since the van
Vleck contribution is dropped. In addition, [χ spin(q)]conv-RG

also deviates from the RPA restricted to the conduction-band
contribution χ

spin
RPA,cond(q). The origin of this deviation is that

the orbital components, called the “orbital makeup” [56,78],
largely depend on kr because of the large patch radius in
the conventional patch-RG method. Thus, the RG+cRPA
method is superior to the conventional patch-RG method in
the numerical accuracy for Ud ∼ 0.

Next, we compare the results of two RG methods for
finite Ud . As shown in Fig. 10, each 1/[χ spin(q)]RG+cRPA and
1/[χ spin(q)]conv{−RG is concave as functions of Ud because
of the VC generated in the three- and four-point vertices. We
see that U cr

d ≈ 4.5–5 eV in the RG+cRPA method, whereas
U cr

d ≈ 9.5 eV in the conventional patch-RG method. To
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FIG. 9. (a) χ spin(q), (b) χ
p-orb
d (q), (c) χBDW(q), (d) χ

p-orb
s′ (q), and

(e) χd-orb(q), obtained by the conventional patch-RG method. We
set Ud = 9.5 eV, T = 20 meV, and Np = 64. For comparison, the
RPA result for χ spin(q) with Ud = 4 eV is also shown in (a), and the
RPA results for Ud = 9.5 eV are shown in (b)–(e). As shown in (b)
and (c), d-symmetry p-ODW instability at q = Qa develops strongly.
These results are consistent with the results of the RG+cRPA method
explained in the main text.

understand such large difference in U cr
d , in Fig. 8, we comment

on the “momentum mismatch” between the pair of the Green
functions G(k2)G(k2 + q) and 
, R, originating from the fact
that the momenta at the centers of the patches φ2 and φ′

2, p(φ2)
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FIG. 10. The Ud dependence of χ
spin
max obtained by the conventional

patch-RG method, RG+cRPA methods, and RPA. In the RG+cRPA,
the results with the different choices of parameters are shown. In
the weak-coupling limit, the RG+cRPA results well reproduce the
RPA results, irrespective to the choice of Np . In addition, the �0

dependence of the results is weak in the RG+cRPA.

and p(φ′
2), are different from k2 and k2 + q, respectively. This

mismatch leads to violation of the momentum conservation
at each bare vertex Ud in the Feynman diagrams. This defect
is not serious in the RG+cRPA method with �0 � Wband.
Considering that the self-energy correction is dropped in the
present RG methods, large U cr

d in the conventional patch-
RG method might partially originate from the momentum
mismatch. On the other hand, U cr

d in the RG+cRPA method is
underestimated since the vertex corrections with higher-energy
processes (|E| > �0) are included only partially. In spite of
this underestimation, large p-ODW susceptibility is induced
by the VC in the RG+cRPA method.

We stress that the results of the RG+cRPA method and
those of the conventional patch-RG method are qualitatively
equivalent, nonetheless of the large difference in U cr

d . In
the RG+cRPA method, the results are almost unchanged in
both cases of �0 = 0.5 eV and �0 = 1.0 eV. In addition,
the RG+cRPA results with Np = 64 and 128 are almost
identical, indicating that the the numerical convergence has
been achieved at Np ≈ 64. We note that various RG methods
have been proposed to resolve the above-mentioned problems
in the conventional patch-RG method, such as the singular-
mode functional renormalization group [78].

Regarding the charge susceptibilities, both χ
p-orb
d (q) and

χBDW(q) possess large sharp peaks at q = Qa and Qd as
shown in Figs. 9(b) and 9(c) at Ud = 9.5 eV. This behavior is
essentially identical to that obtained by RG+cRPA method
(Fig. 3). This result supports the validity of the present
RG+cRPA theory. Since the van Vleck contributions are
dropped in the conventional patch-RG method, both χ

p-orb
d (q)

and χ
p-orb
s ′ (q) in Figs. 9(b) and 9(d) are much smaller than the

RPA results except near the peak positions. In the RG+cRPA,
in contrast, the RG+cRPA results coincide well with the RPA
results if q is away from the peak positions, as shown in Fig. 3.

Figure 11 shows the scaling relation between the p-ODW
susceptibility and χ

spin
max obtained from the conventional patch-

RG method. The obtained relations χ
p-orb
d ( Qa) ∝ χ

spin
max as
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FIG. 11. Peak values of χ
p-orb
d (q) and χBDW(q) as functions of

χ
spin
max obtained from the conventional patch-RG method. The gradient

of the dotted line is 1, so beautiful scaling relation χ
p-orb
d (q) ∝ χ

spin
max

is satisfied in the strong-coupling regime. The inset shows the Ud

dependencies of χ
p-orb
d (q) and χBDW(q) at q = Qa.

well as χ
p-orb
d ( Qa) 
 χBDW( Qa) in the strong-spin-fluctuation

region are qualitatively consistent with the RG+cRPA results
shown in Fig. 5. Therefore, the development of the d-symmetry
axial p-ODW instability due to the spin fluctuation, which is
the main message of the main text derived from the RG+cRPA,
is confirmed also by the conventional patch-RG method.

In summary, the results given by the RG+cRPA method
presented in the main text are qualitatively reproduced by the
conventional patch-RG method. Therefore, the validity of the
RG+cRPA method is verified by the conventional patch-RG
method, the validity of which has been confirmed in literature
[50–52,56]. The numerical accuracy is well improved in the
RG+cRPA method, as recognized by the coincidence with
the RPA result in the weak-coupling region shown in Fig. 10.
This improvement is achieved by calculating the higher-energy
processes accurately within the cRPA by introducing the fine
k meshes. As seen from Figs. 2(c) and 2(d), the contributions
from the cRPA are small for �0 = 0.5 eV but quite important
(especially for the four-point vertex [58,59]) in order to derive
reliable results from the RG equations.

APPENDIX B: SCALING FLOWS OF EFFECTIVE
INTERACTIONS

In this section, we examine the effective interactions for
p-ODW and d-orbital BDW. The effective interaction for the
d-orbital BDW state is given by taking into account the d-form
factor


BDW(q) ≡
∑
k,k′

′

c(k,k′; k + q,k′ − q)

× u∗
d (k) u∗

d (k′) ud (k + q) ud (k′ − q)

× f (k + q/2) f (k′ − q/2), (B1)

where 
c(k,k′; k + q,k′ − q) represents the renormalized
charge vertex. This expression is essentially the same as
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ΓΓΓΓd
p−orb(q)

(0,0)

ΓΓΓΓBDW(q)/4

Qd

l=3

l=2

l=0

FIG. 12. The effective interactions (B1) and (B2) at the scaling
parameter l = 0, 2, and 3, with Ud = 4.50 eV, T = 20 meV, Np =
128. In this case, χ

p-orb
d ( Qa) is larger than χBDW( Qd) [see Fig. 3(h)].

examined in the single-orbital case [31]. Here, ud (k) represents
the unitary transformation from the conduction band basis
to the d-orbital basis. The summations over k and k′ are
restricted to the low-energy scattering processes, in which all
the momenta (k,k′,k + q,k′ − q) are near the Fermi surface.
This interaction becomes zero if the bare Hubbard interaction
Ud is used for 
c [31]. In the present case, 
BDW|l=0 becomes
small but nonzero due to the cRPA contributions.

In the similar manner, the effective interaction for the p-
ODW state can be introduced as



p-orb
d (q) ≡ 
c

xxxx(q) + 
c
yyyy(q)

− 
c
xyxy(q) − 
c

yxyx(q), (B2)


c
αβγ δ(q) ≡

∑
k,k′

′

c(k,k′; k + q,k′ − q)

× u∗
α(k) u∗

β(k′) uγ (k + q) uδ(k′ − q), (B3)

where uα(k) (α = x,y) represents the unitary transformation
from the band basis to the px- or py-orbital basis.

As has been discussed in Ref. [31], the negative values
of the effective interactions indicate the precursor of the
corresponding instability. Actually, if the effective interaction
becomes negative, the right-hand side of the RG equations
for the three-point vertex [58] becomes positive and then the
three-point vertex can increase. Once the three-point vertex is
enhanced, the corresponding susceptibility is also enhanced
[58].

In Fig. 12, we show the development of the effective
interactions for several scaling parameters l = ln(�0/�) in
the case of U = 4.50 eV. At the initial point (l = 0), these
effective interactions given by the cRPA are small and
almost independent of q. After the renormalization (l = 2,3),
the effective interactions at Qa and Qd become negative,
implying the development of the susceptibilities. At l = 3, the
interaction at q = Qa is stronger than that at q = Qd. We find
that the overall profile of 
BDW( Qa) is similar to 
p-orb( Qa),
except for the constant factor.

In contrast, in the weak-fluctuation case (Ud = 4.40 eV),
the interaction at q = Qa becomes weaker than that at q = Qd.
This relation of the effective interactions is in accordance with
that of the peak positions of the susceptibility.
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FIG. 13. Detailed diagrammatic expressions of the Maki-Thompson and Aslamazov-Larkin VCs. Their analytic equations are shown in
Eqs. (C3)–(C6).

Thus, we understand that the enhancements of χBDW(q)
and χ

p-orb
d (q) at q = Qa, Qd, and 0 originate from the large

negative 
BDW(q) and 
p-orb(q) after the renormalization.
However, the q dependencies of 
BDW(q) and 
p-orb(q) are
not consistent with those of the susceptibilities. For example,
the peak position of each χBDW(q) and χ

p-orb
d (q) is q = Qa or

Qd for Ud = 4.50 eV as shown in Figs. 3(e)–3(h), although
both |
BDW(q)| and |
p-orb(q)| take the maximum values at
q = 0. These results mean that the susceptibilities should be
calculated to obtain the real density-wave wave vector in the
RG study.

APPENDIX C: ANALYTICAL EXPRESSIONS OF THE
MAKI-THOMPSON AND ASLAMAZOV-LARKIN VERTEX

CORRECTIONS

In this section, we show the analytical expressions of
the leading-order Aslamazov-Larkin VC XALc

l,m (q) and Maki-
Thompson VC XMTc

l,m (q) for the charge channel, including the
form factor fα(k). The Maki-Thompson VC is given by

XMTc
α,β (q) = T 2U 2

d

∑
k,k′

fα

(
k + q

2

)
Gα,d (k + q) Gd,α(k)

×
[

3

2
χ spin(k − k′) + 1

2
χ charge(k − k′)

]

×Gβ,d (k′) Gd,β (k′ + q) fβ

(
k′ + q

2

)
, (C1)

where k = (k,εl), q = (q,iωm), εl = πT (2l + 1), ωm =
2πmT , and α, β = d,x,y represent the orbital indices. Here,
χ spin and χ charge(≡ χd-orb) represent the d-orbital spin and

charge susceptibilities, given by Eqs. (2) and (8), respectively.
The Aslamazov-Larkin VC is given by

XALc
α,β (q) = T U 4

d

∑
p

�α(q; p)

[
3

2
χ spin(p + q)χ spin(p)

+ 1

2
χ charge(p + q)χ charge(p)

]
�′

β(q; p), (C2)

where p = ( p,iωn) and ωn = 2πnT . Here, �l and �′
l are the

three-point vertices:

�α(q; p) = T
∑

k

fα

(
k + q

2

)

×Gα,d (k + q) Gd,d (k − p) Gd,α(k), (C3)

�′
β(q; p) = T

∑
k′

fβ

(
k′ + q

2

)
Gβ,d (k′)[Gd,d (k′ − p)

+Gd,d (k′ + p + q)]Gd,β (k′ + q). (C4)

Their diagrammatic expressions are shown in Fig. 13.
For the d-orbital BDW with d-symmetry form factor, the

form factors fα(k) (α = d,x,y) are set to

fd (k) = cos(kx) − cos(ky), fx(k) = fx(k) = 0. (C5)

The form factors for the p-ODW with d symmetry are

fd (k) = 0, fx(k) = +1, fy(k) = −1, (C6)

and those with s ′ symmetry are

fd (k) = 0, fx(k) = +1, fy(k) = +1. (C7)
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